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Abstract. Metric subregularity is an important and active area in modern variational
analysis and nonsmooth optimization. Many existing results on the metric suregular-
ity were established in terms of coderivatives of the multifunctions concerned. This
note tries to give a survey of the metric subregularity theory related to the coderiva-
tives and normal cones.
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1 Introduction

Let X and Y be Banach spaces and ®: X = Y be a multifunction such that its graph
gph(®):={(x,y) e XxY:yed(x)} is closed. Recall that ® is metrically subregular at
(a,b) € gph(P) if there exist 7,8 € (0, +00) such that

d(x,® (b)) <td(b,®(x)) VxeB(a,d), (1.1)

where d(x,®~1(b)) :=inf{||x—ul|: u€ ® (b))} and B(a,0):={u€ X: ||x—al <4}. This
property provides an estimate of how far a candidate x can be from the solution set of
generalized equation (GE)

bed(x). (GE)

Also recall that a multifunction M:Y = X is said to be calm at (b,a) € gph(M) if there
exists L € (0, +00) such that

d(x,M(b))<L|ly—b| forall(y,x)egph(M)closeto(b,a).

It is known that ® is metrically subregular at (a,b) if and only if M =®! is calm at
(b,a) (cf. [9]). The metric subregularity and calmness have been already studied by many
authors under various names (see [2, 3, 7-10, 14-19, 25, 26, 28-31] and therein references).
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Let f: X — RU{+o0} be a proper lower semicontinuous function and consider the
special case that Y=IR, b=0 and

P(x):=[f(x),+o0) VxeX. (1.2)
In this case, generalized equation (GE) reduces to the following inequality

(IE) f(x) <0,

while metric subregularity (1.1) reduces to
A(x,5) <T[f(x)] VxeB(ao), (13)

where S={xe€ X|f(x) <0} and [f(x)]+ =max{f(x),0}. Usually inequality (IE) is said to
have a local error bound at a if there exist 7,6 € (0, +-00) such that (1.3) holds. Error bound
properties have important applications in sensitivity analysis and convergence analysis
of mathematical programming. The research on error bounds has attracted the interest of
many researchers and there are a vast number of publications reporting the progress in
this area (cf. [4, 11, 12, 20-22, 24, 26, 32,35] and references therein). In particular, studies
on error bounds have been well carried out in terms of subdifferentials; these studies are
mainly carried out in two directions of approach. The first direction is described by the
subdifferentials of f at points inside the solution set S and the normal cones of S. In this
direction, it is known that if f is convex then inequality (IE) has a local error bound at a
if and only if there exist 7,0 € (0, +o0) such that

N(S,x)NBx-C[0,t]of(x) VxeSNB(a,d)

(cf. [5, 11, 12, 20, 28]). The second direction is described only by the subdifferentials of
f at points outside the solution set S. In this direction, Ioffe [13] first studied error bound
(under a different name) and proved that the following implication holds:

d(0,0.f(x))>x Vxe€B(a,0)\S=(IE) hasalocalerrorbound ata. (1.4)

Note that the coderivative for a multifunction is the counterpart of the subdifferential for
a real-valued function and that the subdifferential 9f(x) of f at x is equal to the coderiva-
tive D*®(x,f(x))(1) (where ® is defined by (1.2)). So it is natural to study the more
general metric subregularity for a closed multifunction between two Banach spaces in
terms of coderivatives also along two directions of approach. In this note, we will give a
survey of the research of the metric subregularity along these two directions.

2 Preliminaries

Let X be a Banach space with topological dual X*. Let Bx and Sx denote the closed unit
ball and unit sphere of X, respectively. For a closed subset A of X and a point x in A,
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the Clarke tangent cone and normal cone of A at x are denoted by T;(A,x) and N.(A4,x),
respectively, that is, h € T.(A,x) if and only if for each sequence {x,} in A converging
to x and each sequence {t,} in (0, o) decreasing to 0 there exists a sequence {h,} in X
converging to h such that x,, +t,h, € A for all n, and

No(A,x):= {x* eX*| (x*,h) <0Vhe TC(A,x)}.

