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Abstract. In this paper, a new type of stabilized finite element method is discussed for
Oseen equations based on the local L2 projection stabilized technique for the velocity
field. Velocity and pressure are approximated by two kinds of mixed finite element
spaces, P2

l −P1, (l = 1,2). A main advantage of the proposed method lies in that, all
the computations are performed at the same element level, without the need of nested
meshes or the projection of the gradient of velocity onto a coarse level. Stability and
convergence are proved for two kinds of stabilized schemes. Numerical experiments
confirm the theoretical results.
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1 Introduction

As a linearized model of the incompressible Navier-Stokes equations, the Oseen problem
has attracted much research interest in the analysis of stabilized finite element methods.
Mixed finite element methods for the Oseen equations must handle two numerical diffi-
culties: compatibility of velocity and pressure spaces and advection dominated flows.

Stabilized finite element methods could conquer the lack of LBB stability. There are
two approaches to design stabilized finite element methods. The first approach is based
on the residual of the momentum equation, such as the multiscale enrichment method [2],
the residual-free bubble method [18, 19], the least squares method [10, 11] and so on.
Another approach is based on the projection stabilization, such as the pressure gradient
projection (PGP) method (see [7, 8, 15]), the local pressure gradient stabilization (LPS)
method [6] and the polynomial pressure projection stabilization (LPPS) method [9,16,29].
For PGP and LPS methods, the compressibility constraint is relaxed by subtracting the
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discontinuous pressure gradient from its projection onto a piecewise polynomial space.
PGP method is based on the global L2 projection, while LPS method is based on the local
L2 projection which can reduce the computations. LPS method adds terms of the form

∑
T∈Th

ψTh2
T((I−π2h)∇pl ,(I−π2h)∇ql)T,

where pl , ql denote polynomials of degree less than l (l ≥ 1), ψT > 0 the stabilized pa-
rameter, I the identity operator and π2h the projection onto a coarse level. PGP and LPS
methods are not easy to implement, since a special data structure of two-hierarchy mesh
is required. As an alternative, LPPS method was introduced with the following term:

Gh(pl ,ql)= ∑
T∈Th

θT((I−πl−1)pl ,(I−πl−1)ql)T, (1.1)

where πl−1 :L2(Ω)→Pdc
l−1(Th) denotes the local L2 projection, θT the stabilized parameter.

In the method, all the computations are performed at the same element level, which
simplify the computations. In particular, when pressure is approximated by piecewise
linear polynomials, LPPS method’s stabilization term has the following relationship:

(I−π0)p1|T =(I−π0)(x·∇p1)|T. (1.2)

At present, the most popular approach to solve convection dominated cases is the
variational multiscale (VMS) method (see [3, 17, 22–24, 26–28, 30, 32] and so on), with the
stabilized terms of the following form:

∑
T∈Th

ϖT((I−QH)∇ul
h,(I−QH)∇vl

h)T

or
∑

T∈Th

ϖT(∇(I−QH)ul
h,∇(I−QH)vl

h)T,

where ϖT is the stabilized parameter, ul
h, vl

h denote polynomials of degree less than l
(l ≥ 1), QH(H ≥ h) is a projection onto a coarse level. Similar to LPS method, a special
data structure of two-hierarchy mesh is required by VMS methods. Motivated by (1.2),
the residual local projection (RELP) method [1, 4] based on an enriching space strategy
was proposed. Then, [5] used the additional terms of the RELP method and relaxed
consistency to propose a local projection method which adds the following stabilized
terms

∑
T∈Th

δT

ν
(χh(x·(∇u1

h)β),χh(x·(∇v1
h)β))T+

ϱT

ν
(χh(β·x∇·u1

h),χh(β·x∇·v1
h))T (1.3)

to solve convection dominated, where δT and ϱT are the stabilized parameters, u1
h is

approximated by continuous piecewise linear polynomial, β is a advection field, χh :=
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I−π0. In [12], Feng etc. proposed a new projection-based stabilized method for steady
convection-dominated convection-diffusion equations, and discussed the connections
between the proposed method and artificial viscosity method, Streamline Upwind Petro-
v Galerkin method, and VMS methods. The numerical results showed that the pro-
posed method has good numerical performance in the stabilized methods for steady
convection-dominated convection-diffusion equations. Can this method be used to in-
compressible Navier-Stokes equations?

