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Abstract. Compressible miscible displacement of one fluid by another in porous media is
modelled by a nonlinear parabolic system. A finite element procedure is introduced to ap-
proximate the concentration of one fluid and the pressure of the mixture. The concentration
is treated by a Galerkin method while the pressure is treated by a parabolic mixed finite
element method. The effect of dispersion, which is neglected in [1], is considered. Optimal
order estimates in L

2 are derived for the errors in the approximate solutions.
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1 Introduction

Miscible displacement of one compressible fluid by another in a porous medium is modeled by a
nonlinear parabolic system [1, 4]

d(c)
∂p

∂t
+ ∇ · u = d(c)

∂p

∂t
−∇ · (a(c)∇p) = q, (1a)

φ(x)
∂c

∂t
+ b(c)

∂p

∂t
+ u · ∇c −∇ · (D(u)∇c) = (ĉ − c)q, (1b)

where c denotes the volumetric concentration of one of the two components of the fluid (c = c1 =
1 − c2), and p denotes its pressure. The coefficients a(c), b(c), d(c), φ(x) (porosity of the rock)
are assumed bounded below positively and a(c), b(c), d(c) ∈ C1; q is the external volumetric
flow rate; ĉ is the concentration of the external flow, which is specified at points where injection
(q > 0) takes place, or assumed to be equal to c at production points; u is the Darcy velocity of
the fluid satisfying

u = −a(c)∇p, (2)

D(u) combines the effects of molecular diffusion and dispersion [5], defined by

D = φ{dmI + |u|(dlE(u) + dtE
⊥(u))} (3)
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where E(u) = [ukul/|u|
2] is an 2×2 matrix representing orthogonal projection along the velocity

vector and E⊥(u) = I − E(u) is its orthogonal complement. D(u) is a positive definite matrix
since the effect of molecular diffusion is much greater than that of dispersion. In addition, the
reservoir Ω will be taken to be of unit thickness and be identified with a bounded domain in R2.

We shall also assume that no flow occurs across the boundary:

u · ν = 0 on ∂Ω, (4a)

(D∇c − cu) · ν = 0 on ∂Ω, (4b)

where ν is the outer normal to ∂Ω. The initial conditions are

p(x, 0) = p0(x) x ∈ Ω, (5a)

c(x, 0) = c0(x) x ∈ Ω. (5b)

Douglas [1] introduced a mixed finite element procedure for the same problem while disper-
sion was neglected such that D = φ(x)dmI. Cheng [8] introduced a Galerkin procedure with
dispersion on rectangle element and derived optimal error estimates. Wang and Cheng [9] consid-
ered the Galerkin method with dispersion to another similar problem on quasi-regular element,
and derived nearly optimal error estimates. In this paper, a mixed finite element procedure on
quasi-regular element is introduced with dispersion so that D = D(u) (see (3)). The analysis of
the procedure is based on [1] while different test functions are selected and two projections are
introduced to derive the optimal error estimates in L2.

2 Formulation of the mixed finite element procedure

It is well known that physical transport dominates the diffusive effects in realistic examples
of compressible miscible displacement. Thus it is more important to obtain good approximate
velocities than to achieve high accuracy in pressure. This motivates the use of mixed method in
the calculation of the pressure and velocity.

Firstly, the weak form for the parabolic system (1a), (1b) and (2) is given by

(

φ
∂c

∂t
, z

)

+

(

b(c)
∂p

∂t
, z

)

+ (u · ∇c, z) + (D(u)∇c,∇z) = ((ĉ − c)q, z) z ∈ H1(Ω), t ∈ J, (6a)

(

d(c)
∂p

∂t
, w

)

+ (∇ · u, w) = (q, w) w ∈ L2(Ω), t ∈ J, (6b)

(α(c)u, v) − (∇ · v, p) = 0 v ∈ V, t ∈ J, (6c)

where V = {v ∈ H(div; Ω) : v · ν = 0 on ∂Ω}, α(c) = a(c)−1 and J = (0, T ].