For e>0 and a € A, the nonempty set

m(A,x);:{x*ex*, limsu gg}
=]

is called the set of Fréchet e-normals of A at x. When =0, NS(A,x) is a convex cone and
is called the Fréchet normal cone of A at x; it will also be denoted by N (A, x). Let N(A,x)
denote the limiting (Mordukhovich) normal cone of A at x, that is,

N(A,x)= limsup N¢(A4,x).

A
u—x,e—0t

Thus, x* € N(A,x) if and only if there exists a sequence {(x,,€,,%;;) } in Ax R4 x X* such
that (x,,,e,) — (x,0), x}; s x* and x; €N, (A,x,) for each n. It is known that

N(A,x) CN(A,x) C N.(A,x)
(cf. [6, 22, 23]). If A is convex, then
N.(A,0)=N(A,a)= {x* € X*|(x*,x) < (x*,a) forallx € A}.
Given a proper lower semicontinuous function ¢: X —RU{+co}, let
dom(g):={x € X|p(x) < +oo}, epi(¢):={ (x,t) € Xx RIp(x) <t}.

For x€dom(¢) and h € X, let ¢'(x,h) denote the generalized directional derivative

¢'(x,h):=limlimsup inf ¢(z+tw) —¢(z)
el0 4 weh+eBx t
z—=x,t}0

4

where the expression z % x means that z — x and $(z) = ¢(x). Let d.¢(x) denote the
Clarke subdifferential of ¢ at x, that is,

3ep(x) = {x* e X*|(x*,h) < o' (x,h) VheX}.
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Recall that the Fréchet subdifferential of ¢ at x € dom(¢) is defined as

op(x):= {x* GX*\liminf(P(Z) —p) = (x'z=x) ZO}.

2 12— x|

It is well known (cf. [6,22]) that
dp(x) CacP(x).

If ¢ is convex, then

0 (x) =09 (x) = {x" € X|(x",y—x) <¢(y) ~p(x) Vy€X} Vredom(g).

For a closed set A in X, let 6 4 denote the indicator function of A. It is known (see [6, 22,
23]) that
N.(A,a)=0:04(a), N(A,a)=0d54(a) VYacA
3ep(x) = {x* eX*|(x*,—1) € Nc(epi(cp),(x,cp(x)))} Vx € dom(¢). 2.1)
Recall that a Banach space X is called an Aspund space if every continuous convex
function on X is Fréchet differentiable at each point of a dense subset of X. It is well
known (cf. [27]) that X is an Asplund space if and only if every separable subspace of

X has a separable dual space. In particular, every reflexive Banach space is an Asplund
space. In the case when X is an Asplund space, Mordukhovich and Shao [23] proved that

N.(A,a)=cl*(co(N(A,a))), N(A,a)=limsupN(A,x).

A
X—a

The following sum rule and fuzzy sum rule (cf. [6, 23]) play important roles in variational
analysis and are useful for our analysis.

Lemma 2.1. Let X be a Banach space and ¢1,¢2: X —RU{+co} be proper lower semicontinuous
functions. Let x € dom(¢1)Ndom(¢) be a local minimizer of ¢p1+¢o. Suppose that one of 1
and ¢y is locally Lipschitz around x. Then

0e accpl (X) +ac¢2<x).

If, in addition, X is an Asplund space, then for any € > 0 there exist x1,x, € B(x,€) such that
i (x;) —pi(x)| <e (i=1,2) and

0€ ¢y (x1)+¢a(x2)+eBx-.

For a multifunction ® from X to Y, as usual, ® is said to be closed (resp. convex) if its
graph gph(®) is a closed (resp. convex) subset of X xY. By virtue of different kinds of
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normal cones of gph(®), one defines corresponding different kinds of coderivatives of ®
at (x,y) € gph(®) as follows: For any y* € Y*,

D@ (xy)(y') = {x" € X"| (x*,—y") € N(gph(®), (x)) }

In the case when Y =R and ®(x) = [¢(x), +0c0) for all x € X, it is easy from (2.1) to verify
that

Di®(x,¢(x))(1) =0¢(x).
The coderivative D*®(x,y), as a generalization of the subdifferential, plays a key role in

variational analysis. The history of the coderivatives can be found in Mordukhovich’s
book [22].