In this paper, we will discuss the local L2 projection stabilized technique [12] for Oseen
equations. Velocity and pressure are approximated by two kinds of mixed finite element
spaces, P2

l −P1 (l=1,2). The stabilized term reads:

Sh(uh,vh)= ∑
T∈Th

ςT((I−πl−1)ul
h,(I−πl−1)vl

h)T,

where ςT is the stabilized parameter, and ul
h, vl

h are polynomials of degree less than l
(l≥1). A main advantage of the proposed methods lies in that, all the computations are
performed at the same element level, without the need of nested meshes or the projec-
tion of the gradient of velocity onto a coarse level. Stability and convergence are proved
for two kinds of stabilized schemes. Numerical experiments confirm the theoretical re-
sults, and show that L2 projection method has better numerical performance than VMS
methods.

The rest of the paper is organized as follows. Section 2 introduces the local L2 pro-
jection method for the Oseen equations employing P2

l −P1, (l=1,2) mixed finite element
spaces. Section 3 shows stability and convergence of P2

1 −P1 stabilized method. Section
4 shows stability and convergence of P2

2 −P1 stabilized method. Finally, in section 5, we
end our presentation with some numerical experiments.

Throughout the paper, we use notation a. b (or a& b) to represent that there exists a
constant C, independent of h, ν and α, such that a≤Cb (or a≥Cb).

2 Notation and scheme

Let Ω⊂R2 be a bounded polygonal domain with boundary ∂Ω. We consider the follow-
ing Oseen problem:

−ν∆u+(β·∇)u+αu+∇p= f in Ω, (2.1a)
∇·u=0 in Ω, (2.1b)
u=0 on ∂Ω, (2.1c)

where u denotes the velocity field, p the pressure, f the body force, ν=1/Re>0 the fluid
viscosity. Here we assume β∈ (W1,∞(Ω))2 with ∇·β=0.

We introduce some notations as follows. For an arbitrary open set T, we denote by
Hk(T) the usual Sobolev space consisting of functions defined on T with derivatives of
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order up to k being square-integrable, with norm ∥·∥k,T and semi-norm |·|k,T. In particu-
lar, H0(T)=L2(T). When T=Ω, we abbreviate ∥·∥k,Ω, |·|k,Ω to ∥·∥k and |·|k, respectively.
We use the same notations of norms and semi-norms as above for corresponding vec-
tor or tensor spaces. We use (·,·)T to denote inner product of L2(T). When T =Ω, we
abbreviate (·,·)Ω to (·,·). For any v∈L∞(Ω), we denote

∥v∥0,∞ :=sup
x∈Ω

|v(x)|.

Define the spaces

V :=(H1
0(Ω))2, Q :=L2

0(Ω)=
{

q∈L2(Ω) :
∫

Ω
qdx=0

}
.

Then we have the following weak formulation for the system (2.1): Find (u,p)∈V×Q
such that

A((u,p),(v,q))=(f,v), for all (v,q)∈V×Q, (2.2)

where for any u,v∈V, p,q∈Q,

A((u,p),(v,q)) := a(u,v)+b(u,v)+d(u,v)−c(v,p)+c(u,q),

and

a(u,v) :=ν(∇u,∇v), b(u,v) :=((β·∇)u,v),
d(u,v) :=α(u,v), c(v,q) :=(q,∇·v).

Let {Th}h be shape regular triangulations of Ω̄ with the mesh size h :=maxT∈Th hT,
where hT is the diameter of triangular T∈Th. Let εh be the set of all interior edges, and
define

∥u∥εh :=
(

∑
e∈εh

∫
e
u2ds

) 1
2
.

Let Pk+1(T) be the set of polynomial on T with degree no more than k+1. For any k≥0,
define

Pk+1(Th)={v∈H1
0(Ω) : v|T ∈Pk+1(T), for all T∈Th},

Pdc
k (Th)={v∈L2

0(Ω) : v|T ∈Pk(T), for all T∈Th},

and finite element spaces

V1,h :=(P1(Th))
2∩V, V2,h :=(P2(Th))

2∩V, Qh =: P1(Th)∩Q.

