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1 Introduction

The concept of derived categories seems to have first appeared in Verdier [9]. He intro-
duced triangulated categories and developed localization theories to established derived
categories. These theories have been studied by many mathematicians during the last
four decades and applied in some branches of mathematics, such as representation theo-
ries of algebra and the algebraic geometry (see [1, 2]).

The notion of semi-abelian categories was invented several times by different math-
ematicians under different names. At the end of the 1960’s, Palamodov [8] introduced
the same concept under the name of “semi-abelian categories”. Therefore some authors
use “P-semi-abelian category” to denote the categories above. The properties of P-semi-
abelian categories was optimized by Kopylov [3, 5] in recent years. In the sequel, we call
the “P-semi-abelian category” as “semi-abelian category” for short.

Milicic [7] studied the derived category of abelian categories. The aim of this arti-
cle is to generalize these properties to a class of semi-abelian categories, called pre-strict
semi-abelian categories. In Section 2, we first give some necessary definitions or nota-
tions and recall basic facts. Then we construct the left and right cohomological functors
in semi-abelian categoreis. In Section 3, we establish the pre-strict semi-abelian cate-
gory and investigate some properties of it. Then we introduce the concept of left quasi-
bimorphisms and right quasi-bimorphisms in pre-strict semi-abelian categories to form

∗Corresponding author. Email addresses: 466984702@qq.com (L. Y. Chen), xinlin@fjnu.edu.cn (L. Xin)

http://www.global-sci.org/jms 406 c©2015 Global-Science Press



L. Y. Chen and L. Xin / J. Math. Study, 48 (2015), pp. 406-418 407

localizing classes compatible with triangulation respectively. Consequently, we obtain
the corresponding one-side derived categories.

2 Right cohomological functor Hn
− and left cohomological

functor Hn
+

The theory of P-semi-abelian categories is being optimized by mathematicians in recent
years. Here the definition of P-semi-abelian category is in the sense of Palamodov [7]. In
this paper, we call the P-semi-abelian category as semi-abelian category for short. Kopy-
lov claimed in [5] that an additive category E is called pre-abelian category if every mor-
phism in E has a kernel and a cokernel. Furthermore, in pre-abelian categories, each mor-
phism α admits the canonical decomposition α=(imα)α(coimα), where imα=ker(cokerα),
coimα=coker(kerα), and α is unique. If the α is an isomorphism, then α is called strict. A
pre-abelian category is called semi-abelian category if for every morphism α, α is bimor-
phism. The equivalent definition of semi-abelian categories can be seen in [3].

A preabelian category is semi-abelian if for every morphism α, α is a bimorphism, i.e.
α is a monomorphism and an epimorphism simultaneously. We refer to [5] for equivalent
definitions of semi-abelianity for a preabelian category.

For an additive category C ,C(A ) is the category of complexes of C -objects with com-
plexes of C -objects as objects and morphisms of complexes as morphisms.

Let C be a semi-abelian category. Then so is C(A ). We denote a complex A· =
(An,dn

A)n∈Z in C(A ) to be as follows:

A· : ···→An−1 dn−1

−→ An dn

−→An+1 dn+1

−→···

For each n∈Z, there is a commutative diagram

An−1 An An+1

Kerdn
A

Cokerdn−1
A

Kerdn+1
A

Cokerdn−2
A

- -w

w^

7 �

wdn−1
A dn

A

an−1 an
cokerdn−1

A

kerdn
A

cokerdn−2
A

kerdn+1
A

(2.1)

with determinate an and an−1. Evidently, Coker(an−1·cokerdn−2)=Cokeran−1 and Ker
((kerdn+1)·an)=Keran. We denote Hn

−(A·) = Cokeran−1 and Hn
+(A·) = Keran. We call

Hn
−(A·) the nth right cohomology o f complex A· and Hn

+(A·) the nth le f t cohomology o f
complex A·.
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Remark 2.1. Kopylov [4] claimed that for any n∈ Z, there exists an unique monomor-
phism mn:Hn

−(A·)→Hn
+(A·) such that (keran)mn(cokeran−1)=(cokerdn−1

A )(kerdn
A). More-

over, he proved in [5] that A is quasi-abelian if and only if mn is an isomorphism for any
n∈Z.