3 BCQ, strong BCQ, and metric subregularity

Let ¢ be a proper lower semicontinuous extended real convex function on a Banach space
X and consider the following convex inequality

¢(x) <0. (CIE)

Let S denote the solution set of (CIE), that is, S:={x € X: ¢(x) <0}. Leta€bd(S) and
recall that (CIE) satisfies basic constraint qualification (BCQ) at a if

N(S,a)=R 0¢(a). (3.1)

BCQ is a basic notion in convex optimization (cf. [11,12,21]). If ¢ is not continuous at 4,
it is possible that d¢(a) is empty. To study error bound for (CIE), in terms of the singular
subdifferential 0°¢(x), BCQ is extended to the lower semicontinuity case in [28]:

N(S,a) =09 ¢(a) + R, d¢(a), (BCQ')

where R 0¢(a) is understood as {0} if d¢(a) =@. Moreover, strong BCQ is also intro-
duced in [28]; convex inequality (CIE) is said to satisfy strong BCQ at a if there exists
7€ (0, +o0) such that

N(S,a)NBx- Co%¢(a)+]0, t]ogp(a). (SBCQ)

In terms of the coderivative replacing the subdifferential and the singular subdifferential,
the concept of the BCQ' and strong BCQ are further extended to the multifunction case
in [29]. Let ® be a closed convex multifunction between Banach spaces X and Y. Recall
that ® has BCQ atac @1 (b) if

N(® Y(b),a) =D*®(a,b)(Y*), (3.2)
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and that ® has strong BCQ at a € ®~1(b) if there exists T € (0, +-00) such that
N(®~1,a)NBx: CTD*®(a,b)(By-). (3.3)

In the special case when ®(x) =[¢(x), +0), (3.2) and (3.3) reduce to (BCQ') and (SBCQ),
respectively. From the definitions concerned, it is easy to verify that D*®(a,b)(Y™) is
always a subset of N(®~1(b),a) and

strong BCQ = BCQ.

The following proposition (cf. [29, Proposition 3.4]) shows that strong BCQ is equivalent
to BCQ in some case.

Proposition 3.1. Let @ be a closed convex multifunction between Banach spaces X and Y and
(a,b) € gph(®). Suppose that ®~1(b) is a polyhedron. Then ® has BCQ if and only if ® has
strong BCQ.

As the main result in [29], in terms of strong BCQ, the following theorem provides a
characterization of the metric subregularity for a closed convex multifunction.

Theorem 3.1. Let ® be a closed convex multifunction between Banach spaces X and Y and
(a,b) € gph(P). Then P is metrically subreqular at (a,b) if and only if there exists 6 >0 such
that ® has strong BCQ at each x €bd (P~ (b)) N B(a,5) with the same constant.

Theorem 3.1 recaptures some earlier results dealing only with numerical valued func-
tions. When ®(x)=[¢(x), +o0) and b=0, then Theorem 3.1 is obtained in [28]. A slightly
earlier result is due to Burke and Deng who showed in [4, Theorem 5.2] that if X is a
Hilbert space, ®(x) =[¢(x), +o0) and b= ;g( ¢(x), then @ is metrically subregular at a if

and only if there exist 7,6 € (0, +c0) such that
N(® (b),x)NBx: Ctcl*(99(x)) VxeF Y(b)NB(a,é),

where cl* denotes the weak* closure.

In general, the strong BCQ of ® only at a € ®~1(b) does not imply the metric sub-
regularity of ® at (a,b). This makes the following result meaningful (see [29, Theorem
3.2])

Theorem 3.2. Let @ be a closed convex multifunction between Banach spaces X and Y and
(a,b) egph(®). Suppose that there exists a cone C and a neighborhood V of a such that ®~1(b)N
V=CNV. Then ® is metrically subreqular at (a,b) if and only if ® has strong BCQ at a.