Let h = (hc, hp), where hc and hp are positive. Let Mh denote a standard finite element space
whose elements diameters are bounded by hc. Assume that Mh is associated with a quasi-regular
polygonalization of Ω and piecewise-polynomial functions of some fixed degree greater or equal
to l. As a result, all standard inverse relations hold on Mh, which will be used frequently in our
analysis. Then let Vh × Wh be a Raviart-Thomas [6] space of index at least k associated with
quasi-regular triangulation or quadrilateralization (or a mixture of the two) of Ω such that the
elements diameters are bounded by hp. If the approximations for the pressure, concentration
and velocity are denoted by ch ∈ Mh, ph ∈ Wh and uh ∈ Vh respectively, then they are defined
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to be the solutions of the equations

(

φ
∂ch

∂t
, z

)

+

(

b(ch)
∂ph

∂t
, z

)

+ (uh · ∇ch, z) + (D(uh)∇ch,∇z) = ((ĉh − ch)q, z)

z ∈ Mh, t ∈ J, (7a)
(

d(ch)
∂ph

∂t
, w

)

+ (∇ · uh, w) = (q, w) w ∈ Wh, t ∈ J, (7b)

(α(ch)uh, v) − (∇ · v, ph) = 0 v ∈ Vh, t ∈ J, (7c)

where function ĉh = ĉ if q > 0 and ĉh = ch if q < 0. Initial values must be specified for ch(0)
and ph(0); and consistent initial value uh(0) can then be computed from (7c).

3 Analysis of the mixed method procedure

Because the primary concern in the evaluation of a miscible displacement process will lie in ob-
taining accurate information about the behavior in the interior of the domain, we shall emphasize
the interior behavior by considering either the no-flow boundary conditions (4) or by assuming
Ω to be rectangle and by replacing the no-flow boundary conditions with the assumption that
the problem is periodic with Ω as periodic. To make the analysis convenient [1], we project the
solution of the differential problem (1) into the finite element spaces by means of coercive elliptic
forms associated with the differential system. Let c̃ = c̃h : J → Mh, p̃ = p̃h : J → Wh and
ũ = ũh : J → Vh be determined by the relations

(D(u)∇(c − c̃),∇z) + (u · ∇(c − c̃), z) + λ(c − c̃, z) = 0 z ∈ Mh, t ∈ J, (8a)
(

d(c)
∂p

∂t
, w

)

+ (∇ · ũ, w) = (q, w) w ∈ Wh, t ∈ J, (8b)

(α(c)ũ, v) − (∇ · v, p̃) = 0 v ∈ Vh, t ∈ J, (8c)

(p̃, 1) = (p, 1), (8d)

where the constant λ is chosen large enough to insure the coercivity of the bilinear form. Let

ζ = c − c̃, ξ = c̃ − ch, η = p − p̃,

π = p̃ − ph, ρ = u − ũ, σ = ũ − uh.
(9)

The initial values are
ξ(0) = π(0) = 0

and it is easy to know that σ(0) = 0. The effect of adding (8d) is to drop the necessity that
the “inf sup” condition H2 of Brezzi [7] hold for constant functions in Wh. Thus, the following
estimate is given by [1(4.5)]

‖ρ‖H(div;Ω) + ‖η‖0 ≤ M‖p‖k+3h
k+1
p , (10)

with the constant M dependent only on the bound of the coefficient α(c). It is a standard result
[2] in the theory of Galerkin methods for elliptic problems that

‖ζ‖0 + hc‖ζ‖1 ≤ M‖c‖l+1h
l+1
c , ‖η‖0 + hp‖η‖1 ≤ M‖p‖k+1h

k+1
p , (11)

for t ∈ J and M depending on the bounds of lower order derivatives of c and p.
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The following estimates are shown in [1, 3]:

∥

∥

∥

∥

∂ζ

∂t

∥

∥

∥

∥

0

+ hc

∥

∥

∥

∥

∂ζ

∂t

∥

∥

∥

∥

1

≤ M

{

‖c‖l+1 +

∥

∥

∥

∥

∂c

∂t

∥

∥

∥

∥

l+1

}

hl+1
c , (12a)

∥

∥

∥

∥

∂η

∂t

∥

∥

∥

∥

0

+ hp

∥

∥

∥

∥

∂η

∂t

∥

∥

∥

∥

1

≤ M

{

‖p‖k+1 +

∥

∥

∥

∥

∂p

∂t

∥

∥

∥

∥

k+1

}

hk+1
p , (12b)

∥

∥

∥

∥

∂ρ

∂t

∥

∥

∥

∥

H(div;Ω)

+

∥

∥

∥

∥

∂η

∂t

∥

∥

∥

∥

0

≤ M

(

‖p‖k+3 +

∥

∥

∥

∥

∂p

∂t

∥

∥

∥

∥

k+3

)

hk+1
p , (12c)

where M depends on lower order derivatives of c, p and their first derivatives with respect to
time.