We need the following preliminaries for constructing the right and left cohomological
functors. According to Kopylov’s notations in [4], for a semi-abelian cagegory, Mc is the
class of all strict monomorphisms; Pc is the class of all strict epimorphisms; Oc is the class
of all strict morphisms.

Lemma 2.1. [4] The following hold in a semi-abelian category.

(1) If g f ∈Mc, then f ∈Mc; if g f ∈Pc, then g∈Pc.

(2) If f ,g∈Mc and g f is defined, then g f ∈Mc; if f ,g∈Pc and g f is defined, then g f ∈Pc.

(3) If f g∈Oc and f ∈M, then g∈Oc; if fg∈Oc and g∈P, then f ∈Oc.

Remark 2.2. Mc is the class of all strict monomorphisms. Pc is the class of all strict epi-
morphisms. Oc is the class of all strict morphisms.

Definition 2.1. [5] Let E be an additive category. An object A= (An,dn
A)n∈Z in C(E ) is

defined as strict complex if dn
A is a strict morphism for each n∈Z.

Lemma 2.2. [5] Let A be a semi-abeilan category and A·=(An,dn
A)n∈Z be an object of C(A ).

Then A· is a strict complex if and only if for any n∈Z, an is a strict morphism (an is the same as
figure (2.1)).

Proposition 2.1. Let C be a semi-abelian category and A·=(An,dn
A)n∈Z be a strict complex

in C(C ). For each n∈Z

(1) there exists a strict monomorphism gn
A : Imdn

A → Kerdn+1
A such that Hn+1

− (A·) =
Cokergn

A and gn
A =ker(cokergn

A);

(2) there exists a strict epimorphism tn
A :Cokerdn

A→Imdn+1
A such that Hn+1

+ (A·)=Kertn
A

and tn
A =coker(kertn

A).

Proof. (1) First we show the existence of gn
A. Let b = cokerdn

A,c= imdn
A and e= kerdn+1

A .
Since bdn

A =0, there exist an unique morphism λ : An→ Imdn
A such that dn

A=cλ. For C is a
semi-abelian category, this implies that λ is an epimorphism. Since dn+1

A cλ=dn+1
A dn

A =0,

there exact an unique morphism gn
A : Imdn

A →Kerdn+1
A such that c= egn

A. Moreover, c is a
monomorphism, so gn

A is a monomorphism.
Then we want to show that Hn

−(A·)=Cokergn
A. It is enough to prove the existence of

an epimorphism d :Cokerdn−1
A →Imdn

A with the equality an=gn
Ad. Let t=cokerdn−1

A . Since

beant=bdn
A =0 and t is an epimorphism, bean =0. This implies that d :Cokerdn−1

A → Imdn
A

meet the equality ean = cd = egn
Ad. Therefore, an = gn

Ad as e is a monomorphism. Since
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cdt= eant=dn
A= cλ and c is a monomorphism, dt=λ. Moreover, λ is an epimorphism, so

d is an epimorphism.
Finally we have to check that gn

A = ker(cokergn
A). Since egn

A = c is a strict morphism
and e is a monomorphism, gn

A is a strict morphism by Lemma 2.1. It follows that gn
A is a

strict monomorphism, i.e., a kernel.
(2) By the proof of (1), we have an = gn

Ad. Since gn
A is a monomorphism, Hn

+(A·) =
Keran =Kerd. A·=(An,dn

A)n∈Z is a strict complex in C(C ). This implies that an is a strict
morphism by Lemma 2.2. Moreover, gn

A is a monomorphism, so d is a strict epimorphism,
i.e., a cokernel. Put tn

A =d, then the proposition follows.

Now we can construct the corresponding right cohomological functor Hn
− and left

cohomological functor Hn
+.

Let A·=(An,dn
A)n∈Z and B·=(Bn,dn

B)n∈Z be two complexes in C(C ). For any n∈Z
and an arbitrary morphism f · : A·→B·, there is a commutative diagram

An−1 An An+1

Kerdn
A

Cokerdn−1
A

Kerdn+1
A

Cokerdn−2
A

Bn−1 Bn Bn+1

Kerdn
B

Cokerdn−1
B

Kerdn+1
B

Cokerdn−2
B

- -
w

w^

7 �

wdn−1
A dn

A

an−1
A an

cokerdn−1
A

kerdn
A

cokerdn−2
A

kerdn+1
A

- -w

w^

7 �

wdn−1
B dn

B

an−1
B an

Bcokerdn−1
B

kerdn
B

cokerdn−2
B

kerdn+1
B

? ? ?

f n−1 f n f n+1

?