In many cases, global metric subregularity, a stronger notion than the local metric
subregularity in the sense of (1.1), is more useful. Recall that ® is globally metrically
subregular at b if there exists T € (0, +c0) such that

d(x,® (b)) <1d(b,®P(x)) VxeX.
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To consider the global metric subregularity, we adopt the recession core notion intro-
duced in [29]. Let K be a closed convex subset of X and K* denote the recession cone of
K, that is,

K®:={heX: K+R hCK}.

Clearly, K=K+K®*, and it is well-known that if K is a closed convex subset of R” contain-
ing no lines, then K=co(ext(K))+K®, where ext(K) denotes the set of all extreme points
of K. As a generalization of ext(K), we adopt the so-called recession core of K: a subset C
of K is said to be a recession core of K if

K=co(C)+K*.

Next, in terms of recession cores and the BCQs, we provide some characterizations for
the global metric subregularity which are established in [29].

Theorem 3.3. Let @ be a closed convex multifunction between Banach spaces X and Y. Let
be®(X), T€(0,+00), and let C be a recession core of ®~1(b). Consider the following statements:

(i) D has the strong BCQ at each x € C with the constant T.

(i) @ has the strong BCQ at each x € ®~1(b) with the constant T.
(iii) D is metrically subreqular at each point in C with the constant T.

(iv) @ is metrically subregular at each point in ®~1(b) with the constant T.
(v) D is globally metrically subreqular with the constant T.

(vi) ® has the BCQ at each x € C.

Then, (i) (ii) < (iii) < (iv) & (v)=(vi). If, in addition, ®~1(b) is a polyhedron, then
(i) (i) < (i) < (iv) < (v) < (vi).

All the above results require that ® is convex. For the points of view of theoreti-
cal interest as well as for applications, it is useful to relax the convexity assumption in
the above results. As an interesting extension of the convexity, smoothness and prox-
regularity, Aussel et al. [1] introduced and studied the following subsmoothness: a subset
A of a Banach space X is said to be subsmooth at a € A if for any € >0 there exists 6 >0 such that

(x* —u*,x—u) > —e||x—ull

whenever x,u € B(a,0)NA, x* € N.(A,x)NBx+ and u* € N.(A,u)NBx-. Itis easy to verify
that A is subsmooth at a € A if and only if for any &> 0 there exists J >0 such that

(u*,x—u) <e||lx—ul|
whenever x,u € B(a,6)NA and u* € N.(A,u)NBx-. Clearly, if A is subsmooth at a then
N.(A,a)=N(A,a)=N(A,a).

It is known (and easily verified) that
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convexity = prox-regularity = subsmoothness.

We say that a closed multifunction ®: X =Y is subsmooth at (a,b) € gph(®) if gph(P) is
subsmooth at (a,b).
The following proposition on the subsmoothness is established in [31].

Proposition 3.2. Suppose that ®: X =Y is defined by ®(x) =Y (g(x)) for all x € X, where
g:X — Z is a smooth function and ¥ : Z =Y is a convex multifunction. Let (a,b) € gph(®) and
suppose that ¢'(a) is surjective. Then, ® is subsmooth at (a,b).

The following theorem is proved in [31] and provides necessary and sufficient condi-
tions for the metric subregularity of a closed (not necessarily convex) multifunction.

Theorem 3.4. Let ® be a closed multifunction between Banach spaces X and Y and let (a,b) €
gph(®). Then the following statements hold:

(i) If @ is metrically subreqular at (a,b), then there exist 1,0 € (0, +oc0) such that

N(®~1(b),x)NBx: CyD*®(x,b)(By-) Vxe® 1(b)NB(%,0).

(ii) If ® is subsmooth at (a,b) and there exist 17,6 € (0, +-00) such that

N(®1(b),x)NBx- CyD*®(x,b)(By-) Yx€® 1 (b)NB(%,6),

then ® is metrically subregular at (a,b).

An counterexample given in [31] shows that Theorem 3.4(ii) does not hold if the sub-
smoothness assumption of ® at (a,b) is dorpped.

4 Nonconvex case

In contrast to Section 3, this section considers another direction to study the metric sub-
regularity for a general closed multifunction, which is described only by the coderivative
of the multifunction concerned at points outside the solution set.

