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Abstract. The nonlinear transverse vibrations of ordered and disordered two-
dimensional (2D) two-span composite laminated plates are studied. Based on the von
Karman’s large deformation theory, the equations of motion of each-span composite
laminated plate are formulated using Hamilton’s principle, and the partial differential
equations are discretized into nonlinear ordinary ones through the Galerkin’s method.
The primary resonance and 1/3 sub-harmonic resonance are investigated by using the
method of multiple scales. The amplitude-frequency relations of the steady-state re-
sponses and their stability analyses in each kind of resonance are carried out. The
effects of the disorder ratio and ply angle on the two different resonances are ana-
lyzed. From the numerical results, it can be concluded that disorder in the length of
the two-span 2D composite laminated plate will cause the nonlinear vibration localiza-
tion phenomenon, and with the increase of the disorder ratio, the vibration localization
phenomenon will become more obvious. Moreover, the amplitude-frequency curves
for both primary resonance and 1/3 sub-harmonic resonance obtained by the present
analytical method are compared with those by the numerical integration, and satisfac-
tory precision can be obtained for engineering applications and the results certify the
correctness of the present approximately analytical solutions.
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1 Introduction

Multi-span structures are important structural elements that are widely used in various
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engineering applications such as aeroplane panels, slabs in house construction, glass win-
dow panels and bridge decks. Vibration of multi-span beams and plates with internal
line supports have been an intensive research focus from many researchers for several
decades. However, most of them focused on the analysis of natural frequencies of free
linear vibration, and the numerical approximate solutions or Levy solutions of free or
forced linear vibration.

Veletsos and Newmark [1] calculated the natural frequencies of plates with internal
line supports in one direction by employing the Holzer’s method. Abramovich et al. [2]
carried out the analysis on the vibration frequencies of multi-span non-symmetric com-
posite beams using the exact element method considering the effects of rotary inertia and
shear deformations and gave the mode shapes for the clamped-clamped boundary con-
ditions. Wang and Lin [3] proposed the component method to study the free vibration
of a multi-span Mindlin plate to a moving load and analyzed the orthogonality of any
two distinct sets of the mode shape functions. They discussed the effects of span num-
ber, rotary inertia and transverse shear deformation on the critical velocity of the plates.
Wang [4] investigated the effects of span member, rotary inertia and shear deformation
on the maximum moment, maximum deflection and critical velocity of multi-span Tim-
oshenko beams using the method of modal analysis.

Xiang and Wei [5] presented the exact solution for the vibration of multi-span rectan-
gular Mindlin plates and obtained the exact vibration frequencies varying with the span
ratios, number of spans and boundary conditions. Zhao et al. [6] introduced discrete sin-
gular convolution to solve the vibration of plates under complex and irregular internal
support conditions. Xiang et al. [7] presented a Levy solution to investigate the vibra-
tion behavior of multi-span rectangular plates and studied the impact of the internal line
supports on the vibration behavior by varying both the number of internal line supports
and support positions. Xiang and Reddy [8] employed the levy type solution, state-space
technique and first order shear deformation plate theory to study the natural vibration
of rectangular plate with an internal line hinge. Lv et al. [9] investigated the influence
of location of internal line supports on the natural frequencies of multi-span plates with
large aspect ratios based on the classical Kirchhoff plate theory.

Mikata [10] mathematically proved the orthogonality condition of the eigenfunctions
for multi-span beams of variable cross-section and obtained an exact closed-form solution
as an application of the general orthogonality condition. Song and Li [11] investigated the
influences of the disorder degree on the vibration localization and aeroelastic properties
of the two-span panels in supersonic airflow. Li and Song [12] studied the vibration
properties of nearly periodic two-span beams and used the velocity feedback control
algorithm to design the active controller.