?

?

?

f n
1 f n+1

1

f n−2
2 f n−1

2

(2.2)

where f n
1 , f n+1

1 , f n−1
2 and f n−2

2 are determined by f ·. By the definition of kernels and

cokernels, there exists an unique morphism f n
− : Cokeran−1

A → Cokeran−1
B such that f n

− ·

cokeran−1
A = cokeran−1

B · f n
1 , as well as an unique morphism f n

+ : Keran
A → Keran

B such that

keran
B · f n

+ = f n−1
2 ·keran

A . Put Hn
−( f ·) = f n

− and Hn
+( f ·) = f n

+, then we have the following
proposition.

Proposition 2.2. Let C be a semi-abelian category. Let f · : A· → B· be a morphism of
complexes in C(C ). We define Hn

−(A·)=Hn
−(A·) and Hn

+(A·)=Hn
+(A·). Also, we define

Hn
−( f ·) and Hn

+( f ·) as the above. Then Hn
− : C(C )→C and Hn

+ : C(C )→C are additive
functors.
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Proof. According to the definition of additive functors in reference [11], we need to get the
equality Hn

+( f ·+g·)=Hn
+( f ·)+Hn

+(g·) and Hn
−( f ·+g·)=Hn

−( f ·)+Hn
−(g·) for an arbitrary

morphisms f · :A·→B· and g· :A·→B· in C(C ). Actually, following the notation of diagram
(2.2), we get the equality Hn

+( f ·+g·)= f n
+⊕gn

+= Hn
+( f ·)⊕Hn

+(g·)= Hn
+( f ·)+Hn

+(g·), as
well as Hn

−( f ·+g·)= f n
−⊕gn

−=Hn
−( f ·)⊕Hn

−(g·)=Hn
−( f ·)+Hn

−(g·).

We call the functors Hn
− : C(C )→C and Hn

+ : C(C )→C in Proposition 2.2 the right
cohomological functor and the left cohomological functor respectively.

Let C be a semi-abelian category and A·=(An,dn
A)n∈Z be a complex in C(C ). Assume

that T : C(C )→C(C ) is a reversible transformation such that T(An) =An+1 and T(dn
A)=

−dn+1
A . On the other hand, for an arbitrary morphism of complexes f · : A·→ B· in C(C )

and any n∈Z, put T( f ·)n= f n+1. We call such functor T the translation functor. If we put
the notation Hn

∗ : C(C )→C to represent Hn
+ : C(C )→C or Hn

− : C(C )→C for any n∈Z,
then it’s easy to check the following corollary.

Corollary 2.1. Hn
∗ ◦T=Hn+1

∗ .

It’s well-known that in abelian categories, homotopic morphisms applied by a coho-
mological functor are identical (see [11]). We have similar properties about the right and
left cohomological functors in semi-abelian categories.

Proposition 2.3. If f ·,g· : A·→ B· are homotopic morphisms in C(C ), we have Hn
∗ ( f )=

Hn
∗ (g) for any n∈Z.

Proof. If f ·,g· :A·→B· are homotopic morphisms, then there exists a morphism s· :T(A·)→
B· such that sn : An → Bn−1 satisfies the equality f n−gn = dn−1

B sn+sn+1dn
A for each n∈Z.

We follow the notion of diagram (2.2), then (kerdn
B)·( f n

1 −gn
1 ) = ( f n−gn)·kerdn

A = dn−1
B ·

sn ·kerdn
A = kerdn

B ·a
n−1
B ·cokerdn−2

B ·sn ·kerdn
A. Since kerdn

B is a monomorphism, f n
1 −gn

1 =
an−1

B ·cokerdn−2
B ·sn ·kerdn

A. This implies that ( f n
−−gn

−)·cokeran−1
A =cokeran−1

B ·( f n
1 −gn

1 )=0.

Moreover, cokeran−1
A is an epimorphism, so f n

−= gn
−. Therefore, Hn

−( f )=Hn
−(g).

The other equality Hn
+( f )=Hn

+(g) follows by duality.

