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TOEPLITZ AND POSITIVE SEMIDEFINITE

COMPLETION PROBLEM FOR CYCLE GRAPH∗
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Abstract We present a sufficient and necessary condition for a so-called Ck
n pattern

to have positive semidefinite (PSD) completion. Since the graph of the Ck
n pattern is

composed by some simple cycles, our results extend those given in [1] for a simple cycle.

We also derive some results for a partial Toeplitz PSD matrix specifying the Ck
n pattern

to have PSD completion and Toeplitz PSD completion.
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1 Introduction

A partial matrix is a matrix in which some entries are specified, while the remains entries

are free to be chosen(from a certain set). A completion of a partial matrix is the conventional

matrix resulting from a particular choice of values for the unspecified entries. For most of matrix

completion problems there are some obvious conditions that must be satisfied for a completion of

a certain class to exist. For example, for real symmetric positive semidefinite (PSD) completions,

all completely specified submatrices must be symmetric PSD. A partial matrix which satisfies

such a condition is called a partial PSD matrix. In this paper another class of matrices which

we concern is Toeplitz matrix. It is known that an n× n matrix A = (aij) is called a symmetric

Toeplitz matrix if ai,j = r|i−j| for all i, j = 1, 2, . . . , n. So a partial symmetric Toeplitz matrix

is a partial symmetric matrix and if an entry in position (i, j) is specified then all entries in

positions (i + l, j + l) (mod n) are also specified and these (specified) entries are equal. Other
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types of partial matrices are defined similarly, see [4].

A pattern for n × n matrices is a list of positions of an n × n matrix, that is, a subset

of {1, 2, . . . , n} × {1, 2, . . . , n}. A partial matrix specifies the pattern if its specified entries are

exactly those listed in the pattern. A pattern Q is called symmetric if (i, j) ∈ Q implies (j, i) ∈ Q.

We assume throughout this paper that all the patterns we discuss are symmetric and include all

diagonal positions, and when we define a pattern or calculate the number of the specified entries

of a pattern, we shall ignore diagonal and symmetric positions of the pattern (e.g., Definition 1

below) and the entries in the positions. For a certain class of matrices, one important area of

research is to decide for which patterns of specified entries all partial matrices in the class are

completable to the class of matrices.

Among the types of matrix completion problems that have been studied are completion to

positive definite (semidefinite) matrices [2],[7], to M-matrices and inverse M-matrices [5], to P-

matrices and P0 matrices[6],[4] and to contractions [8], etc.. For the positive definite completion

problem, a solution was given by Grone, Johnson, Sa, and Wolkowicz in [2]. For the partial

positive definite Toeplitz completion problem, an interesting open problem was presented in [7].

Now we give definition of the Ck
n pattern and describe the completion problems we shall

consider.

Definition 1 Let n/2 > k ≥ 1, the symmetric pattern

Q = {(1, k + 1), (2, k + 2), . . . , (n − k, n), (n − k + 1, 1), . . . , (n, k)} (1)

is called a Ck
n pattern. A Toeplitz Ck

n pattern is a Ck
n pattern with a restriction that the partial

matrix specifying the pattern is a partial Toeplitz matrix.

Remark 1 In the definition, replacing k by n − k gives the same pattern. So this is why

we call it Ck
n pattern. It is trivial to show that when n is even and k = n − k, the pattern has

PSD completion. So in the following, we always assume that k < n − k.

Remark 2 If we number the diagonals for an n × n symmetric Toeplitz matrix in the

following way: The main diagonal is given the number 0 and then the diagonals are numbered in

increasing order to the last, which becomes the (n − 1)th, one. Then the (Toeplitz) Ck
n pattern

is, in fact, the kth and (n − k)th diagonal.

In terms of the definition, our problems are as follows.

Problem 1 Whether does the Ck
n pattern have a PSD completion?

