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Abstract. Two dynamical system methods are studied for solving linear ill-posed problems
with both operator and right-hand nonexact. The methods solve a Cauchy problem for a
linear operator equation which possesses a global solution. The limit of the global solution at
infinity solves the original linear equation. Moreover, we also present a convergent iterative
process for solving the Cauchy problem.
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1 Introduction

Dynamical systems method (DSM) is a general method for solving operator equations, especially
for non-linear, ill-posed as well as well-posed operator equations [1-6]. In [5, 6], Ramm proposed
a DSM for linear ill-posed problem with right hand nonexact. However, in practice, not only
the right-hand side of equations but also the operators are approximately given. This paper
is to provide a DSM for linear operator equation with not only noisy data but also perturbed
operators.

We first briefly describe the dynamical systems method for solving operator equations. Con-
sider an operator equation

Au=f, feH (1)

Let us denote by (X) the following assumption:

(3): Ais a linear, bounded operator in H, defined on all of H; the range R(.A) is not closed,
so (1) is ill-posed problem. There is a y such that Ay = f, y € N(A)L, where N(A) is the
null-space of A.

Let 4 denote the derivative of u with respect to time. Consider the following dynamical
system (the Cauchy problem):

= q)(tvu)a t >0, U(O) = Ug (2)
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where ®(t,u) is globally Lipchitz with respect to u € H and continuous with respect to ¢ > 0:

sup (|®(t, u) — (t,0)|| < clJlu—2v], c¢=const>0. (3)
u,vEH,te[0,00)

Problem (2) has a global solution if (3) holds. The DSM for solving (1) consists of solving (2),
where @ is so chosen that the following three conditions hold:

Ju(t) vt > 0; 3y :=u(oo) := lim u(t); Ay=f. (4)

t—oo

For real number h > 0, let A} be a bounded linear operator in a real Hilbert space H such
that

A — Au|| < h. (5)

Problem (1) with noisy data f°,||f — f|| < ¢ and perturbed operator A;, satisfying (5), given
in place of f and A, respectively, generates the problem:

'L'L(;’h = <I>5,h(t,u), t>0, u(;,h(O) = Uup. (6)
The solution s, to (6) at t = ¢4, will have the property

}ii% lus,n(ts,n) =yl =0, (7)

where 7 = v/02 + h2. The choice of ¢5, with this property is called the stopping rule. One has
usually lim, ¢ ¢5, = oo.

We organize this paper into four sections. In Section 2, we describe one DSM for solving
linear problem. In Section 3, we present another version of DSM. In Section 4, we propose two
convergent iterative processes to solve the two Cauchy problems.

2 DSM 1 for solving the linear problem
Consider the Cauchy problem
s p(t) = Pon(t,usn(t)), t>0, usn(0)=uo (8)

where (1)57h(t, U57h(t)) = —[Bhu(m(t) + E(t)u(;h(t) — fé,hL By, = -AZAM Fsn = .AZfé and

e(t) € CH0,00), (t) >0, &(t)\ 0 (t— o0), (9)
EOL g o
07 0 (¢ ). (10)

Lemma 2.1. [5] Let A and Ay, are linear operator in a real Hilbert space H, B = A*A, B, =

Ap Ay, e(t) € C[0,00) and €(t) > 0. Then the following inequalities hold
: . —1 p* < 1
(i) l(e)+B)"A*|| < EWATR

(ii). [I(e(t) + B) "t A" A < 1,

(iif). [le(t)(e(®) +B)~H < 1.

If A, B are replaced by Ay, Br, respectively, the above conclusions are still correct.
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Theorem 2.1.  Assume that assumption (X) on A and (9), (10) on £(t) satisfied. Then, for
any ug € H, problem (8) has a unique global solution usp(t). Moreover, there exists ts such
that

lim lus,n(ts,n) —yll = 0.