In the analysis below, the constant K always depends on lower order derivatives of c and p
without further notation. In order to derive an evolution inequality for π, we subtract (8b) from
(7b) to obtain

(

d(ch)
∂π

∂t
, w

)

+ (∇ · σ, w) =

(

(d(ch) − d(c))
∂p̃

∂t
, w

)

−

(

d(c)
∂η

∂t
, w

)

. (13)

Using (8c) and (7c), and by letting v = σ, we have

(α(c)ũ − α(ch)uh, σ) − (∇ · σ, π) = 0. (14)

In (13), choose the test function w = π. Adding the resulting equation to (14) gives

(

d(ch)
∂π

∂t
, π

)

=−((α(c)−α(ch))ũ, σ)−(α(ch)σ, σ)+

(

(d(ch) − d(c))
∂p̃

∂t
, π

)

−

(

d(c)
∂η

∂t
, π

)

. (15)

Observe that
(

d(ch)
∂π

∂t
, π

)

=
1

2

d

dt
(d(ch)π, π) −

1

2

(

∂d(ch)

∂t
π, π

)

=
1

2

d

dt
(d(ch)π, π) −

1

2

(

∂d(ch)

∂c

∂ch

∂t
π, π

)

=
1

2

d

dt
(d(ch)π, π) −

1

2

(

∂d(ch)

∂c

∂c̃

∂t
π, π

)

+
1

2

(

∂d(ch)

∂c

∂ξ

∂t
π, π

)

. (16)

Combining (15) and (16) yields

1

2

d

dt
(d(ch)π, π) + (α(ch)σ, σ) = − ((α(c) − α(ch))ũ, σ) +

(

(d(ch) − d(c))
∂p̃

∂t
, π

)

−

(

d(c)
∂η

∂t
, π

)

+
1

2

(

∂d(ch)

∂c

∂c̃

∂t
π, π

)

−
1

2

(

∂d(ch)

∂c

∂ξ

∂t
π, π

)

. (17)

Consider the case α(c) = a(c)−1 ≥ α⋆ > 0. Then the second term on the left-hand side of (17)
gives

(α(ch)σ, σ) ≥ α⋆‖σ‖
2
0.

The first term on the right-hand side of (17) can be bounded by

((α(c) − α(ch))ũ, σ) ≤ (‖ζ‖0 + ‖ξ‖0)‖σ‖0 ≤ K(‖ξ‖2
0 + ‖ζ‖2

0) + ε‖σ‖2
0.
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Let ε = 1
2α⋆. We can obtain from the above three estimates that

1

2

d

dt
(d(ch)π, π) +

1

2
α⋆‖σ‖

2
0 ≤K

(

‖ζ‖0 + ‖ξ‖ +

∥

∥

∥

∥

∂η

∂t

∥

∥

∥

∥

0

+ ‖π‖0

)

‖π‖0 −
1

2

(

∂d(ch)

∂c

∂ξ

∂t
π, π

)

≤K(‖ξ‖2
0 + ‖π‖2

0 + h2l+2
c + h2k+2

p ) −
1

2

(

∂d(ch)

∂c

∂ξ

∂t
π, π

)

, (18)

where the constant K depends on ũ, ∂d/∂c, ∂p̃/∂t, d, ∂c̃/∂t, and α⋆. To estimate (∂d(ch)
∂c

∂ξ
∂t

π, π),
we need the evolution inequality of ξ.

Eqs. (6a) and (8a) can be differeced to show that

(

φ
∂c̃

∂t
, z

)

+ (u · ∇c̃, z) + (D(u)∇c̃,∇z) +

(

b(c)
∂p̃

∂t
, z

)

= ((ĉ − c)q, z) + λ(ζ, z) −

(

φ
∂ζ

∂t
, z

)

−

(

b(c)
∂η

∂t
, z

)

. (19)

Similarly, (19) and (7a) can be differenced to show that

(

φ
∂ξ

∂t
, z

)

+ (u · ∇ξ, z) +

(

b(c)
∂π

∂t
, z

)

+ (D(u)∇c̃ − D(uh)∇ch,∇z)

= (−(ζ + ξ)q+, z) +

(

φ
∂ζ

∂t
, z

)

+ λ(ζ, z) −

(

b(c)
∂η

∂t
, z

)

+ ((uh − u) · ∇c̃, z)

+

(

(b(ch) − b(c))
∂p̃

∂t
, z

)

z ∈ Mh. (20)