A well-known approximation result [20] is that for all u∈(H2(Ω))2, there exists a function
wh ∈V1

h, such that

∥u−wh∥0+h1/2∥u−wh∥εh +h|u−wh|1.h2∥u∥2. (2.3)
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When the mesh scales can’t resolve the smallest scale in fluid flows, we must add
stabilized term into the weak formulation (2.2) to smear out the effect from the unresolve
scales. In this paper, we will analyze the L2 projection method for Oseen equations. Let
πl−1 : V→ (Pdc

l−1(Th))
2(l=1,2) be the local L2 projection with the following properties:

(u,vh)T =(πl−1u,vh)T, for all u∈V, vh ∈ (Pdc
l−1(Th))

2, (2.4a)
∥πl−1u∥0,T ≤C∥u∥0,T, for all u∈V, (2.4b)

∥u−πl−1u∥0,T ≤Chl∥u∥l,T, for all u∈V∩(Hl(Th))
2. (2.4c)

Let Sh(·,·) denote the stabilized term with the following form:

Sh(uh,vh) := ∑
T∈Th

ςT((I−πl−1)uh,(I−πl−1)vh)T, for all uh,vh ∈Vl,h, (2.5)

where ςT is stabilized parameter.
Since P2

1 −P1 pair does not satisfy the so-called inf-sup condition, we use LPPS
method [9] to overcome this defect. Suppose ϑ0 : Q→Pdc

0 (Th) be local L2 projection with
the following properties:

(p,qh)T =(ϑ0 p,qh)T, for all p∈Q, qh ∈Pdc
0 (Th), (2.6a)

∥ϑ0 p∥0,T ≤C∥p∥0,T, for all p∈Q, (2.6b)

∥p−ϑ0 p∥0,T ≤Ch∥p∥1,T, for all p∈H1(Th)∩Q. (2.6c)

Pressure stabilized term has the following form:

Gh(ph,qh)= ∑
T∈Th

θT((I−ϑ0)ph,(I−ϑ0)qh)T, (2.7)

where θT is the stabilized parameter.
In this paper, we will analyze two kinds of stabilized schemes. Velocity and pressure

are approximated by two kinds of mixed finite element spaces, P2
l −P1 (l=1,2). The P2

1−P1
stabilized method reads as: Find (uh,ph)∈V1,h×Qh such that

B1
h((uh,ph),(vh,qh))=(f,vh), for all (vh,qh)∈V1,h×Qh, (2.8)

where
B1

h((uh,ph),(vh,qh)) :=A((uh,ph),(vh,qh))+Sh(uh,vh)+Gh(ph,qh).

The P2
2 −P1 stabilized method reads as: Find (uh,ph)∈V2,h×Qh such that

B2
h((uh,ph),(vh,qh))=(f,vh), for all (vh,qh)∈V2,h×Qh, (2.9)

where
B2

h((uh,ph),(vh,qh)) :=A((uh,ph),(vh,qh))+Sh(uh,vh).
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3 Stability and convergence of P2
1 −P1 stabilized method

In this section, we will discuss the stability and convergence of the scheme (2.8). Before
proving the stability of the method (2.8), we first introduce some notations. Let

ςmax :=max
T∈Th

ςT, ςmin :=min
T∈Th

ςT, θmax :=max
T∈Th

θT, θmin :=min
T∈Th

θT, and hmin :=min
T∈Th

hK.

For any (v,q)∈V1,h×Qh, we define

|||(v,q)|||2h :=ν|v|21+α||v||20+ ∑
T∈Th

(ςT||(I−π0)v||20,T+θT||(I−ϑ0)q||20,T)

+(ν+α+ςmaxh2)||q||20. (3.1)

It is easy to check that |||·|||h is a norm on the spaces V1,h×Qh.

3.1 Stability

Theorem 3.1. Assume

max
{

ν,α,ςmaxh2,
ν+α+ςmaxh2

θmin
,||β||0,∞

}
≤C.

For any (uh,ph)∈V1,h×Qh, it holds:

Cs|||(uh,ph)|||h ≤ sup
(vh,qh)∈V1,h×Qh

B1
h((uh,ph),(vh,qh))

|||(vh,qh)|||h
. (3.2)

Here, the constant Cs is independent of h, ν, α.