Proof Eq. (8) with bounded operators has unique global solutions. Consider the problem

Bhwé,h(t) + E(t)w(ih(t) —Fsn =0, (11)

where By, > 0 and () > 0, so the solution wsp(t) to (11) exists, is unique and admits the
estimate

lwsn @Ol = 1B + ()™ Fonll <

1
S+

We differentiate (11) with respect to ¢t and get

Bhd}(gyh(t) + é(t)w(;yh(t) + E(t)d)(;’h(t) =0. (12)
It follows from (12) that
sl = 1+ <) esnoll < 20 411, (13)
ez (t)

Denote z5.5(t) 1= us,p(t) — ws n(t). Then
Z5,n(t) = —wsn(t) — [Brzsn(t) +e(t)zsn(t)],  25,n(0) = us,n(0) — ws,n(0).
Denote gs.1(t) := ||zs,n(¢)||. Then we have
951 (0)gsn(t) = (Zs.n(t), 25.(t)) < gsn () |ws,n ()]l — e(t)g3 (1) (14)
Since gs,1(t) > 0, it follows from (13) and (14) that
go.n(t) < C1— Cagsn(t),  95.1(0) = [lus,n(0) = wsn(0)]l;

where C; = ‘Eg()t‘) (6 +[|f]) > 0 and Cy = (t) > 0. This gives
e s [EO)
gsn(t) < e o) S[QM(O) +/ el ()0 S (6 + ||f||)dT] (15)
0 2ez(7)

It follows from (10) that fo s)ds = 400, see, e.g., [3]. Using L’Hospital’s rule gives

Jo et =t d;‘%ﬂ')(é + 111

. e2 (7 |E(t)|
A oly s =8 ery O I =
which yields
tlim gs.n(t) =0, Vo,h>0. (16)
—00

Next, let us estimate ||ws ;(t) — y||. By the triangle inequality and Lemma 2.1, one gets

lwsn(®) =yl = () +Bu) " A f° =yl
< (e + Br) PAL = NI+ (@) + Br) T AGS — (e(t) + B) LA ]|
+Hiet) +B)T LA f —yl|
< i + I + .

24/€(t)
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It follows from Lemma 2.1 and (5) that

L = +Bp) VAL = (e(t) + B) LA |

lI(e(#)
= [(e(®) + Br)THe(t) (A} — A”) + A (A = Ap) A" (e(t) + AA™) T Ay |
lyllh
=(t)

Since f = Ay, one gets

L =|l(e(t) + By A" f —yll = [[e()(e(t) + B) "Myl = d(e(t). y) = ¢(e(t)). (17)

Consequently,

<

lugn(t) — ]l < gsn(®) + € 1 o(e(0)), (18)
=)

where C' = max{1/2, ||y||}. Let us proof that éir% #(B) = 0. Suppose {Ey} is the spectral family
generated by the operator B = A*A. Then we have

lAl? 2
o7 =00 = [ (55) dBwn). (19)

Noting that as 3 — 0,
B —0 as A>0,
B+X| =1 asA=0,

and using the assumption y € N(A)*, one gets girrb ¢(B) = 0. If the corresponding stopping

time 57 can be taken as the root of equation

Ve(t)=(6+h)?, de(0,1), (20)

then it is obvious that lin%) ts,n, = 0o. The conclusion holds following from (16), (18) and (20). W

3 DSM II for solving the linear system
Consider the Cauchy problem
Us,p(t) = s n(t,usn(t)), t>0, wusn(0)=muo, (21)
where
Bsp(t,usn(t)) = —(Bn+et) | Brusn(t) +e(t)usn(t) — Fsn
= —usn(t) + (Bn +e(t) "  Fsn

Theorem 3.1.  Let the assumption (X) holds. Assume (t) > 0 is continuous, monotonically
decaying to zero on [0,00). Then, for any ug € H, problem (21) has a unique global solution
us n(t). Moreover, there exists ts such that

lim {|us,n(ts,n) — yll = 0.
r—0
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Proof Denote ps 4 (t) := usn(t) —un(t) and g° := fo— f, where uy(t) is the solution to problem
(21) with Fsj, replaced by Fs. It is easy to obtain