The nonlinear vibration characteristics in various engineering structures have also
attracted numerous researchers’ attention. Özkaya et al. [13, 14] investigated the non-
linear transverse vibrations and 3:1 internal resonance of a beam or a tensional beam on
multiple supports applying the method of multiple scales. Davtabal et al. [15] construct-
ed an electromechanical device to investigate the frequency-dependent vibrations of a



L. C. Meng and F. M. Li / Adv. Appl. Math. Mech., 9 (2017), pp. 1485-1505 1487

multi-span beam made of two parallel rods, and presented the experimental time histo-
ries, phase planes and bifurcation diagrams to illustrate richness of the system dynam-
ics. Lewandowski [16] studied nonlinear free vibrations of multi-span beams on elastic
supports using the dynamic finite element method and determined the frequencies and
nonlinear vibration modes. Eftekhari and Jafari [17] proposed a mixed method that com-
bined the finite element method, differential quadrature method, and integral quadrature
method to study the forced vibration of multi-span rectangular plates carrying moving
masses. Tubaldi et al. [18, 19] investigated the geometrically non-linear vibrations and
stability of a periodically supported rectangular plate subjected to axial flow.

Shen et al. [20–22] studied the nonlinear dynamical problems of the Duffing oscillator
of fractional-order derivatives using the multiple scales method, incremental harmonic
balance method and averaging method. Rostami and Haeri [23] took advantage of the
describing function method to estimate the frequency and the amplitude of a fractional-
order Duffing oscillator. Gao and Yu [24] numerically studied the chaotic behaviors in the
fractional-order symmetric and non-symmetric periodically forced Duffing’s oscillators.
Ge and Ou [25] numerically studied the chaotic behaviors in a fractional order modified
Duffing system through the phase portraits, Poincaré maps and bifurcation diagrams.

Li and Yao [26] investigated the effects of subsonic air flow and ply angles on the
1/3 sub-harmonic resonance of a nonlinear composite laminated cylindrical shell. Ab-
delhafez [27] analyzed certain forms of resonances of a vibratory system with quadratic,
cubic and quartic nonlinearities subjected to a sinusoidal excitation and compared the an-
alytical solutions with the numerical ones. Younesian and Nououzi [28] researched the
primary, super-harmonic and sub-harmonic resonances of a nonlinear viscoelastic plate
subjected to subsonic flow and external excitation. Amabili et al. [29–31] systematical-
ly studied the nonlinear vibrations of rectangular plates from both the theoretical and
experimental methods.

Although many investigations on the vibrations of multi-span structures have been
conducted, up to now, few results on the nonlinear vibration properties of ordered and
disordered two-span composite laminated plates have been reported, which motivates
us to carry out the present study. The aim of this paper is to focus on the nonlinear
transverse vibrations of two-span composite laminated plates with equal (ordered) and
unequal (disordered) subspan lengths. The geometrical nonlinearity of the structure is
taken into account. The equation of motion of the structure is obtained by Hamilton’s
principle and reduced into a nonlinear ordinary differential equation using the Galerkin’s
method. The primary and 1/3 sub-harmonic resonances of the ordered and disordered
two-span composite laminated plate are analyzed by means of the method of multiple
scales. The effects of the disorder ratio and ply angle on the nonlinear resonances and vi-
bration localization phenomenon are discussed. Moreover, comparisons of the amplitude
frequency curves obtained by the present analytical solutions and those of numerical in-
tegration scheme are fulfilled to certify the correctness and satisfactory precision of the
present approximate analytical method.
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2 Equation of motion

Fig. 1 shows the two-dimensional (2D) two-span composite laminated plate composed of
n layers. The plate is subjected to an uniform harmonic external excitation Fcos(Ωt) and
in-plane compression force N. The local coordinate system is also displayed in Fig. 1, in
which the positive direction of the x-axis for the left span is to the right and the positive
direction for the right span is to the left, and the x-axis of this coordinate system locates
at the mid-plane of the plate. The total uniform thickness, total length, and lengths of the
left and right span are h, l, l1 and l2, respectively. The displacement of the internal line
support with respect to the symmetric location of the plate is denoted by ∆l and v=2∆l/l
is defined as the disorder ratio.