For an additive category E , the homotopic category of complexes of E is the category
K(E ) consisting of complexes of E -objects as objects and classes of homotopic morphisms
as morphisms. Let C be a semi-abelian category. By Proposition 2.3 we can generalize
the right and left cohomological functors to the category K(C ). Consequently, we obtain
two additive functors Hn

− : K(C )→C and Hn
+ : K(C )→C .

3 One-side derived categories of pre-strict P-semi-abelian

categories

In this section, we will construct a class of semi-abelian categories called pre-strict semi-
abelian categories. It is a generation of quasi-abelian categories, whose characterization
can be seen in [11], and equipped with good properties. Furthermore, we will introduce
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left quasi-bimorphisms and right quasi-bimorphisms yielded by left cohomological func-
tors and right cohomological functors to establish the corresponding one-side derived
categories.

Definition 3.1. Let C be a semi-abelian category. We called C the right−strict category
(resp. le f t−strict category) if it satisfies the following qualification: if f :A→B and g:B→C
are two morphisms in C with g f be strict morphism, and g be strict epimorphism (resp.
f be strict monomorphism), then f is a strict morphism (resp. g is a strict morphism).

We call C the pre-strict semi-abelian category if it is both left-strict and right-strict
categories. We claim that pre-strict semi-abelian categories have some good properties.

Remark 3.1. Yaroslav Kopylov claimed in his article <Homology in P-semi-abelian categories>
(Reference [5]) that the following holds in a P-semi-abelian categories: if the composite
morphism f g is strict and f is a monomorphism, then g is a strict morphism. By duality, if
the composite morphism f g is strict and g is a epimorphism, then f is a strict morphism.
We got inspired to this property and study some similar issue, say, Definition 3. 1.

Proposition 3.1. Let C be a pre-strict semi-abelian category and α,β:A→B be morphisms
in C . If α and β are both strict morphisms, then α+β is strict morphism.

Proof. Assume that α= α1α0 and β= β1β0, where α1 and β1 are strict monomorphisms,
α0 and β0 are strict epimorphisms. Then α+β = α1α0+β1β0 = (α1,β1)(α0,β0)T. Since
α0=(1,0)(α0,β0)T and α0 is a strict morphism while (1,0) is a strict epimorphism, (α0,β0)T

is a strict epimorphism.
On the other hand, it is easy to check that (α1,β1) is a strict monomorphism by duality.

Hence, α+β is a strict morphism.

Let C be a pre-strict semi-abelian category. We denote S(C ) to be a full subcategory of
K(C ), consisting of strict complexes in K(C ). Let f · :X·→Y· be a morphism of complexes.
As in abelian categories, we define Cn

f =Xn+1⊕Yn for every n∈Z, and dn
C f

:Cn
f →Cn+1

f such

that dn
C f
=
(

−dn+1
X 0

f n+1 dn
Y

)

. Obviously, C·
f is a complex, which we call the corn of morphism

f ·.

Lemma 3.1. [3] Let C be a semi-abelian category. If f :X→Y is a strict morphism, g :W→X is a
strict epimorphism and h :Y→Z is a strict monomorphism, then f g and h f are strict morphisms.

Proposition 3.2. Let C be a pre-strict semi-abelian category. If f · : X·→Y· is a morphism
in S(C ), then C·

f =(Cn
f ,dn

C f
)n∈Z is an object of S(C ).

Proof. Since −dn
X =(1,0)(−dn

X , f n)T is a strict morphism and (1,0) is a strict epimorphism,
(−dn

X , f n)T is a strict morphism. For any n∈Z, compute

dn
C f
=

(

−dn+1
X 0

f n+1 dn
Y

)

=

(

−dn+1
X 0

f n+1 0

)

+

(

0 0
0 dn

Y

)

=

(

−dn+1
X

f n+1

)

(1,0)+

(

0
1

)

dn
Y(0,1).
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We have known that (1,0) is a strict epimorphism, (0,1)T is a strict monomorphism, dn
Y

is a strict morphism and (0,1) is a strict epimorphism. Therefore, (−dn+1
X , f n+1)T(1,0)

and (1,0)Tdn
Y(0,1) are strict morphisms by Lemma 3.1. This implies that dn

C f
is a strict

morphism by proposition 3.1, i.e. C·
f =(Cn

f ,dn
C f
)n∈Z is an object of S(C ).