Without loss of generality, associated with a normalized of the data (see [1]), we assume
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that the partial PSD matrix specifying the Ck
n pattern is of the form:

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 cos θ1 cos θn−k+1 ?

1 cos θ2 ?
. . .

cos θ1 1 ?
. . . cos θn

cos θ2 ? 1
. . .

cos θn−k+1 ?
. . . . . . cos θn−k

. . . . . . . . .
? cos θn cos θn−k 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

where 0 ≤ θi ≤ π, the ?s indicate unspecified entries. Thus Problem 1 can be restated as:

Problem 1′ When does the partial PSD matrix (2) admit a PSD completion?

Next problem is about Toeplitz Ck
n pattern and so more special than the previous one.

Problem 2 Whether does a Toeplitz Ck
n pattern have a Toeplitz PSD completion?

Like Problem 1, Problem 2 can be restated as:

Problem 2′ When does the partial Toeplitz PSD matrix

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 cos θ cosφ ?

1 cos θ ?
. . .

cos θ 1 ?
. . . cosφ

cos θ ? 1
. . .

cosφ ?
. . .

. . . cos θ
. . . . . . . . .

? cosφ cos θ 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

admit a Toeplitz PSD completion? Here we assume that in the partial matrix T, 0 ≤ θ ≤ π,

0 ≤ φ ≤ π and cos θ, cosφ lies in the kth, the (n − k)th diagonal, respectively.

In the case k = 1, Problem 1 or Problem 1′ has been resolved by W. Barrett, C. R. Johnson

and P. Tarazaga in [1] (see Theorem 2). A partial answer to Problem 2 or 2′ in the case k = 1

was also given by them (see Theorem 9 below). Our main contribution in this note is to extend

their results to arbitary k (n/2 > k ≥ 1) for Problem 1 (see next section) and give some results

for Problem 2 (see section 3).

2 Completion of Ck
n pattern

Graphs and digraphs are very effective to study matrix completion problems [3]. Since

the Ck
n pattern is a symmetric pattern, we shall use undirected graph to study its completion

problem.

Let Q be a symmetric pattern for n × n matrices, the graph G=(V,E) of Q is defined to

have nodes set V = N ≡ {1, 2, . . . , n} and edge (i, j) ∈ E if and only if (i, j) ∈ Q.
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A path in a graph G = (V, E) is a sequence of nodes v1, v2, . . . , vk, vk+1 in V such that for

i = 1, 2, . . . , k, (vi, vi+1) ∈ E and all nodes are distinct except possibly v1 = vk+1. If v1 = vk+1

in the path v1, v2, . . . , vk, vk+1, then the path forms a simple circle, which will be denoted by

{v1, v2, . . . , vk+1(= v1)}, its length is k. According to the definition, the graph of the C1
n pattern

is a simple circle of length n, for whose PSD completion problem the following result was given

in [1].

Theorem 2 Let n ≥ 4 and N = {1, 2, ..., n}, 0 ≤ θ1, θ2, ...., θn ≤ π, then the matrix

C =

⎛
⎜⎜⎜⎜⎝

1 cos θ1 cos θn
cos θ1 1 cos θ2 ?

cos θ2 1
. . .

?
. . . . . . cos θn−1

cos θn cos θn−1 1

⎞
⎟⎟⎟⎟⎠ (4)

has a PSD completion if and only if for each S ⊆ N with |S| odd,

∑
i∈S

θi ≤ (|S| − 1)π +
∑

i∈N\S

θi. (5)

A graph is chordal if it has no minimal simple cycle of length four or more. The following

result is well-known[2].

Theorem 3 Every partial PSD matrix specifying a pattern Q has a PSD completion if

and only if the graph of Q is chordal.

A graph is connected if there is a path from any node to any other node; otherwise it is

disconnected. A subgraph of the graph G = (VG, EG) is a graph H = (VH , EH), where VH ⊆ VG

and EH ⊆ EG and that (u, v) ∈ EH requires u, v ∈ VH since H is a graph. A component of a

graph is maximal connected subgraph.