Kirchhoff Laminated Plate Theory is applied in the structural modeling. According to
the von Karman’s large deflection theory, the strain-displacement relations for each span
of the plate are

εxi =−z
∂2wi

∂xi
2 +

1
2

(∂wi

∂xi

)2
, i=1,2, (2.1)

where w1 and w2 are the transverse displacements of the left and right span plates.
For orthotropic material, the stress-strain relation for the k-th layer is expressed as

σ1
σ2
τ12

=

 Q11 Q12 0
Q12 Q22 0

0 0 Q66


ε1
ε2

γ12

=Q


ε1
ε2

γ12

, (2.2)

where σ1, σ2 and τ12 are the normal and shear stresses, ε1, ε2 and γ12 are the normal
and shear strains in the 1-2 (principal directional) plane, Q11 = E11/(1−v12v21), Q12 =
v12E22/(1−v12v21), Q22 = E22/(1−v12v21) and Q66 = G12 are the stiffness coefficients,
where E11, E22 and G12 are the elastic and shear moduli, and v12 and v21 are the Pois-
son’s ratios.

The transformed stress-strain relation of the k-th layer of the laminated plate with ply
angle θk in the Cartesian coordinates is [32, 33]

σk
xi
= Q̄k

11εxi , (2.3)

Fig. 1 Schematic diagram of a two-span composite laminated plate. 

z 

Figure 1: Schematic diagram of a two-span composite laminated plate.
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where
Q̄k

11=Q11cos4θk+2(Q12+2Q66)sin2θkcos2θk+Q22sin4θk

is the transformed stiffness.
The strain energy of each span of the plate can be written as

Ui =
1
2

n

∑
k=1

∫ li

0

∫ zk

zk−1

σk
xi

εxi dxidz− 1
2

∫ li

0
N
(∂wi

∂xi

)2

dxi

=
1
2

∫ li

0

[1
4

A11

(∂wi

∂xi

)4

+D11

(∂2wi

∂x2
i

)2]
dxi−

1
2

∫ li

0
N
(∂wi

∂xi

)2

dxi, i=1,2, (2.4)

where zk−1 and zk are the vertical coordinates of the lower and upper surfaces of the k-th
layer, and

A11=
n

∑
k=1

Q̄k
11(zk−zk−1) and D11=

1
3

n

∑
k=1

Q̄k
11(z

3
k−z3

k−1).

The kinetic energy of each span of the plate is

Ti =
1
2

∫ li

0
ρh

(∂wi

∂t

)2

dxi, i=1,2, (2.5)

where ρ is the mass density of the composite laminated plate.
The virtual work of the external forces, δWi can be expressed as

δWi =
∫ li

0

[
Fcos(Ωt)−c

∂wi

∂t

]
δwidxi, (2.6)

where c is the structural damping coefficient.
Substituting Eqs. (2.4), (2.5) and (2.6) into the following Hamilton’s principle [32]:∫ t2

t1

δ(Ti−Ui)dt+
∫ t2

t1

δWidt=0, (2.7)

and performing the variation operation in terms of wi, one can obtain the nonlinear par-
tial differential equation of motion for each span of the composite laminated plate

ρh
∂2wi

∂t2 +D11
∂4wi

∂x4
i
+
[

N− 3
2

A11

(∂wi

∂xi

)2]∂2wi

∂x2
i
+c

∂wi

∂t
=Fcos(Ωt), i=1,2. (2.8)

In order to study the nonlinear vibration behaviors of the two-span composite lami-
nated plate, the transverse displacement of each span of the plate can be expressed as

wi(xi,t)=Wi(xi)Qi(t), i=1,2, (2.9)

where Wi(xi) is the mode shape and Qi(t) is the generalized coordinate.
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For the simply supported two-span plate with internal rigid line support, the bound-
ary conditions are given by

w1(0,t)=0,
∂2w1(0,t)

∂x2
1

=0, (2.10a)

w1(l1,t)=0, w2(l2,t)=0,
∂w1(l1,t)

∂x1
=−∂w2(l2,t)

∂x2
,

∂2w1(l1,t)
∂x2

1

=
∂2w2(l2,t)

∂x2
2

, (2.10b)

w2(0,t)=0,
∂2w2(0,t)

∂x2
2

=0. (2.10c)

For the vibration analysis, the expressions of the mode shape Wi(xi) should be presented.
By means of the modal analysis method in [10,12] and based on the boundary conditions
in Eq. (2.10), the mode shapes of the two-span structure can be expressed as:

Wi(xi)=Ai sin(βxi)+Bi cos(βxi)+Ci sinh(βxi)+Di cosh(βxi), (2.11)

where β4=ϖ2ρh/D11, ϖ is the natural frequency which can be determined by the follow-
ing characteristic equation, and Ai, Bi, Ci, Di are the undetermined coefficients.