Proof. For any (uh,ph)∈V1,h×Qh, since

b(uh,uh)=((β·∇)uh,uh)=
1
2
(β·∇(uh ·uh),1)=−1

2
(∇·β,uh ·uh)=0,

we have

B1
h((uh,ph),(uh,ph))= ∑

T∈Th

(
ςT||(I−π0)uh||20,T+θT||(I−ϑ0)ph||20,T

)
+ν|uh|21+α||uh||20. (3.3)

For any fixed pressure ph ∈Qh ⊂L2
0(Ω), there exists w∈V such that∫

Ω
ph∇·wdx≥C||ph||0||w||1.
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Let wh∈V1,h be the Scott-Zhang [31] or Clément [14] interpolation of w. By (2.3), it holds

||w−wh||0+h
1
2 ||w−wh||εh .h|w|1 and ||wh||1. ||w||1.

Setting w̃h =
||ph||0
||wh||1

wh, we have

||w̃h||1= ||ph||0. (3.4)

For simplicity of the notation, we still use wh to denote w̃h. By (2.14) and (2.21) of [9], we
have

|(ph,∇·wh)|≥ (C1||ph||0−C2h||∇ph||0)||wh||1

and

∑
T∈Th

||(I−ϑ0)ph||0,T ≥C3h||∇ph||0.

So it holds ∫
Ω

ph∇·whdx≥C1||ph||20−C̃2 ∑
T∈Th

||(I−ϑ0)ph||0,T||ph||0,T.

Setting (vh,qh)=(−(ν+α+ςmaxh2)wh,0), it holds

B1
h((uh,ph),(−(ν+α+ςmaxh2)wh,0))

≥−(ν+α+ςmaxh2)(a(uh,wh)+Sh(uh,wh)+b(uh,wh)+d(uh,wh))

+C1(ν+α+ςmaxh2)||ph||20−C̃2(ν+α+ςmaxh2) ∑
T∈Th

||(I−ϑ0)ph||0,T||ph||0,T

,−(ν+α+ςmaxh2)I1+C1(ν+α+ςmaxh2)||ph||20
−C̃2(ν+α+ςmaxh2) ∑

T∈Th

||(I−ϑ0)ph||0,T||ph||0,T. (3.5)

By Young’s inequality and
ν+α+ςmaxh2

θmin
≤C,

we have

C̃2(ν+α+ςmaxh2) ∑
T∈Th

||(I−ϑ0)ph||0,T||ph||0,T

≤C1

6
(ν+α+ςmaxh2)||ph||20+

C ·C̃2
2

C1
∑

T∈Th

θT||(I−ϑ0)ph||20,T. (3.6)
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By Cauchy-Schwardz inequality and (3.4), we have

αI1≤α(ν|uh|1|wh|1+||β||0,∞|wh|1||uh||0+α||uh||0||wh||0+Sh(uh,uh)
1
2 Sh(wh,wh)

1
2 )

≤Cα||ph||0(|||(uh,0)|||h+||uh||0). (3.7)

Integration by parts, and using Cauchy-Schwardz inequality and (3.4) again, we have

(ν+ςmaxh2)I1≤(ν+ςmaxh2)(ν|uh|1|wh|1+||β||0,∞|uh|1||wh||0+α||uh||0||wh||0
+Sh(uh,uh)

1
2 Sh(wh,wh)

1
2 )

≤C(ν+ςmaxh2)||ph||0(|||(uh,0)|||h+|uh|1). (3.8)

By (3.7) and (3.8), it holds

(ν+α+ςmaxh2)I1≤C((ν+ςmaxh2+α)|||(uh,0)|||h+α||uh||0
+(ν+ςmaxh2)|uh|1)||ph||0

≤C1

3
(ν+ςmaxh2+α)||ph||20+

C
C1

|||(uh,0)|||2h. (3.9)

Combining the above inequalities, we get

B1
h((uh,ph),(−(ν+α+ςmaxh2)wh,0))

≥C1

2
(ν+α+ςmaxh2)||ph||20−

C ·C̃2
2

C1
∑

T∈Th

θT||(I−ϑ0)ph||20,T−
C
C1

|||(uh,0)|||2h.

Thus,

B1
h((uh,ph),(uh−λ(ν+α+ςmaxh2)wh,ph))

≥
(

1− C
C1

λ
)
|||(uh,0)|||2h+

λC1

2
(ν+α+ςmaxh2)||ph||20

+
(

1−λ
C ·C̃2

2
C1

)
∑

T∈Th

θT||(I−ϑ0)ph||20,T.