Let C be a semi-abelian category and f · : X·→Y· be a morphism in C(C ). Given the
morphism i·f :Y·→C·

f with in
f :Yn →Cn

f a canonical injection and the morphism p·f : C·
f →

T(X·) with pn
f : Cn

f → Xn+1 a canonical projection, where the translation functor T was

announced in Section 2. It’s easy to check that i·f and p·f are morphisms of complexes and

consequently 0→Y·
i·f

−→C·
f

p·f
−→T(X·)→0 is an exact sequence of complexes.

Lemma 3.2. [4] Let C be a semi-abelian category and 0→A·→B·→C·→0 be an exact sequence
of complexes in C(C ).

(1) If A· is a strict complex, then Hn
+(A·)→Hn

+(B·)→Hn
+(C

·) are exact sequences for all
n∈Z.

(2) If C· is a strict complex, then Hn
−(A·)→ Hn

−(B·)→Hn
−(C

·) are exact sequences for all
n∈Z.

Corollary 3.1. If 0→Y·
i·f

−→C·
f

p·f
−→ T(X·)→ 0 is a sequence of complexes in S(C ), then

the sequences Hn
−(Y

·)
Hn

−(i
·
f )

−→ Hn
−(C

·
f )

Hn
−(p·f )
−→ Hn

−(T(X
·)) and Hn

+(Y
·)

Hn
+(i

·
f )

−→ Hn
+(C

·
f )

Hn
+(p·f )
−→

Hn
+(T(X

·)) are exact for all n∈Z.

In order to introduce the concept of left and right quasi-bimorphisms we need some
preliminary results. We refer to [7] for the notion of localizing classes and triangulated
categories.

Definition 3.2. [7] Let C be an additive category and f · : X·→Y· be a morphism in C(C ).
Let T be the corresponding translation functor on C(C ). We call X·→Y· →Z·→ T(X·)
a distinguished triangle in K(C ) if it is isomorphic to the image of a standard triangle

X· f ·

−→Y·
i·f

−→ C·
f

p·f
−→ T(X·) in K(C ). In [6], Milicic asserted that the addictive category

K(C ) equipped with the translation functor T and the class of distinguished triangles in
K(C ) is a triangulated category.

According to the definition of triangulated categories, X· f ·

−→Y· g·

−→ Z· h·
−→ T(X·) is

a distinguished triangle if and only if Y· g·

−→Z· h·
−→ T(X·)

−T( f )·

−→ T(Y·) is a distinguished
triangle, where T is the lifting functor. On the other hand, we call X·→Y·→Z·→T(X·)
a distinguished triangle in K(C ) if it is isomorphic to the image of a standard triangle

X· f ·

−→ Y·
i·f

−→ C·
f

p·f
−→ T(X·) in K(C ), where C·

f = (Cn
f ,dn

C f
)n∈Z is the corn of morphism
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f ·. Therefore, we can apply Corollary 3.6 to the distinguished triangle X· f ·

−→ Y· g·

−→

Z· h·
−→ T(X·) and get an exact sequence Hn

−(Y
·)

Hn
−(g·)
−→ Hn

−(Z
·)

Hn
−(h

·)
−→ Hn

−(T(X
·)). Once

more, we apply Corollary 3.6 to the distinguished triangle Y· g·

−→Z· h·
−→T(X·)

−T( f )·

−→ T(X·)

and get an exact sequence Hn
−(Z

·)
Hn

−(h
·)

−→ Hn
−(T(X

·))
Hn

−(−T( f ·))
−→ Hn

−(T(Y
·)). Combine the

above two exact sequences we get a longer exact sequence Hn
−(Y

·)
Hn

−(g·)
−→ Hn

−(Z
·)

Hn
−(h

·)
−→

Hn
−(T(X

·))
Hn

−(−T( f ·))
−→ Hn

−(T(Y
·)). By Corollary 2.7, Hn

−(Y
·)

Hn
−(g·)
−→ Hn

−(Z
·)

Hn
−(h

·)
−→ Hn+1

− (X·)
Hn+1

− (− f ·)
−→ Hn+1

− (Y·) is an exact sequence.

To use the above analogy we can get the following corollary.