The graph G = (VG, EG) is isomorphic to the graph H = (VH , EH) by isomorphism φ if φ is

a one-to-one map from VG onto VH and (u, v) ∈ EG if and only if (φ(u), φ(v)) ∈ EH . Relabeling

the nodes of a graph diagram corresponds to perform a graph isomorphism. Since the class of

PSD matrices is closed under permutation similarity, we are free to relabel graphs as desired and

we have

Lemma 4 Let Q be a pattern and G its graph. If every component of G is isomorphic to

a graph of a pattern and the pattern has PSD completion, then Q has PSD completion.

Proof The proof of the lemma is similar to that of Lemma 3.4 of [4] and is omitted here.

In the following, we let gcd(n, k) denote the greatest common divisor of the integers n and

k. Let x = x (mod n), d =gcd(n, k) and t =
n

d
. Now we describe the graph of the Ck

n pattern.

Lemam 5 Every component of the graph of Ck
n pattern is isomorphic to a simple circle
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of length t.

Proof Let Q be the Ck
n pattern defined in (1) and G = (N, E) its graph. Using the

notation of x, the edge set can be written as

E = {(i + (j − 1)k, i + jk)|1 ≤ i ≤ d; 1 ≤ j ≤ t}.

By noting that i + tk = i, it is not difficult to prove that the graph G is composed by the

following d independent simple cycles of length t:

{1, 1 + k, 1 + 2k, · · · 1 + (t − 1)k, 1 + tk}

{2, 2 + k, 2 + 2k, · · · 2 + (t − 1)k, 2 + tk}

{3, 3 + k, 3 + 2k, · · · 3 + (t − 1)k, 3 + tk}

· · · , . . . , · · · , · · · , · · ·

{d, d + k, d + 2k, · · · d + (t − 1)k, d + tk}.

The proof is completed.

Remark 3 The lemma shows that the graph of the Ck
n pattern is a cycle graph[9], that is,

it is composed by some simple cycles. But only one simple cycle also is possible even for k > 1

if n and k have no common divisor larger than and equal to 2. In this case, t = n and (2) is

permutation similar to (4). For example, let n = 5, k = 2, then it is easy to verify that the

following two partial PSD matrices are permutation similar:

⎛
⎜⎜⎜⎜⎜⎝

1 ? c1 c4 ?
? 1 ? c2 c5

c1 ? 1 ? c3

c4 c2 ? 1 ?
? c5 c3 ? 1

⎞
⎟⎟⎟⎟⎟⎠

∼

⎛
⎜⎜⎜⎜⎜⎝

1 c1 ? ? c4

c1 1 c3 ? ?
? c3 1 c5 ?
? ? c5 1 c2

c4 ? ? c2 1

⎞
⎟⎟⎟⎟⎟⎠

,

here we denote cosθi by ci.

By using Lemma 4 and 5, we easily derive the following results for Problem 1 and Problem

1′.

Theorem 6 The Ck
n pattern has a PSD completion if and only if the C1

n pattern has a

PSD completion.

Theorem 7 The partial PSD matrix (2) is permutation similiar to the partial PSD matrix:
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C′ = C1 ⊕ C2 ⊕ · · · ⊕ Cd, where

Ci =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 cos θi cos θi+(t−1)k
cos θi 1 cosθi+k ?

cos θi+k 1
. . .

?
. . . . . . cos θ

i+(t−2)k
cos θi+(t−1)k cos θi+(t−2)k 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(6)

and all entries outside the diagonal blocks of C′ are unspecified.