Choosing

λ̂=min
{C1

2C
,

C1

2C̃2
2C

}
, (3.10)

then we have

1− C
C1

λ̂≥ 1
2

, 1−C ·C̃2
2

C1
λ̂≥ 1

2
.
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Now we choose (vh,qh)=(uh−λ̂(ν+α+ςmaxh2)wh,ph), and then we get

B1
h((uh,ph),(vh,qh))

≥1
2

(
|||(uh,0)|||2h+λ̂C1(ν+α+ςmaxh2)||ph||20+ ∑

T∈Th

θT||(I−ϑ0)ph||20,T

)
≥C|||(uh,ph)|||2h. (3.11)

By (3.4), (3.10) and Young’s inequality, it holds

|||(vh,qh)|||h ≤|||(uh,ph)|||h+λ̂(ν+α+ςmaxh2)|||(wh,0)|||h
≤|||(uh,ph)|||h+λ̂(ν+α+ςmaxh2)

3
2 ||ph||0

≤(1+min{ C1

2C̃2
2

,
C1

2
})|||(uh,ph)|||h. (3.12)

As a result, a combination of (3.11) and (3.12) yields the desired result.

3.2 Convergence

Lemma 3.1. Let (u,p)∈(V∩(H2(Ω))2)×(Q∩H1(Ω)) and (uh,ph)∈V1,h×Qh be the solutions
of the problems (2.2) and (2.8), respectively. Then, the consistent error is

R((u,p),(vh,qh)) :=B1
h((u−uh,p−ph),(vh,qh))

=Sh(u,vh)+Gh(p,qh). (3.13)

Furthermore, the following estimate holds true

|R((u,p),(vh,qh))|. (
√

ςmaxh||u||2+
√

θmaxh|p|1)|||(vh,qh)|||h. (3.14)

Proof. The consistent error (3.13) follows from the definition of B1
h((·,·),(·,·)), (2.2) and

(2.8). The estimate (3.14) follows from properties of the projection π0 and ϑ0.

Theorem 3.2. Assume

max
{

ν,α,ςmaxh2,
ν+α+ςmaxh2

θmin
,||β||0,∞

}
≤C.

Let (u,p)∈(V∩(H2(Ω))2)×(Q∩H1(Ω)) and (uh,ph)∈V1,h×Qh be the solutions of the prob-
lems (2.2) and (2.8), respectively. Then,

|||(u−uh,p−ph)|||h

.max

{
√

ν,

√
1

ν+α+ςmaxh2 ,
√

ςmax

}
h||u||2

+max

{√
ν+α+ςmaxh2+θmax,

√
θmax,

√
1

ν+ςminh2
min

}
h|p|1.
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Proof. Let (Ihu, Jh p) be an interpolation pair of (u,p) in V1,h×Qh, where Ih is the Lagrange
interpolation operator and Jh : L2(Ω)→Qh is the L2 projection operator [13]. By Theorem
3.1, we have

|||(uh− Ihu,ph− Jh p)|||h

≤C−1
s sup

(wh,rh)∈V1,h×Qh

B1
h((uh− Ihu,ph− Jh p),(wh,rh))

|||(wh,rh)|||h

≤C−1
s sup

(wh,rh)∈v1,h×Qh

B1
h((uh−u,ph−p),(wh,rh))

|||(wh,rh)|||h

+C−1
s sup

(wh,rh)∈v1,h×Qh

B1
h((u− Ihu,p− Jh p),(wh,rh))

|||(wh,rh)|||h
. (3.15)

By the definition of |||·|||h and Cauchy-Schwardz inequality, we get

B1
h((u− Ihu,p− Jh p),(wh,rh))≤|||(u− Ihu,p− Jh p)|||h|||(wh,rh)|||h

+b(u− Ihu,wh)+c(u− Ihu,rh)−c(wh,p− Jh p). (3.16)

Using the stabilities of π0 and ϑ0, the approximation properties of Ih and Jh, we obtain

|||(u− Ihu,p− Jh p)|||h.(
√

νh+
√

αh2+
√

ςmaxh2)||u||2

+
√

ν+α+ςmaxh2+θmaxh|p|1. (3.17)

Integration by parts and using Cauchy-Schwardz inequality, there hold

b(u− Ihu,wh)=−(β·∇wh,u− Ihu). ||β||0,∞h2|u|2|wh|1

. ||β||0,∞

(ν+ςminh2
min)

1/2
h2|u|2|||(wh,rh)|||h,

and

c(u− Ihu,rh).h|u|2||rh||0.
√

1
ν+α+ςmaxh2 h|u|2||(wh,rh)||h.