Noticing that

(D(u)∇c̃ − D(uh)∇ch,∇z) = ((D(u) − D(uh))∇c̃,∇z) + (D(uh)∇ξ,∇z),

we can get

1

2

d

dt
(φξ, ξ) + (D(uh)∇ξ,∇ξ) ≤ K

(

‖uh‖0,∞‖∇ζ‖0 + ‖ζ‖0 + ‖ξ‖0 +

∥

∥

∥

∥

∂ζ

∂t

∥

∥

∥

∥

0

+

∥

∥

∥

∥

∂η

∂t

∥

∥

∥

∥

0

)

‖ξ‖0

−

(

b(ch)
∂π

∂t
, ξ

)

− ((D(u) − D(uh))∇c̃,∇ξ) − ((uh − u) · ∇c̃, ξ), (21)

where ‖∇c̃‖0,∞ is bounded by M‖c‖l+1,∞ for any l ≥ 0 and sufficiently small hc due to the
L∞(Ω) error estimate ([1](3.23))

‖∇ζ‖0,∞ ≤ M‖c‖l+1,∞hl
c

with M depending on some lower norms of c and p. Thus

((D(u) − D(uh))∇c̃,∇ξ) + ((uh − u) · ∇c̃, ξ)

≤ K(‖σ‖0 + ‖ρ‖0)(‖∇ξ‖0 + ‖ξ‖0) ≤ K ′(‖σ‖2
0 + h2k+2

p + ‖ξ‖2
0) + ε‖∇ξ‖2

0.

In order to show the boundedness of ‖uh‖0,∞, we need the induction hypothesis

‖σ‖0,∞ ≤ K⋆. (22)
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Because D(u) satisfies D(u) ≥ D⋆ > 0, similar to (18), we can make the coefficient of ‖∇ξ‖2
0 less

than 1
2D⋆ to show that

1

2

d

dt
(φξ, ξ) +

1

2
D⋆‖∇ξ‖2

0 ≤ K(K⋆)(‖ξ‖2
0 + h2l+2

c + h2k+2
p ) + K1‖σ‖

2
0 −

(

b(ch)
∂π

∂t
, ξ

)

(23)

with K1 dependent on D⋆.
The term (b(ch)∂π

∂t
, ξ) can be estimated by using (13) for such equation as

(

b(ch)
∂π

∂t
, ξ

)

=

(

d(ch)
∂π

∂t
,
b(ch)

d(ch)
ξ

)

.

Since the test function w ∈ Wh in (13), we need to introduce a projection operator P0 : H1(Ω) →
Wh satisfying

(d(ch)vh, v) = (d(ch)vh, P0v) vh ∈ Wh, v ∈ H1(Ω). (24)

Lemma 3.1. For any projection operator defined in (24), we have

‖P0v‖0 ≤ K‖v‖0, (25)

‖∇P0v‖0 ≤ K‖v‖1. (26)

Proof By letting vh = P0v in (24), we can show that (25) is right. Let Ih be the interpolation
operator satisfying Ih = Ih : H1(Ω) → Nh. It is a standard result for Ih that

‖v − Ihv‖0 ≤ Khk+1
p ‖v‖k+1, ‖∇(Ihv)‖0 ≤ K‖∇v‖0.

Therefore, we have

‖∇P0v‖0 ≤ ‖∇P0(v − Ihv)‖0 + ‖∇P0(Ihv)‖0

≤ h−1
p ‖P0(v − Ihv)‖0 + ‖∇(Ihv)‖0 ≤ Kh−1

p ‖v − Ihv‖0 + ‖∇(Ihv)‖0

≤ Kh−1
h hp‖v‖1 + K‖∇v‖0 ≤ K‖v‖1.

This completes the proof of Lemma (3.1).

By letting w = γ0 ≡ P0(
b(ch)
d(ch)ξ) in (13), we can obtain that

(b(ch)
∂π

∂t
, ξ) = (d(ch), γ0) =

(

(d(ch) − d(c))
∂p̃

∂t
, γ0

)

−

(

d(c)
∂η

∂t
, γ0

)

− (∇ · σ, γ0)

≤ K

(

‖ξ‖0 + ‖ζ‖0 +

∥

∥

∥

∥

∂η

∂t

∥

∥

∥

∥

0

)

‖ξ‖0 − (∇ · σ, γ0). (27)

Applying Green’s formula and the periodic assumption on the last term of (27) gives

−(∇ · σ, γ0) = −〈σ, γ0〉 + (σ,∇γ0)

= (σ,∇γ0) ≤ K‖σ‖0‖∇γ0‖0 ≤ K‖σ‖0‖ξ‖1,

where 〈·, ·〉 denote the inner product in L2(∂Ω). Therefore,

(

b(ch)
∂π

∂t
, ξ

)

≤ K2(‖ξ‖
2
0 + ‖σ‖2

0 + h2l+2
c + h2k+2

p ) + ε0‖ξ‖
2
1, (28)
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where K2 depends on ε0 and K⋆. Then we have, by combining (23) and (28), that

d

dt
(φξ, ξ) + D⋆‖ξ‖

2
1 ≤ K(‖ξ‖2

0 + ‖σ‖2
0 + h2l+2

c + h2k+2
p ) + ε0‖ξ‖

2
1.