Corollary 3.2. If X· f ·

−→Y· g·

−→Z· h·
−→T(X·) is a distinguished triangle in K(C ), we have

the following two long exact sequences in C .

···→Hn
−(X

·)
Hn

−( f )
−→ Hn

−(Y
·)

Hn
−(g)
−→ Hn

−(Z
·)

Hn
−(h)
−→ Hn+1

− (X·)→···

···→Hn
+(X

·)
Hn

+( f )
−→ Hn

+(Y
·)

Hn
+(g)
−→ Hn

+(Z
·)

Hn
+(h)
−→ Hn+1

+ (X·)→···.

We call them the right cohomology long exact sequence and the left cohomology long

exact sequence of the distinguished triangle X· f ·

−→Y· g·

−→Z· h·
−→T(X·) respectively.

Now we introduce the concept of left and right quasi-bimorphisms in pre-strict semi-
abelian categories.

Definition 3.3. Let C be a pre-strict semi-abelian category and f · :X·→Y· be a morphism
in K(C ).

(1) f · is called a right quasi−bimorphisms if Hn
−( f ·) are bimorphisms for all n∈Z.

(2) f · is called a le f t quasi−bimorphisms if Hn
+( f ·) are bimorphisms for all n∈Z.

Definition 3.4. Let C be a pre-strict semi-abelian category and A· = (An,dn
A)n∈Z be an

object of K(C ).

(1) A· is called a right acyclic if Hn
−(A·)=0 for all n∈Z;

(2) A· is called a le f t acyclic if Hn
+(A·)=0 for all n∈Z.

Lemma 3.3. Let f · :X·→Y· is a morphism in S(C ), which is consist of strict complexes in K(C ).

(1) f · is a right quasi-bimorphism if and only if C·
f =(Cn

f ,d·C f
)n∈Z is a right acyclic.

(2) f · is a left quasi-bimorphism if and only if C·
f =(Cn

f ,d·C f
)n∈Z is a left acyclic.
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Proof. The corn of a morphism f · is unique up to isomorphic, seen in [6]. Namely, in

K(C ), if X· f ·

−→Y· g·

−→Z· h·
−→T(X·) is a distinguished triangle then Z· is isomorphic to C·

f .

Applying Corollary 3.8 to the distinguished triangle X· f ·

−→Y· g·

−→C·
f

h·
−→ T(X·), we get

the long exact sequence ···→Hn
−(X

·)
Hn

−( f )
−→ Hn

−(Y
·)

Hn
−(g)
−→ Hn

−(C
·
f )

Hn
−(h)
−→ Hn+1

− (X·)→···.

If f · is a right quasi-bimorphism, by Definition 3.3 Hn
−( f ) is a bimorphism, and then

H
p
−(C

·
f )=0, which means that C·

f is a right acyclic. Conversely, if C·
f is a right acyclic, by

Definition 3.4 H
p
−(C

·
f )=0, then Hn

−( f ) is a monomorphism and an epimorphism, namely,

a bimorphism, which means f · is a right quasi-bimorphism.
The second result can be proved by dual.

Remark 3.2. If f · : A·→B· is a bimorphism, it is naturally a right (left) quasi-bimorphism.

In fact, since 0→A· f ·

−→B·→0 is an exact sequence, by Lemma 3.2 we get exact sequences

0→Hn
+(A·)

Hn
+( f ·)
−→ Hn

+(B·)→0 and 0→Hn
−(A·)

Hn
−( f ·)
−→ Hn

−(B·)→0 for any n∈Z. This implies
that Hn

+( f ) and Hn
−( f ) are bimorphisms for any n∈Z.

In the sequel, we introduce the concept of one-side derived categories based on the
above preparations.

The following theorem is a main result of this paper. Let’s mention at this point that
the notations “LC” and “LT” in Theorem 3.1 are the characterizations of localizing classes
and localizing classes compatible with triangulation respectively (see [7, p. 4 and 66]).

Theorem 3.1. Let C be a pre-strict semi-abelian category. Put S∗
−= { f · : X·→Y·| f · is a right

quasi-bimorphism in S(C )}. Then S∗
− is a localizing class compatible with triangulation in S(C ).

Proof. First we show that S∗
− is a localizing class.

(LC1) Let X· be an arbitrary object in S(C ). Then C·
1X
=0. By Lemma 3.3, 1·X is in S∗

−.