Let ] denote the normal dual mapping of a Banach space Y, that is,

Wy =lyll} vyeY\{0}.

J(y):={y" €Sy

Thus,
J(y)=al-ll(y) vyeY\{0}.
For any £>0, let

Je(y):={y" €Sy-1d(y",](y)) <e} VyeY\{0}.
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For a subset A of Y and b €Y, let P4 (b) and P4 (b) denote respectively the projection and
e-projection of b to A, that is,

Pa(b):={ye Al [b—yl=d(b,4))}

Pa(b)i={ye Al |y—b] <d(b,A)+e}.
The following theorem is proved in [32] and extends Ioffe’s result (cf. [13]) to the general
closed multifunction case.

Theorem 4.1. Let ® be a closed multifunction between Banach spaces X and Y and let (a,b) €
gph(®). Let ¢,1,6 € (0, +00) be such that

d(0,D;®(x,y)(Je(y—b))) =1

for all x€ B(a,8)\® ' (b) and all y € Py (b)NB(b,d). Then

_ 1 )
d(x,® 1(b))gﬁd(b,d)(x)) VxeB(a,m)

Consequently, ® is metrically subreqular at (a,b).

Letting 6 — +o0 in Theorem 4.1, we have the following global metric subregularity
result.

Corollary 4.1. Let ® and (a.b) be as in Theorem 4.1. Suppose that there exist €,11 € (0, +00)
such that

4(0,D:(x,y) (Je(y—b))) 2y ¥xeX\& ! (b)and Wy Py, (b).

Then

d(x,q>1<b))g%d(b,q>(x)) VxeX.

An example given in [32] shows that the converses of Theorem 4.1 and Corollary 4.1
do not hold. As a partial converse of Theorem 4.1, we have the following necessity result
for ® to be metrically subregular.

Theorem 4.2. Suppose that the closed multifunction ®: X =2Y is convex and that ® is metrically
subregular at (a,b) egph(®). Then, there exist 6 >0 and a decreasing function 11:[0,1)— (0,+o0)
such that

d(0,D*®(x,y)(Je(y—b))) = (e)
foralle€[0,1), x€B(a,6)\® 1 (b) and y € D(x).

In the finite dimension case, Theorem 4.1 can be simplified. More precisely, J. and
pr(x) (b) can be replaced by ] and Py (b), respectively.
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Proposition 4.1. Let X,Y be finite dimensional Banach spaces and ®: X =Y be a closed multi-
function with (a,b) € gph(P). Suppose there exist 1,6 € (0, +-00) such that

d(0,D*®(x,y)(J(y—b))) >nlly—bll VxeB(a,6)\® " (b) and Vy € Py (b).
Then

d(x, (b)) < %d(b,l—"(x)) Vxe B(a,%).

Under some mild restrictions, the coderivative D®(x,y) in Theorem 4.1 can be re-
placed with D*®(x,y), as the following result shows.

Theorem 4.3. Let X be an Asplund space and Y be a Hilbert space. Let €,17,6 € (0, +0c0) be such
that

d(0,D"®(x,y) (Je(y=b))) =1

forall x€ B(a,8)\® ' (b) and all y € Py (b)NB(b,d). Then

_ 1 6
d(x,® 1(b))gﬁd(b,q>(x)) ww(mm).

The following lemma plays key roles in the proofs of Theorems 4.1 and 4.2 and Propo-
sition 4.1 and is of independent interest.

Lemma 4.1. Let u € X and t,r € (0, +00) be such that
1d(b,®(u)) <r<d(u,® (b)),
and let 17,e € (0, +00). Then there exist X € X and §j € ®(X) satisfying the following properties:
|Z—ul| <r, 0<|7—b]| <min{£,d(b,d>(f))+e},
I7 =0l < Hy—bHJr%(Hx—fHJrﬂHy—y'H) v(xy) €gph(®),
(00) € {0} % J(7 ~b)+ = (Bx. x7By.) + Ne(gph(®), (£.9)).