In addition, we can make ε0 sufficiently small to get

d

dt
(φξ, ξ) + ‖ξ‖2

1 ≤ K3(‖ξ‖
2
0 + ‖σ‖2

0 + h2l+2
c + h2k+2

p ) (29)

with K3 dependent on K⋆ and D⋆.

Now the only term in (18) which we have not estimated is (∂d(ch)
∂c

∂ξ
∂t

π, π). To estimate it, we
shall use (23). In general, the process is similar to what we have done from (23) to (28). Firstly,
we shall introduce a projection operator P1 : H1(Ω) → Mh satisfying

(φ(x)v, vh) = (φ(x)P1v, vh) v ∈ H1(Ω), vh ∈ Mh.

Similar to Lemma 3.1 we have

Lemma 3.2. For a projection operator defined above, we have such inequalities as

‖P1v‖0 ≤ K‖v‖0, (30)

‖∇P1v‖0 ≤ K‖v‖1. (31)

Observe
(

∂d(ch)

∂c

∂ξ

∂t
π, π

)

=

(

φ
∂ξ

∂t
,
1

φ

∂d(ch)

∂c
π2

)

=

(

φ
∂ξ

∂t
, P1

(

1

φ

∂d(ch)

∂c
π2

))

.

By letting z = γ1 ≡ P1(
1
φ

∂d(ch)
∂c

π2) in (20), we have

(

∂d(ch)

∂c

∂ξ

∂t
π, π

)

=

(

φ
∂ξ

∂t
, γ1

)

= (−(ζ + ξ)q+, γ1) +

(

φ
∂ζ

∂t
, γ1

)

+ λ(ζ, γ1) −

(

b(c)
∂η

∂t
, γ1

)

+ ((uh − u) · ∇c̃, γ1)

+

(

(b(ch) − b(c))
∂p̃

∂t
, γ1

)

− (uh · ∇ξ, γ1) − (D(u)∇c̃ − D(uh)∇ch,∇γ1) −

(

b(ch)
∂π

∂t
, γ1

)

≤ K

(

‖ξ‖0 + ‖ζ‖0 +

∥

∥

∥

∥

∂ζ

∂t

∥

∥

∥

∥

0

+

∥

∥

∥

∥

∂η

∂t

∥

∥

∥

∥

0

+ ‖ρ‖0 + ‖σ‖0 + ‖uh‖∞‖∇ξ‖

)

‖γ1‖0

+‖∇ξ‖0‖∇γ1‖0 −

(

b(ch)
∂π

∂t
, γ1

)

. (32)

In order to estimate ‖∇γ1‖0, we need another induction hypothesis

‖π‖1,∞ ≤ K⋆⋆. (33)

So ‖∇π‖∞ can be bounded and

‖∇γ1‖0 =

∥

∥

∥

∥

∇P1

(

1

φ

∂d(ch)

∂c
π2

)∥

∥

∥

∥

0

≤ K

∥

∥

∥

∥

1

φ

∂d(ch)

∂c
π2

∥

∥

∥

∥

1

≤ K‖π‖1,∞‖π‖0 ≤ K(K⋆, K⋆⋆)‖π‖0. (34)
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Applying (34) to (32) gives

(

∂d(ch)

∂c

∂ξ

∂t
π, π

)

≤ K
(

‖ξ‖2
0 + ‖π‖2

0 + h2l+2
c + h2k+2

p

)

+ε1‖∇ξ‖2
0 +ε2‖σ‖

2
0−

(

b(ch)
∂π

∂t
, γ1

)