Thus the partial PSD matrix C of (2) can be completed to a PSD matrix if and only if

the partial PSD matrix C′ can. It is easy to complete C′ ( then complete C of (2) to a PSD

martrix: complete every Ci to a PSD matrix by using the method given in [1], and then set all

(unspecified) entries outside the diagonal blocks of C′ to zero. On the other hand, if the partial

PSD matrix C of (2) has PSD completion, then C′ and so every Ci of (6) must have a PSD

completion too. So for Problem 1′, the following solution is given by applying Theorem 7 and

Theorem 2.

Theorem 8 Let n ≥ 4, 1 ≤ k < n/2, d = gcd(n, k) and t = n/d. Then we have

a) If t = 3, then the partial PSD matrix (2) has a PSD completion.

b) If t ≥ 4, then the partial PSD matrix (2) has a PSD completion if and only if for each

Si ⊆ Ni ≡ {i, i + k, i + 2k, · · · , i + (t − 1)k} with |Si| odd,

∑
j∈Si

θj ≤ (|Si| − 1)π +
∑

j∈Ni\Si

θj , (7)

i = 1, 2, . . . , d.

Proof From the assumption of k < n/2, we know that t is an integer larger than or equal

to 3.

When t = 3, Lemma 5 shows that the graph of the Ck
n pattern is chordal (d simple cycles

of length 3). So C has a PSD completion by Theorem 3, a) is proved.

When t ≥ 4, applying Theorem 2 to each Ci of (6), b) is obtained.

3 Completion of Toeplitz Ck
n Pattern

Now we consider Problem 2 or 2′: Toeplitz PSD completion problem for the Toeplitz Ck
n

pattern, which is more difficult than non-Toeplitz completion problem. We shall see that Lemma

5 is not directly applicable to the problem. [1] has not solved Problem 2′ for the case k = 1 and

only presented a result for non-Toeplitz PSD completion as follows.



Toeplitz and Positive Semidefinite Completion Problem For Cycle Graph · 73 ·

Theorem 9[1] Let C be an n × n matrix, if n ≥ 4 and θ, φ ∈ [0, π], then

C =

⎛
⎜⎜⎜⎝

1 cos θ cosφ
cos θ 1 cos θ ?

cos θ 1
. . .

?
. . . . . . cos θ

cosφ cos θ 1

⎞
⎟⎟⎟⎠ (8)

has PSD completion if and only if

φ ≤ (n − 1)θ ≤ (n − 2)π + φ, n is even; (9)

φ ≤ (n − 1)θ ≤ (n − 1)π − φ, n is odd. (10)

The following result generalizes the theorem.

Theorem 10 Let n ≥ 4, 1 ≤ k < n/2, d = gcd(n, k) and t = n/d. Then we have

a) If t = 3, then the partial Toeplitz PSD matrix (3) has a PSD completion.

b) If t ≥ 4, then the partial Toeplitz PSD matrix (3) has a PSD completion if and only if :

1) when
n − k

d
is odd and

k

d
is even,

(n − k)θ ≤ (n − k − d)π + kφ ≤ (2n − k − 2d)π − (n − k)θ. (11)

2) when
n − k

d
is even and

k

d
is odd,

kφ ≤ (k − d)π + (n − k)θ ≤ (n + k − 2d)π − kφ. (12)

3) when both
n − k

d
and

k

d
are odd,

(n − k)θ ≤ (n − k − d)π + kφ ≤ (n − 2d)π + (n − k)θ. (13)

Proof a) is obvious from the proof of Theorem 8. We prove b) by applications of Theorem

7 and Theorem 8.

First, note that it is impossible that both
n − k

d
and

k

d
are even, since d=gcd(n, k).

Secondly, we know from Theorem 7 that T is permutation similar to T ′ = C1⊕C2⊕· · ·⊕Cd

where Ci is defined in (6), but θj is θ or φ and each Ci contains
n − k

d
cos θ and

k

d
cosφ. Thus

Ci is generally not a partial Toeplitz matrix, so it is Theorem 8 other than Theorem 9 that is

applied in the following proof.