If, in addition, X and Y are Asplund spaces then for any o > 0 there also exist %, € X and
Yo, Jo €Y \{b} such that

max{ 15— 2 |fo 1. 991} <0, 7o ()

(00) € {0} % J(yo —b) + = (Bx- xyBy-)+ Ki(gph(®), (%o, ).
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Based on (1.4), one can provide some sufficient conditions of the metric subregularity
for @ by finding some conditions which imply that the function x — d(b,®(x)) is lower
semicontinuous, and that d.d(b,®(-)) can be described by D}®(-,-). In this direction,
Ledyaev and Zhu [19, Lemmas 3.3 and 3.5] provided the following relationship between
dd(b,®(-)) and D*P(-,-).

Lemma LZ. Let X and Y be Banach spaces with Fréchet-smooth Lipschitz bump functions
and @ be a closed upper semicontinuous multifunction between X and Y. Let U C X be an open
set and suppose that for any x € U\ ®~1(b)

o< lim inf{d(O,D*CI)(x’,y’)(Sy*))]x’ eB(xe),y ePfD(x,)(b)}. 4.1)

e—0t

Then o <d(0,0d(b,®(-))(x)) for any x € U\ D~ (b). If, in addition, ® is compact-valued, then
(4.1) can be replaced with

o <inf{d(0,D*®(x,y)(Sy+))|y € Pox) (b) }-

Under the convexity and reflexivity assumption, we have the following exact formula
for ad(b,®(-)) (see [32]).

Lemma 4.2. Let X be a Banach space and Y be a reflexive Banach space. Suppose that ®: X =Y
is a closed convex multifunction. Then the following statements hold.

(i) Forany x€dom(®), Py (b) # Q.
(ii) The function x— d(b,®(x)) is lower semicontinuous.
(iii) For any x € dom(®)\®1(b) and y € Py (b),
9d(b,®(-))(x) =D*®(x,y)(J(y=b)).

Based on (1.4) and Lemma 4.2, we have the following characterizations of the metric
subregularity for a convex closed multifunction (see [32]).

Proposition 4.2. Let Y be a reflexive Banach space and suppose that ® is convex and closed.
Then the following statements are equivalent.

(i) ® is metrically subregular at (a,b).

(ii) There exist ,6 € (0, +00) such that

d(0,D*®(x,y)(J(y—b))) >« VxEB(a,6)\® ' (b)and ¥y € Py, (b)NB(b,5).

(iii) There exist x,6 € (0, +0c0) such that

d(0,D*®(x,y)(J(y—b))) >x Vxe€B(a,6)\® ! (b)andVyc d(x).
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Adopting an admissible function ¢ (namely an increasing ¢:R | —R; such that ¢(0)=
0 and [¢(t)—0=t—0]), one can consider the following more general metric subtrgularity:
D is said to be metrically ¢p-subreqular at (a,b) € gph(P) if there exist T,6 € (0, +o00) such that

@(d(x,®71(b))) <7d(b,®(x)) Vx€EB(%,6).

In the special case when ¢(t) =t, the @-metric subregularirty reduces the usual metric
subregularity. In the very recent paper [34], Theorem 4.1 is improved and extended to
the @-subregularirty case.

For (a,b) € gph(®) and ¢,6 € (0, +c0), let

B(®,a,b,¢,6):= { (x,y) €gph(®): x€ B(a,6)\ &~ (b),y € Py, (1) NB(b,0) }
For B€ (0, 4+o0] and (a,b) € X XY, let
Kp(a,b):={(x,y) € XxY:|ly—b[ <B[lx—b]|}.

Kg(a,b) is a cone with the vertex (a,b), and it is of an arbitrarily small “angle” if B is
sufficiently small.

Theorem 4.4. Let ¢ be a convex admissible function and ® be a closed multifunction between
two Banach spaces X and Y. Let a € (0,1),¢,6 € (0,400), B € (0, +00] and (a,b) € gph(P) be

such that
o (22 <0 0 o) (ly-0)

forall (x,y) € B(®,a,b,e,6)NKg(a,b). Let

N - 9:(%)
5.—m1n{1+a,q) (6) ¢ and k:=max{ 1, B |

1
®

Then
@(d(x,®71(b))) <xd(b,®(x)) Vx€Bx(%0).
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