Substituting Eqs. (2.9) and (2.11) into Eqs. (2.10a) and (2.10c), the following equation
can be obtained

Bi+Di =0, −Bi+Di =0. (2.12)

By solving Eq. (2.12), one can obtain Bi = Di = 0, and thus the expression of the mode
shape in Eq. (2.11) can be simplified. Substitution of Eq. (2.9) and the simplified mode
shape into Eq. (2.10b) leads to the following equations

A1sin(βl1)+C1sinh(βl1)=0, (2.13a)
A2sin(βl2)+C2sinh(βl2)=0, (2.13b)
A1cos(βl1)+C1cosh(βl1)+A2cos(βl2)+C2cosh(βl2)=0, (2.13c)
−A1sin(βl1)+C1sinh(βl1)+A2sin(βl2)−C2cosh(βl2)=0. (2.13d)

Existing of non-trivial solutions of Eq. (2.13) requires its coefficient determinant to be
zero, from which the characteristic equation of the two-span structure can be obtained:

sin(βl1)sin(βl2)[cosh(βl1)sinh(βl2)+sinh(βl1)cosh(βl2)]
−sinh(βl1)sinh(βl2)[cos(βl1)sin(βl2)+sin(βl1)cos(βl2)]=0. (2.14)

And one of the non-trivial solutions of Eq. (2.13) can be calculated as:

A1=−sinh(βl1), C1=sin(βl1), (2.15a)

A2=−sin(βl1)sinh(βl1)
sin(βl2)

, C2(x2)=
sin(βl1)sinh(βl1)

sinh(βl2)
. (2.15b)
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Thus the expressions of the mode shapes of the two-span structure can be expressed as

W1(x1)=−sinh(βl1)sin(βx1)+sin(βl1)sinh(βx1), (2.16a)

W2(x2)=−sin(βl1)sinh(βl1)
sin(βl2)

sin(βx2)+
sin(βl1)sinh(βl1)

sinh(βl2)
sinh(βx2). (2.16b)

Introducing the following dimensionless parameters:

qi =
l

h2 Qi, (i=1,2), t̄= t

√
D11

ρhl4 , Rx =
l2N
D11

, (2.17a)

R=
−3h4A11

2l2D11
, λ=

cl2√
ρhD11

, ∆p=
l5F

h2D11
, ω′=Ω

√
ρhl4

D11
. (2.17b)

Substituting Eqs. (2.9) and (2.17) into Eq. (2.8) and applying the Galerkin’s method, the
following dimensionless nonlinear ordinary equations in terms of the generalized coor-
dinate qi(t̄) can be obtained:

Mi q̈i(t̄)+Ci q̇i(t̄)+Kiqi(t̄)+Θiq3
i (t̄)=Fi cos(ω′ t̄), (i=1,2), (2.18)

where the coefficients are written as:

Mi =
∫ li

0
W2

i dxi, Ci =λMi, Ki =
∫ li

0

d4Wi

∂x4
i

Widxi+Rx

∫ li

0

d2Wi

∂x2
i

Widxi, (2.19a)

Θi =R
∫ li

0

(dWi

dxi

)2 d2Wi

∂x2
i

Widxi, Fi =∆p
∫ li

0
Widxi, (i=1,2). (2.19b)

3 Nonlinear vibration analyses of two-span composite
laminated plates

3.1 Primary resonance analysis

For convenience of further analysis, introducing the variables τ = t̄
√

Ki/Mi, εµi =
Ci/2

√
MiKi, εri = Θi/Ki, ε fi = Fi/Ki, ω = ω′√Mi/Ki, ω0 = 1, where ε is a small param-

eter, Eq. (2.18) is transformed into

q̈i(τ)+2εµi q̇i(τ)+ω2
0qi(τ)+εriq3

i (τ)= ε fi cos(ωτ), (i=1,2). (3.1)

In this section, the primary resonance case of ω ≈ ω0, i.e., ω = ω0+εσ, where σ is the
detuning parameter will be considered, and the study will be confined to the case of
small damping, weak nonlinearity and soft excitation.