Applying the approximation property of Jh yields

c(wh,p− Jh p). |wh|1||p− Jh p||0.
√

1
ν+ςminh2

min
h|p|1|||(wh,rh)|||h.



1430 Y. H. Bai and M. F. Feng / Adv. Appl. Math. Mech., 9 (2017), pp. 1420-1437

By the above estimates, it follows

B1
h((u− Ihu,p− Jh p),(wh,rh))

.
(

max

{
√

ν,

√
1

ν+α+ςmaxh2

}
h||u||2

+max

{√
ν+α+ςmaxh2+θmax,

√
1

ν+ςminh2
min

}
h|p|1

)
|||(wh,rh)|||h. (3.18)

Lemma 3.1, (3.15) and (3.18) lead to

|||(uh− Ihu,ph− Jh p)|||h

.max

{
√

ν,

√
1

ν+α+ςmaxh2 ,
√

ςmax

}
h||u||2

+max

{√
ν+α+ςmaxh2+θmax,

√
θmax,

√
1

ν+ςminh2
min

}
h|p|1. (3.19)

By triangular inequality, (3.17) and (3.19), it is easy to obtain the desired result

|||(u−uh,p−ph)|||h ≤|||(u− Ihu,p− Jh p)|||h+|||(uh− Ihu,ph− Jh p)|||h.

Thus, we complete the proof.

By the definition of the norm |||(·,·)|||h and Theorem 4.2, we have the following re-
sults.

Corollary 3.1. Assume

max
{

ν,α,ςmaxh2,
ν+α+ςmaxh2

θmin
,||β||0,∞

}
≤C.

Let (u,p)∈(V∩(H2(Ω))2)×(Q∩H1(Ω)) and (uh,ph)∈V1,h×Qh be the solutions of the prob-
lems (2.2) and (2.8), respectively. Then, we have

|u−uh|1.
1√
ν

max

{
√

ν,

√
1

ν+α+ςmaxh2 ,
√

ςmax

}
h||u||2

+
1√
ν

max

{√
ν+α+ςmaxh2+θmax,

√
θmax,

√
1

ν+ςminh2
min

}
h|p|1,

and

||p−ph||0.max

{
√

ν,

√
1

ν+α+ςmaxh2 ,
√

ςmax

}
h||u||2

+max

{√
ν+α+ςmaxh2+θmax,

√
θmax,

√
1

ν+ςminh2
min

}
h|p|1.
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4 Stability and convergence of P2
2 −P1 stabilized method

In this section, we give the stability and convergence of the scheme (2.8). For any (v,q)∈
V2,h×Qh, we define

|||(v,q)|||2∗ :=ν|v|21+α||v||20+ ∑
T∈Th

ςT||(I−π1)v||20,T+(ν+α+ςmaxh2)||qh||0. (4.1)

It is easy to check that |||·|||∗ is a norm on V2,h×Qh. We have the following results.

Theorem 4.1. The new L2 projection method defined in (2.9) satisfies the following stability
property. Assume

max
{

ν,α,ςmaxh2,
ν+α+ςmaxh2

θmin
,||β||0,∞

}
≤C.

For all (uh,ph)∈V2,h×Qh, there holds:

Cs|||(uh,ph)|||∗≤ sup
(vh,qh)∈v2,h×Qh

B2
h((uh,ph),(vh,qh))

|||(vh,qh)|||∗
.

Here, the constant Cs is independent of h, ν, α.

Proof. The pair V2,h×Qh fulfills the discrete inf−sup condition, i.e., there exists a positive
constant C0 such that

inf
qh∈Qh

sup
vh∈V2,h

(qh,∇·vh)

||vh||1||qh||0
≥C0.

By the discrete inf−sup condition, for all ph ∈ Qh, there exists a wh ∈ V2,h, such that
(see [20, page 118, Remark 1.4])

(∇·wh,ph)=−||ph||20 and ||wh||1≤C3||ph||0.