T has a PSD completion if and only if every Ci has. In fact, all Ci (i = 1, 2, . . . , d) have the

same form. So we only need to consider the PSD completion of one Ci.
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It is obvious that the inequality (7) holds automatically if θ or φ occurs on both sides of

(7), since θ ≤ π ( φ ≤ π ). So we only need to consider the following two cases: one case is that

t is odd and all θ and φ appear on the left side of the inequality (7). The another case is that

all
n − k

d
θ just appears on one side of (7), all

k

d
φ appears in the other side of (7). Thus we

have

1) When
n − k

d
is odd,

k

d
is even, we only need to consider Si, in Theorem 8, such that

|Si| =
n − k

d
and |Si| = t. The required inequalities are

(n − k)
d

θ ≤ (
(n − k)

d
− 1)π +

k

d
φ and

(n − k)
d

θ +
k

d
φ ≤ (

n

d
− 1)π. (14)

2) When
n − k

d
is even,

k

d
is odd, we only need to consider Si such that |Si| =

k

d
and

|Si| = t. The required inequalities are

(
n

d
)φ ≤ (

n

d
− 1)π +

n − k

d
θ and

(n − k)
d

θ +
k

d
φ ≤ (

n

d
− 1)π. (15)

3) When both
n − k

d
and

k

d
are odd, we have to consider Si such that |Si| =

n − k

d
and

|Si| =
k

d
. The required inequalities are

(n − k)
d

θ ≤ (
(n − k)

d
− 1)π +

k

d
φ and (

n

d
)φ ≤ (

n

d
− 1)π +

n − k

d
θ. (16)

We get (11), (12) and (13) from (14), (15) and (16), respectively. The theorem is proved.

Corollary 11 When θ = φ, if t is three or even, then the partial Toeplitz PSD matrix

(3) has a PSD completion; if t is odd larger than three, then the partial Toeplitz PSD matrix

(3) has a PSD completion if and only if

θ ≤ n − d

n
π or cos θ ≥ − cos

d

n
π. (17)

Proof We do not need to prove the case t ≤ 3. When t is even, both
n − k

d
and

k

n
are odd.

By applying 3) of Theorem 10 and noting that d ≤ k, the inequalities (13) hold automatically.

When t is odd larger than three, applying 1) and 2) of Theorem 10, we find the required

inequality only is (17).

By using a similar proof, we get another interesting result.

Corollary 12 If t ≥ 4, θ = π − φ or cos θ = − cosφ, then the partial Toeplitz PSD

matrix (3) has a PSD completion if and only if

1) when
n − k

d
is odd and

k

d
is even, θ ≤ n − d

n
π or cos θ ≥ − cos

d

n
π.
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2) when
n − k

d
is even and

k

d
is odd, θ ≥ d

n
π or cos θ ≤ cos

d

n
π.

3) when both
n − k

d
and

k

d
are odd,

d

n
π ≤ θ ≤ n − d

n
π or cos

d

n
≤ cos θ ≤ cos

d

n
π.

In terms of the two corollaries, the two partial Toeplitz PSD matrices

⎛
⎜⎝

1 ? 1 1 ?
? 1 ? 1 1
1 ? 1 ? 1
1 1 ? 1 ?
? 1 1 ? 1

⎞
⎟⎠ and

⎛
⎜⎝

1 ? 1 −1 ?
? 1 ? 1 −1
1 ? 1 ? 1
−1 1 ? 1 ?
? −1 1 ? 1

⎞
⎟⎠

have PSD completions, but the two partial Toeplitz PSD matrices

⎛
⎜⎝

1 ? −1 −1 ?
? 1 ? −1 −1
−1 ? 1 ? −1
−1 −1 ? 1 ?
? −1 −1 ? 1

⎞
⎟⎠ and

⎛
⎜⎝

1 ? −1 1 ?
? 1 ? −1 1
−1 ? 1 ? −1
1 −1 ? 1 ?
? 1 −1 ? 1

⎞
⎟⎠

have no PSD completions.