Ps.n(t) = —psn(t) + (Bn +e(t) " Arg®, >0, psn(0)=0. (22)

Therefore, the solution to (21) is

t
psn(t) = et / ¢*(Bn + £(s)) "L A% g ds
0

It follows from Lemma 2.1 that

t t s 5
t<5‘t/sB+ —IA*d<5—f/67d<7.
llps.n(t)] < de ; e*||(Bn +¢<(s)) " Apllds < de ) 3V 5_2\/%

Let u(t) be the solution to problem (21) with Fsj and By, replaced by Fj, = A f and B = A*A,
respectively. Then one gets

¢
u(t) = uge ™" + e_t/ e®(e(s) + B)"LA* fds,
0

t
up(t) = uge™" + e_t/ e*(e(s) + Br) LA fds.
0

Since ||[(e(s) + Bn) L AL — (e(s) + B) 1A% f|| < \'7% , one gets

[un(®) —u(@®) < 6_t/0 e*|[[(e(s) + Bu) "' A — (e(s) + B) T A" flds

L L Y

0 Ve T T e

Thus, by the triangle inequality, one gets

IN

luan(®) —ul < lusn —un(®)] + lun — u(@)] + () — o]
< 9 Wm+nm yl
2/ Ve
C(3+h)

VZOR + [lu(®) = yll.

As a result, the corresponding stopping time 5, can be taken as the root of equation:
et)=C(5+h)’, be(0,1). (23)

It follows from the condition on &(t) that lim,_,ots;, = oo. One also gets from [4] that
limy o0 [|u(t) — y|| = 0. Thus

lim [lus,n(tsn) —yll=0. W
r—0
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4 Convergence of the iterative process

Let us use Euler’s method to solve the Cauchy problems (8) and (21) numerically. The numerical
methods are

Pynt =05n —wn[(Br+en)piy — Fsnl, n=0,1,---, (24)

pgh =g, En:i=¢&(tn), tn:i= iwi, w; >0 (25)
i=0

q:{;{l = (1 —wn)qsp +wn(Bn + en) " Fsny, n=0,1,---, (26)

qg’h =g, Eni=e(tn), tni= zn:wi, w; > 0. (27)
i=0

In this section, it is proved that under certain conditions the iterative schemes (24) with (25)
and (26) with (27) are convergent.

Lemma 4.1. [7] Assume the sequence of positive number v, satisfies the inequality

Unt1 < (1 - an)Vn + On,

where

> 0

0< oy, <1, § an, =00, lim -~ =0.
n—oo an

n=0

Then
lim v, = 0.
n—00

Theorem 4.1. Assume the conditions of Theorem 2.1 hold. Assume further that

(i). 6 is the level of noise in (24): ||f — f°|| <6, (5) holds and || A|| < N;
(ii). n(d,h) is chosen in such a way that lim, _on(d, h) = co;

(iii). Wn(s,h) tends to zero monotonically as r — 0, and 0 < wy(5,n)En(s,h) — cwz((; n) < 1 with ¢
defined by (31);

(iv). Yoo wpen =00, lim, o % =0, and lim,_,q \/% =

Then
. 8,
lim [|pj ;" — yl| = 0. (28)
r—0 ’

Proof Note that us(t) satisfies (8), one has

W2
U&h(thrl) = uﬁ,h(tn) + Wnu&h(tn) + —"ug’h(gn), &n € (tnytntt)

2
= usp(tn) — wn[Brusn(tn) + e(tn)usn(tn) — Fon)

2
Wy,

+ 2L By + e(60)] [Brusn (&n) + €(€n)usin(€n) = Fon] — £(€n)usnlén) }-
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Then
P54t = usn(tag) | < 1(1 = wae(tn)) (P55 — ts.n(tn)) — wnBn(Psh — usn(tn))l

+% 1[Bn + e(&n)] [Af, (Anus n(&n) = £°) + e(€n)usn(n)] — €(En)us n(En)l
< (0= n(t) (P — 50 (8) — B — )

PV 4 12 4+ (6] [+ 1) (8 + B+ () (&) — o

(b + £ Iyl +6)] + £Enl (lusn(én) = yll + ) }.