Following the same proof line as the proof of Theorem 3.1, we obtain the desired result.
Thus, we complete the proof.

Theorem 4.2. Assume

max
{

ν,α,ςmaxh2,
ν+α+ςmaxh2

θmin
,||β||0,∞

}
≤C.

Let (u,p)∈(V∩(H3(Ω))2)×(Q∩H2(Ω)) and (uh,ph)∈V2,h×Qh be the solutions of the prob-
lems (2.2) and (2.9), respectively. Then, we have

|||(u−uh,p−ph)|||∗.max

{
√

ν,

√
1

ν+α+ςmaxh2 ,
√

ςmax

}
h2||u||3

+max

{√
ν+α+ςmaxh2,

√
1

ν+ςminh2
min

}
h2|p|2,
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|u−uh|1.
1√
ν

max

{
√

ν,

√
1

ν+α+ςmaxh2 ,
√

ςmax

}
h2||u||3

+
1√
ν

max

{√
ν+α+ςmaxh2,

√
1

ν+ςminh2
min

}
h2|p|2,

and

||p−ph||0.max

{
√

ν,

√
1

ν+α+ςmaxh2 ,
√

ςmax

}
h2||u||3

+max

{√
ν+α+ςmaxh2,

√
1

ν+ςminh2
min

}
h2|p|2.

5 Numerical experiments

In this section, we present some numerical results to verify our theoretical results. We list
the numerical results of ep= ||p−ph||0/||p||0 for the pressure error, eu= |u−uh|1/|u|1 for

the velocity error and eup = |||(u−uh,p−ph)|||h/
√
|u|21+||p||20.

5.1 Convergence validations

Example 5.1. We consider Ω=(0,1)×(0,1), β=(sin(y),cos(y))T, α=0, and set f and the
boundary conditions such that the exact solution is given by

u=(ex sin(x),ex cos(y))T, p=−ex+e−1.

In this example, velocity and pressure are approximated by two kinds of mixed finite
element spaces, P2

l −P1 (l=1,2) . Numerical results are listed in Tables 1-2.

Table 1: The results of (2.8): Example 5.1, ςT =3, θT =0.5.

ν Error 4×4 8×8 16×16 32×32 64×64 Order
ēu 0.63637 0.36709 0.15202 0.06116 0.02498 1.17

10−4 ēp 0.92294 0.20941 0.04931 0.01197 0.00318 2.05
ēup 0.20525 0.04070 0.00857 0.00202 0.00058 2.17
ēu 0.62882 0.38095 0.17078 0.08452 0.04222 0.97

10−6 ēp 0.91663 0.21164 0.05063 0.01268 0.00319 2.04
ēup 0.20333 0.04122 0.00886 0.00215 0.00054 2.14
ēu 0.62874 0.38110 0.17100 0.08495 0.04307 0.97

10−8 ēp 0.91657 0.21167 0.05065 0.01269 0.00321 2.04
ēup 0.20331 0.04122 0.00886 0.00216 0.00054 2.14
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Table 2: The results of (2.9): Example 5.1, ςT =3.

ν Error 4×4 8×8 16×16 32×32 64×64 Order
ēu 0.05096 0.02203 0.00805 0.00211 0.00037 1.78

10−4 ēp 0.00967 0.00234 0.00056 0.00013 0.00003 2.08
ēup 0.00217 0.00046 0.00011 0.00002 0.00000 2.29
ēu 0.05325 0.02562 0.01245 0.00601 0.00285 1.06

10−6 ēp 0.00975 0.00239 0.00060 0.00015 0.00004 1.98
ēup 0.00219 0.00046 0.00011 0.00003 0.00001 2.08
ēu 0.05328 0.02567 0.01253 0.00615 0.00313 1.02

10−8 ēp 0.00975 0.00239 0.00060 0.00015 0.00004 1.98
ēup 0.00219 0.00046 0.00011 0.00003 0.00001 2.08

Example 5.2. We consider Ω=(0,1)×(0,1), β= 1√
5
(2.0,1.0)T, α=0. Set f and the boundary

conditions such that the exact solution is given by

u=(sin(x)cos(y),−cos(x)sin(y))T, p= x2+y2− 2
3

.