Assume that the solution of Eq. (3.1) can be represented by a two time scales expres-
sion in the form

qi(t)=Xi0(T0,T1)+εXi1(T0,T1)+··· , (3.2)
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where T0=τ and T1= ετ are the two time scales. Substituting Eq. (3.2) into Eq. (3.1), and
equating the coefficients of ε0 and ε1, the following equations can be obtained:

D2
0Xi0+Xi0=0, (3.3a)

D2
0Xi1+Xi1=−riX3

i0−2D0D1Xi0−2µiD0Xi0+ fi cos(ωτ). (3.3b)

The solution of Eq. (3.3a) can be expressed as

Xi0(T0,T1)=Ai(T1)ejT0+c.c., (3.4)

where c.c. denotes the complex conjugate of the preceding terms and j2=−1. Substituting
Eq. (3.4) into Eq. (3.3b) leads to

D2
0Xi1+Xi1=−(2jµi Ai+2jD1Ai+3ri A2

i Āi]ejT0−3ri A3
i e3jT0+

fi

2
ejT0 ejσT1+c.c.. (3.5)

The secular terms of Eq. (3.5) are eliminated by setting

2jµi Ai+2jD1 Ai+3ri A2
i Āi−

fi

2
ejσT1 =0. (3.6)

It is convenient to introduce the following notations:

Ai(T1)=
1
2

ai(T1)ejβi(T1), (3.7a)

ϕi =T1σ−βi, (3.7b)

where ai(T1) and βi(T1) are the real-valued functions of T1. Substituting Eqs. (3.7a) and
(3.7b) into Eq. (3.6) and separating the result into real and imaginary parts, one can obtain
the differential equations of ai(T1) and ϕi(T1)

D1ai =−µiai−
fi

2
sinϕi, (3.8a)

D1ϕi =σ−
3ria2

i

8
+

fi

2ai
cosϕi. (3.8b)

By setting D1ai=0 and D1ϕi=0, the equations for amplitude āi and phase ϕ̄i of the steady-
state solutions of the primary resonance case can be obtained as

−µi āi−
fi

2
sinϕ̄i =0, (3.9a)

σ−
3ri ā2

i
8

+
fi

2āi
cosϕ̄i =0. (3.9b)

Eliminating ϕ̄i from Eq. (3.9), one can get the amplitude-frequency equation of the pri-
mary resonance for each span of the plate

µ2
i +

(
σ−

3ri ā2
i

8

)2
=
( fi

2āi

)2
, (i=1,2). (3.10)
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To analyze the stability of the steady-state primary resonance, Eq. (3.8) is linearized at
(āi,ϕ̄i) about the perturbation variables ∆ai and ∆ϕi,

D1∆ai =−µi∆ai+
fi

2
cosϕ̄i∆ϕi, (3.11a)

D1∆ϕi =−
(3ri āi

4
+

fi

2ā2
i

cosϕ̄i

)
∆ai−

fi

2āi
sinϕ̄i∆ϕi. (3.11b)

According to Eq. (3.9), the characteristic equation of Eq. (3.11) can be expressed as∣∣∣∣∣∣∣
λi+µi − fi

2
cosϕ̄i

3ri āi

4
+

fi

2ā2
i

cosϕ̄i λi+
fi

2āi
sinϕ̄i

∣∣∣∣∣∣∣
=λ2

i +2µiλi+µ2
i +

(
σ−

3ri ā2
i

8

)(
σi−

9ri ā2
i

8

)
=0. (3.12)

By means of the Routh-Hurwitz criterion [34], the steady-state vibration is asymptotically

stable if and only if µi >0 and µ2
i +(σ− 3ri ā2

i
8 )(σ− 9ri ā2

i
8 )>0.