(LC2) If t· : X·→Y· and s· : Y·→Z· are two morphisms in S∗
−, then Hn

−(s) and Hn
−(t) are

bimorphisms for any n∈Z. Since Hn
− is a functor, Hn

−(st) is a bimorphism. This implies
that s· ·t· is in S∗

−.

(LC3a) Let f · : Z· →Y· be a morphism in S(C ) and s· : X· →Y· be in S∗
−. Consider the

distinguished triangle X· s·
−→Y· is−→C·

s

ps
−→T(X·) based on s·. By Lemma 3.3, C·

s is a right

acyclic. Since Y· is−→C·
s

ps
−→T(X·)

−T(s)
−→ T(Y·) is again a distinguished triangle, we have a

commutative diagram

Z· C·
s C·

is f T(Z·)

Y· C·
s T(X·) T(Y·)

- - -

- - -
? ? ?

is f u·

is p −T(s)

f · 1 T( f ·)
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where the rows are distinguished triangles. By the characterization of triangulated cate-
gories, we can complete this diagram by a morphism v· :C·

is f →T(X·) to the morphism of

distinguished triangles. Since C·
s is a right acyclic, T−1(u·) is a right quasi-bimorphism.

Put W=T−1(C·
is f ),t

·=T−1(u·) and g·=−T−1(v·). Consequently, we get the commutative

diagram

W · Z·

X· Y·

-

-
? ?

t·

s·

g· f ·

where s· and t· are in S∗
−.

(LC3b) Let f · : X· → Z· be a morphism in S(C ) and s· : X· → Y· be in S∗
−. Consider a

distinguished triangle X· s·
−→Y· is−→C·

s

ps
−→T(X·) based on s·. By Lemma 3.3, C·

s is a right

acyclic. Thus T−1(C·
s)

−T−1(ps)
−→ X· s·

−→Y· is−→C·
s is a distinguished triangle. Then we have a

commutative diagram

T−1(C·
s) X· Y· C·

s

T−1(C·
s) Z· C·

− f T−1(ps)
C·

s

- - -

- - -
? ? ?

−T−1(ps) s· i·s

− f T−1(ps)· t

1 f · 1

where the rows are distinguished triangles. By the characterization of triangulated cate-
gories, we can complete this diagram by a morphism g· :Y·→C·

− f T−1(ps)
to the morphism

of distinguished triangles. Since C·
s is a right acyclic, t· is a right quasi-bimorphism. This

result yields a commutative diagram

X· Y·

Z· C·
− f T−1(ps)

-

-
? ?

s·

t·

f · g·

where s· and t· are in S∗
−.

(LC4a) Let f · :X·→Y· be a morphism in S(C ) and s· :Y·→Z· be in S∗
− with s· · f ·=0·. By [7,

Chapter 2, Lemma 2.1.2], X· 1X−→X·→0·→T(X·) is a distinguished triangle. This implies

that X·→ 0· → T(X·)
−1T(X)
−→ T(X·) is a distinguished triangle. Hence, we can construct a

commutative diagram
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X· 0· T(X·) T(X·)

Y· Z· C·
s T(Y·)

- - -

- - -
? ? ?

-1

s is ps

f · T( f ·)

where the rows are distinguished triangles. By the characterization of triangulated cate-
gories, we can complete this diagram by a morphism −v· : T(X·)→C·

s to the morphism
of distinguished triangles. This in turn implies that f · = T−1(ps)T−1(v·). Consider the

distinguished triangle X· T−1(v·)
−→ T−1(C·

s)→C·
T−1(v·)

T(t)
−→T(X·) based on T−1(v·). Since s· is

a right quasi-bimorphism, C·
s is a right acyclic. Therefore t· is a right quasi-bimorphism.

By [7, Chapter 1, Lemma 1.3.1], T−1(v·)t·=0. Thus f ·t·=T−1(ps)T−1(v·)t·=0.