Numerical results are listed in Tables 3-4. Velocity field and pressure are approximat-
ed by P2

2−P1 pair, we make a compare with L2 projection method (2.9) and VMS methods,
which add terms of the form:

SVMS1(uh,vh)= ∑
T∈Th

νV1((I−Q0)∇uh,(I−Q0)∇vh)T (5.1)

and

SVMS2(uh,vh)= ∑
T∈Th

νV2(∇(I−Q1)uh,∇(I−Q1)vh)T. (5.2)

Here ςT = 3.0, νV1 = 0.4, νV2 = 0.1, Q0 : (L2(Ω))2×2 → (Pdc
0 (Th))

2×2 and Q1 : (L2(Ω))2 →
(Pdc

1 (Th))
2 denote local L2 projection operators.

From Tables 1-4, we can conclude the following conclusions:

Table 3: The results of (2.8): Example 5.2, ςT =7, θT =0.5.

ν Error 4×4 8×8 16×16 32×32 64×64 Order
ēu 0.22526 0.17247 0.08538 0.04171 0.02246 0.83

10−4 ēp 0.31010 0.08629 0.02207 0.00570 0.00165 1.89
ēup 0.11869 0.02320 0.00496 0.00124 0.00040 2.05
ēu 0.22508 0.17420 0.08843 0.04623 0.02376 0.81

10−6 ēp 0.31013 0.08632 0.02206 0.00565 0.00144 1.94
ēup 0.11866 0.02319 0.00494 0.00121 0.00030 2.16
ēu 0.22508 0.17422 0.08847 0.04631 0.02392 0.81

10−8 ēp 0.31013 0.08632 0.02206 0.00565 0.00144 1.94
ēup 0.11866 0.02319 0.00494 0.00121 0.00030 2.16
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Table 4: The comparison between L2 projection method (2.9) and VMS methods: Example 5.2, P2
2−P1, ν=10−6.

Method Error 4×4 8×8 16×16 32×32 64×64 order
(2.9) ēu 0.04739 0.02408 0.01177 0.00573 0.00259 1.05

ēp 0.01580 0.00394 0.00098 0.00025 0.00006 2.01
VMS1 ēu 0.11382 0.06262 0.03346 0.01748 0.00902 0.91

ēp 0.04533 0.01164 0.00297 0.00075 0.00019 1.97
VMS2 ēu 0.11411 0.06150 0.03141 0.01592 0.00838 0.94

ēp 0.02442 0.00613 0.00154 0.00041 0.00013 1.89

1. ēp and ēup are of second order convergence of stabilized method (2.9). These are
conformable to the convergence results in Theorem 3.2. The comparison between
L2 projection method and VMS methods, shows that two kinds of methods have the
same convergence rate, and L2 projection method has smaller relative error using
the same mesh Th.

2. An unexpected second order convergence appears for ēp and ēenergy of stabilized
method (2.8). ēu is of one order convergence.

5.2 Boundary layer problem

Example 5.3. We consider Ω= (0,1)×(0,1), β= (1,1), α= 0, ν= 10−2 and set f and the
boundary conditions such that the exact solution is given by

u=


e

y
ν −e

1
ν

1−e
1
ν

e
x
ν −e

1
ν

1−e
1
ν

, p= x−y.

In this example, velocity filed and pressure approximated by P2
2 −P1 pair, we use

two kinds of methods to compare: L2 projection method (2.9) and VMS methods. Here
h=

√
2

32 (Fig. 1), ςT =3.0, νV1 =0.9, νV2 =7.0. In Figs. 2-4, we give elevations of the second
component of velocity field uh. In Figs. 5-6, we give the numerical solutions of the second
component of velocity field uh by using two kinds of methods, where we set y=0.1 and
y=0.9, respectively.

From Figs. 2-6, we can can draw the following conclusions:

• Velocity field and pressure are approximated by P2
2 −P1 pair, two kinds of methods

can deal with boundary layer problem effectively.

• Compared with VMS methods, numerical solutions of L2 projection method (2.9)
are more close to the exact solutions.
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Figure 1: Grid: Th,h=
√

2
32 . Figure 2: (2.9).

Figure 3: VMS1: P2
2 −P1. Figure 4: VMS2: P2

2 −P1.

Figure 5: y=0.1. Figure 6: y=0.9.
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