, (35)

where K depends on ε1, ε2, K⋆, and K⋆⋆.
To estimate the last term of (35), we need to repeat the process from (23) to (28) to get

d

dt
(d(ch)π, π) + α⋆‖σ‖

2
0 ≤ K4(‖ξ‖

2
0 + ‖π‖2

0 + h2l+2
c + h2k+2

p ) + ε1‖∇ξ‖2
0 + (ε2 + ε3)‖σ‖

2
0, (36)

where K4 = K4(ε1, ε2, ε3). Letting ε2, ε3 sufficiently small yields

d

dt
(d(ch)π, π) + ‖σ‖2

0 ≤ K5(‖ξ‖
2
0 + ‖π‖2

0 + h2l+2
c + h2k+2

p ) + ε1‖∇ξ‖2
0. (37)

By integrating (29) and (37) we can obtain

‖ξ‖2
0 +

∫ t

0

‖ξ‖2
1dτ ≤ K3

∫ t

0

(‖ξ‖2
0 + ‖σ‖2

0 + h2l+2
c + h2k+2

p )dτ, (38)

‖π‖2
0 +

∫ t

0

‖σ‖2
0dτ ≤ K5

∫ t

0

(‖ξ‖2
0 + ‖π‖2

0 + h2l+2
c + h2k+2

p )dτ + ε1

∫ t

0

‖∇ξ‖2dτ. (39)

It follows from (38) and(39) that

(K3 + 1)‖π‖2
0 +

∫ t

0

‖σ‖2
0dτ + ‖ξ‖2

0 +

∫ t

0

‖ξ‖2
1dτ

≤ K6

(
∫ t

0

(‖ξ‖2
0 + ‖π‖2

0 + h2l+2
c + h2k+2

p )dτ

)

+ ε1(K3 + 1)

∫ t

0

‖ξ‖2
1dτ.

In the above inequality, let ε1 = 1/(2K3 + 2) (noticing that this will have no influence on K3).
Consequently,

‖π‖2
0 +

∫ t

0

‖σ‖2
0dτ + ‖ξ‖2

0 +

∫ t

0

‖ξ‖2
1dτ ≤ K

∫ t

0

(‖ξ‖2
0 + ‖π‖2

0 + h2l+2
c + h2k+2

p )dτ.

Thus, it follows from Gronwall lemma that

‖π‖L∞(J;L2(Ω)) + ‖σ‖L2(J;L2(Ω)2) + ‖ξ‖L∞(J;L2(Ω)) + ‖ξ‖L2(J;H1(Ω)) ≤ K(hk+1
p + hl+1

c ). (40)

The justification of the induction hypothesis (22) can be given at this point. We can see from
(14) that

([α(c) − α(ch)]ũ, σ) + (α(ch)σ, σ) + (σ,∇π) = 0.

So we have

α∗‖σ‖
2
0 ≤ (α(ch)σ, σ) = −([α(c) − α(ch)]ũ, σ) − (σ,∇π)

≤ K[‖∇π‖0 + (‖ξ‖0 + ‖ζ‖0)‖ũ‖0,∞]‖σ‖0.

Thus,

‖σ‖0 ≤ K(‖∇π‖0 + ‖ξ‖0 + ‖ζ‖0) (41)



82 Mixed Method for Compressible Miscible Displacement with Dispersion in Porous Media

with K dependent on α∗, α′(c), ‖ũ‖0,∞. The quasi-regularity of the polygonalization for the
space Vh implies that

‖σ‖0,∞ ≤ Kh−1
p ‖σ‖0, ‖∇π‖0 ≤ Kh−1

p ‖π‖0.

Thus, we can know from (40) and (41) that

‖σ‖0,∞ ≤ Kh−1
p (h−1

p ‖π‖0 + ‖ξ‖0 + ‖ζ‖0) ≤ K(hk−1
p + hl+1

c h−2
p ). (42)

It is similar to justify (33). Observe

‖π‖1,∞ ≤ Kh−2
p ‖π‖0 ≤ K(hk−1

p + hl+1
c h−2

p ). (43)

Therefore, if we choose
k ≥ 2 and hl+1

c h−2
p → 0 (44)

when max(hp, hc) → 0, then it follows from (42) and (43) that (22) and (33) hold.
We see that, under the constraint (44),

‖p − ph‖L∞(J;L2(Ω)) + ‖u − uh‖L2(J;L2(Ω)2) + ‖c − ch‖L∞(J;L2(Ω))

+‖c − ch‖L2(J;L2(Ω)) + hc‖c − ch‖L2(J;H1(Ω)) ≤ K(hk+1
p + hl+1

c ),

where the constant K depends on the spatial derivatives of order not greater than l + 1 of c and
∂c/∂t, and of order not greater than k + 1 of p and ∂p/∂t.
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