Now we turn to Problem 2′ and discuss the case k = 1 first. For notation convenience

and obvious reason, in the following by To(a1, a2, . . . , an) we shall denote a symmetric Toeplitz

matrix whose first row is (a1, a2, . . . , an). The partial Toeplitz PSD matrix (8) can be written

as To(1, cosθ, ?, . . . , ?, cosφ).

Theorem 13 The partial Toeplitz PSD matrix (8) has a Toeplitz PSD completion if

− 1
n − 1

≤ cos θ and 0 ≤ cosφ − cos(n − 1)θ
cos θ − cos(n − 1)θ

≤ 1. (18)

or if

cos θ ≤ 1
n − 1

and 0 ≤ cosφ − cos(n − 1)θ
(−1)n cos θ − cos(n − 1)θ

≤ 1. (19)

or if

− 1
n − 1

≤ cos θ ≤ 1
n − 1

and
{

0 ≤ cos θ−cos φ
2 cos θ ≤ 1, if n is odd,

cosφ = cos θ, if n is even.
(20)

Proof Define three symmetric Toeplitz matrices:

B = To(1, cos θ, cos 2θ, . . . , cos(n − 1)θ), (21)

E = To(1, cos θ, cos θ, . . . , cos θ), (22)

and

F = To(1, cos θ,− cos θ, . . . , (−1)n cos θ). (23)

We first prove that B is a PSD matrix, E is positive semidefinite if cos θ ≥ − 1
n − 1

, and F

is positive semidefinite if cos θ ≤ 1
n − 1

.
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In fact, B is positive semidefinite, since

B =

⎛
⎜⎝

1 0
cos θ sin θ
cos 2θ sin 2θ· · · · · ·
cos(n − 1)θ sin(n − 1)θ

⎞
⎟⎠

(
1 cos θ cos 2θ · · · cos(n − 1)θ
0 sin θ sin 2θ · · · sin(n − 1)θ

)
.

E is positive semidefinite if cos θ ≥ − 1
n − 1

, since it can be written as E = (1 − cos θ)In +

(cos θ)eeT , where In is n × n identity matrix and e = (1, 1, . . . , 1)T . Thus it is easy to verify

that E is symmetric and has n-1 eigenvalues 1 − cosθ and one eigenvalue 1 + (n − 1)cosθ. all

eigenvalues of E are nonnegative under the assumption. Similarly, F is positive semidefinite if

cosθ ≤ 1
n − 1

, since it has n-1 eigenvalues 1 + cosθ and one eigenvalue 1 − (n − 1)cosθ.

Now we prove that (8) has a Toeplitz PSD completion if (18) holds. Define Tt = (1−t)B+tE,

then Tt is a Toeplitz PSD matrix for any t ∈ [0, 1] if cos θ ≥ − 1
n− 1

, since it is the sum of two

Toeplitz PSD matrices: (1 − t)B and tE.

Let t0 =
cosφ − cos(n − 1)θ
cos θ − cos(n − 1)θ

, then 0 ≤ t0 ≤ 1 by the assumption (18) and cosφ = (1 −
t0) cos(n − 1)θ + t0 cos θ. Thus

Tt0 = To(1, cos θ, (1 − t0) cos 2θ + t0 cos θ, . . . , (1 − t0) cos(n − 2)θ + t0 cos θ, cosφ)

is a Toeplitz PSD completion of (8).

Similarly, if we define Tt = (1 − t)B + tF , we can prove that (8) has a Toeplitz PSD

completion if (19) holds.

Finally, we prove that (8) has a Toeplitz PSD completion if (20) holds. Now we define

Tt = (1− t)E+ tF , then Tt is a Toeplitz PSD matrix for any t ∈ [0, 1] if − 1
n− 1

≤ cos θ ≤ 1
n − 1

.