(LC4b) Let f · :Y·→Z· be a morphism in S(C ) and t· : X·→Y· be in S∗
− with f · ·t·=0·. We

have a commutative diagram

X· Y· C·
t T(X·)

0· Z· Z· 0·

- - -

- - -
? ? ?

t· u·

1

f ·

where the rows are distinguished triangles. By the characterization of triangulated cat-
egories, we can complete this diagram by a morphism v· : C·

t → Z· to the morphism of
distinguished triangles. This implies that f · = v·u·. Consider the distinguished triangle

C·
t

v·
−→Z·

s·
−→C·

v· →T(C·
t) based on v·. Since t· is a right quasi-bimorphism, C·

t is a right
acyclic. Therefore s· is a right quasi-bimorphism and s· f ·= s·v·u·=0.

From what has been discussed above, we proved that S∗
− is a localizing class. Then

we have to check that S∗
− is compatible with triangulation.

(LT1) Obviously, S∗
− is invariant under the translation functor T. This implies that for an

arbitrary morphism s· in S∗
−, T(s·) is in S∗

−.

(LT2) Consider the morphism of distinguished triangles

X· Y· Z· T(X·)

X·
1 Y·

1 Z·
1 T(X·

1)

- - -

- - -
? ? ? ?

s· t· u· T(s·)

where s· and t· are in S∗
−. By [10, Remark 2.2], there exists a commutative diagram



L. Y. Chen and L. Xin / J. Math. Study, 48 (2015), pp. 406-418 417

X· Y· Z· T(X·)

X·
1 Y·

1 Z·
1 T(X·

1)

- - -

- - -
? ? ? ?

s· t· u· T(s·)

? ? ? ?
C·

s C·
t C·

u T(C·
s)

- - -

such that the rows and columns are distinguished triangles. For any p∈Z, this leads to a
commutative diagram

H
p
−(X

·) H
p
−(Y

·) H
p
−(Z

·) H
p
−(T(X

·))

H
p
−(X

·
1) H

p
−(Y

·
1) H

p
−(Z

·
1) H

p
−(T(X

·
1))

- - -

- - -
? ? ? ?

H
p
−(s

·) H
p
−(t

·) H
p
−(u

·) H
p
−(T(s·))

? ? ? ?
H

p
−(C

·
s) H

p
−(C

·
t) H

p
−(C

·
u) H

p+1
− (C·

s)
- - -

where H
p
−(C

·
t)=H

p+1
− (C·

s)= 0. Since the bottom row is exact, H
p
−(C

·
u)= 0 hold. This in

turn implies that u· is in S∗
−.

By Theorem 3.1, we obtain the localization of S(C ) with respect to S∗
− and denote it by

DS−(C ). We call DS−(C ) the right derived category of S(C ), which is again a triangulated
category (see [7, Chapter 2, Theorem 1.6.1]).

Dually, we obtain the le f t derived category of S(C ) and denote it by DS+(C ), which
is also a triangulated category. The corresponding localizing class is formulated below.

Theorem 3.2. Let C be a pre-strict semi-abelian category. Put S∗
+ = { f · : X· →Y·| f · is a left

quasi-bimorphism in S(C )}. Then S∗
+ is a localizing class compatible with triangulation in S(C )

.

Milicic [7] proved that the derived category of an abelian category is unique up to
isomorphism. For a pre-strict semi-abelian category C , we claim that DS+(C ) can be
regarded as a subcategory of DS−(C ). The following theorem is another main result of
this paper.

Theorem 3.3. Let C be a pre-strict semi-abelian category. There exists a dense and faithful
functor F :DS+(C )→DS−(C ).
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Proof. The objects of DS+(C ) and DS−(C ) are the same, consisting of strict complexes in
K(C ). Assume that a morphism in DS+(C ) is represented by the left roof

/ w

L

M N

s ∼ f

where s is a left quasi-bimorhism. For any n∈Z, we have Hn
+(C

·
s)=0. Since mn :Hn

−(C
·
s)→

Hn
+(C

·
s) is a bimorphism (see Remark 2.1), Hn

−(C
·
s)=0 hold. This implies that s is a right

quasi-bimorphism. Thus the above-mentioned left roof is a morphism in DS−(C ). Hence,
MorDS+(C )⊆MorDS−(C ). Put F being the embedding morphism and consequently the
theorem followed.

Remark 3.3. If C is a quasi-abelian category, then mn:Hn
−(C

·
s)→Hn

+(C
·
s) are isomorphisms

for all n ∈ Z. Therefore, the above-mentioned functor F is an equivalent functor. This
implies that DS+(C ) is equivalent to DS−(C ) as categories.
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