By introducing the notation
A i= [ (N + B2 4 2(60)| [ (V4 1) ((V + b+ 2(60) s (6a) = yll + (b + £(€))llyl +9)

+eE)l (llus.n(én) =yl +v),

one obtains from Theorem 2.1 that
lim )‘n(é h) = 0.
r—0 ’

If wpen < 1, then from the condition Bj > 0 one obtains

54" = usn(tar)l
5 w2\,
< {0 wne2)?p3 s — s (ta) 12 + W2 Balpip — wsn(ta)) 2} + 22 (29)
Applying the elementary estimate
1
(a4+b)? < (1+wnen)a® + (1 + >b2
WnEn
to the right-hand sides of (29) with
3 W2
a = {(1 = wnza) 2l n = wsnt)) |2 +w2lBalpin —usnt))[2} 7 bi= 220,
one gets
1 2 wiy
P55 = wsn(tnsn)|* < (1= wnen + cwl) 5 — wsn(ta)|” +d—2, (30)
n
where we assume that w,, tends to zero monotonically as n — oo, and
1
= (1 +woeo)(e§ + N1), Ni=(N+h)? d:= ZAi(l + gowo)- (31)
Let
w3
n(3,h) 2 — 2 n(8,h)
Unn) = IPss = Ush(tn@ )y Qn(sn) = Wnh)En.n) = Wneshys  On(sh) = = gen)

En(s,h)
The desired result (28) is an immediate consequence of (30) and Lemma 4.1 H

Theorem 4.2. Assume the condition (X) holds. Assume further that
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(i). § is the level of noise in (26): || f — f°|| <3 and (5) holds;
(ii). n =n(d,h) is chosen in such a way that 1ir% n(d, h) = oo;
). &(t) € C[0,00), () \, 0 (t — o0), and EH} — 0(t — o0);
).

0o o . o+h _
doriwn =00, 0 <w, <1 and hmrﬂomfo

(iii

(iV n=

Then
lim ||¢5,, — y[| =0,
r—0

where n := n(d, h).

Proof Note that us;(t) satisfies (21), one has

2
. W,
)+ wnué,h(tn) + f“g,h(&n)a én € (tmtn-i-l)
)

s h(tn) + wn[(—usn(tn) + (B +€n) 1 Fs ]

usp(tng1) = usn(tn

2 {u(n) = (T4 (&) (Ba + (€)™ ) (Bu +£(60)) ™ Fon }
Then 23
ozt = usn(tnsn)ll < (1= wa)lgs — usn(tn)ll + <22, (32)
where
Mo = llusp(€n) =yl + [ly — (Br + (€)™ Fonll + [16E) (Br + (&) 2 Fonll. - (33)
Since
Iy = B+ £(6) " Fnll < S 4 ol (3)

where the function ¢(3) is as the same as in (17), C = max{1/2, ||y||}. By (33), (34) and Lemma
2.1 one gets

Moo= usn(€n) =yl + lly — B+ (&)™ Fonll + 1€(En) (Br +(€n) > Fonll

< n(6n) vl + D 6(E) + 1 g ) B+ <l60))
< tusaten) —ol+ S v oteten + HElIA

It follows from Theorem 3.1 and the conditions in Theorem 4.2 that lim, g Ay s,,) = 0. Denote
93y = llai, — usn(tn)|| and B, = Anw? /2. Then

gint < (1 —wn)giy + Ba- (35)
From Lemma 4.1 and the condition (iv), one has

lim g7 ") = 0. (36)

The conclusion follows from Theorem 3.1 and (36). M
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Conclusion

Two dynamical system methods are presented for solving operator equations of the first kind
with both operator and right-hand nonexact, which extended the methods introduced in [5, 6].
Moreover, we also present two convergent iterative processes for the dynamical systems. It is
of further interest to investigate other types of dynamical system methods for solving operator
equations of the first kind and to present some discrete methods for solving the relevant Cauchy
problems more efficiently.
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