Note now that

Tt = To(1, cos θ, (1 − 2t) cos θ, . . . , [1 − (1 − (−1)n)t] cos θ).

When n is even, it is necessary that cosφ = cos θ in order that Tt is a Toeplitz PSD completion

of (8). When n is odd, let t0 =
cos θ − cosφ

2 cos θ
, then 0 ≤ t0 ≤ 1 by the assumption (20) and

cosφ = (1 − 2t0) cos θ. Therefore Tt0 is a Toeplitz PSD completion of (8).

Now we give a result for Problem 2′:

Theorem 14 The partial Toeplitz PSD matrix (3) has a Toeplitz PSD completion if

− 1
n − 1

≤ cos θ and 0 ≤ cosφ − cos n−k
k θ

cos θ − cos n−k
k θ

≤ 1. (24)

or if when k is odd,

cos θ ≤ 1
n − 1

and 0 ≤ cosφ − cos n−k
k θ

(−1)n−k+1 cos θ − cos n−k
k θ

≤ 1. (25)
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when k is even,

− 1
n − 1

≤ cos θ and 0 ≤ cosφ − cos n−k
k θ

(−1)n−k cos θ − cos n−k
k θ

≤ 1. (26)

or if when k is odd,

− 1
n − 1

≤ cos θ ≤ 1
n − 1

and
{

0 ≤ cos θ−cosφ
2 cos θ ≤ 1, if n − k is even,

cosφ = cosθ, if n − k i̊s odd.
(27)

when k is even,

− 1
n − 1

≤ cos θ and
{

0 ≤ cos θ−cos φ
2 cos θ ≤ 1, if n − k is odd,

cosφ = cos θ, if n − k is even.
(28)

Proof To prove the theorem, we need to define two more symmetric Toeplitz matrices

except E, F in (22),(23)

B̃ = To(1, cosα, cos 2α, . . . , cos(n − 1)α), (29)

here α =
θ

k
and

F̃ = To(1,− cos θ, cos θ, . . . , (−1)n−1 cos θ). (30)

B̃ is clearly positive semidefinite. F̃ is positive semidefinite if cos θ ≥ − 1
n − 1

, since it has n-1

eigenvalues 1 − cos θ and one eigenvalue 1 + (n − 1) cos θ.

Similar to the proof of Theorem 13, define Tt to be one of the following matrices:

1) (1 − t)B̃ + tE,

2) (1 − t)B̃ + tF when k is odd, (1 − t)B̃ + tF̃ when k is even,

3) (1 − t)E + tF when k is odd, (1 − t)E + tF̃ when k is even.

We can complete the proof of the theorem.

From Theorem 14, we easily get

Corollary 15 When θ = φ, the partial Toeplitz PSD matrix (3) has a Toeplitz PSD

completion if cos θ ≥ − 1
n − 1

or if n is even, k is odd and cos θ ≤ 1
n − 1

.

When θ = π − φ and n is odd, the partial Toeplitz PSD matrix (3) has a Toeplitz PSD

completion if k is odd and cosθ ≤ 1
n − 1

, or if k is even and cos θ ≥ − 1
n − 1

.

From the proof of Theorem 14, we can see that it is not necessary to connect (n − k)th

diagonal to kth diagonal, so the result of Theorem 14 can easily be extended to the following

more general pattern:

Q1 = {(1, k + 1), (2, k + 2), . . . , (n − k, n), (l + 1, 1), . . . , (n, n − l)},
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where 1 ≤ k < l ≤ n− 1. In fact, the pattern just is two different diagonals: the kth and the lth

diagonal.

A final remark. We have tried many numerical examples but failed to find a partial Toeplitz

PSD matrix specifying the Ck
n pattern which has a PSD completion but no Toeplitz PSD com-

pletion. This make us to believe the following is true:

Conjecture The partial Toeplitz PSD matrix (3) that has a PSD completion has a

Toeplitz PSD completion.
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