3.2 1/3 Sub-harmonic resonance analysis

For convenience, introducing the variables τ = t̄
√

Ki/Mi, εµi =Ci/2
√

MiKi, εri =Θi/Ki,
Gi = Fi/Ki, ω =ω′√Mi/Ki and ω0 = 1, where ε is a small parameter, Eq. (2.18) is trans-
formed into

q̈i(τ)+2εµi q̇i(τ)+ω2
0qi(τ)+εriq3

i (τ)=Gi cos(ωτ). (3.13)

In this section, the 1/3 sub-harmonic resonance case of ω ≈ 3ω0, i.e., ω = 3ω0+εσ is
considered, and the study is confined to the case of small damping and weak nonlinearity.

Substituting Eq. (3.2) into Eq. (3.13), and equating the coefficients of ε0 and ε1, we can
obtain the following equations:

D2
0Xi0+Xi0−Gi cos(ωτ)=0, (3.14a)

D2
0Xi1+Xi1+riX3

i0+2D0D1Xi0+2µiD0Xi0=0. (3.14b)

Eq. (3.14a) can be solved as

X0(T0,T1)=Ai(T1)ejT0+BiejT0+c.c., (3.15)

where Bi =Gi/2(1−ω2).
Substituting Eq. (3.15) into Eq. (3.14b) leads to

D2
0Xi1+Xi1=−ri[A3

i e3jT0+3A2
i Biej(2+ω)T0+3AiB2

i ej(1+2ω)T0

+B3
i e3jωT0+3Ā2

i Biej(ω−2)T0+3AiB2
i ej(1−2ω)T0 ]−[3ri A2

i Āi+6ri AiB2
i

+2jµi Ai+2jD1Ai]ejT0−[6ri Ai ĀiBi+3riB3
i +2jµiωBi]ejωT0+c.c.. (3.16)
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The secular terms of Eq. (3.16) are eliminated by setting

3ri A2
i Āi+6ri AiB2

i +2jµi Ai+2jD1 Ai+3ri Ā2
i BiejσT1 =0. (3.17)

Substituting Eq. (3.7a) into Eq. (3.17) and separating the result into real and imaginary
parts, one can obtain the differential equations of ai(T1) and φi(T1),

D1ai =−µiai−
3riBi

4ω0
a2

i sinφi, (3.18a)

D1φi =σ− 9ri

ω0

(
B2

i +
a2

i
8
+

Bi

4
ai cosφi

)
, (3.18b)

where φi =T1σ−3βi.
By setting D1ai =0 and D1 φi =0, the equations for the amplitude āi and the phase φ̄i

of the steady-state solutions of the 1/3 sub-harmonic resonance can be obtained as

−µi āi−
3riBi

4ω0
ā2

i sin φ̄i =0, (3.19a)

σ− 9ri

ω0

(
B2

i +
ā2

i
8
+

Bi

4
āi cos φ̄i

)
=0. (3.19b)

Eliminating φ̄i from Eq. (3.19), one can get the amplitude-frequency equation of the 1/3
sub-harmonic resonance for each span of the plate

ā4
i +

(
12B2

i −
16σ

9ri

)
ā2

i +
64

81r2
i
[9µ2

i +(σ−9riB2
i )

2]=0, (i=1,2). (3.20)

Solving Eq. (3.20) for ā2
i yields

ā2
i =Pi±

√
P2

i −Qi, (3.21)

where
Pi =

8σ

9ri
−6B2

i and Qi =
64

81r2
i
[9µ2

i +(σ−9riB2
i )

2].

In Eq. (3.21), ā2
i is real and positive if and only if

Pi >0, P2
i ≥Qi, (3.22)

which is the sufficient and necessary existence condition for the 1/3 sub-harmonic reso-
nance.

To analyze the stability of the steady-state solution of the 1/3 sub-harmonic reso-
nance, Eq. (3.18) is linearized at (āi, φ̄i) about the perturbation variables ∆ai and ∆φi,

D1∆ai =−
(

µi+
3riBi āi

2
sin φ̄i

)
∆ai−

3riBi ā2
i

4
cos φ̄i∆φi, (3.23a)

D1∆φi =−9ri

4
(āi+Bi cos φ̄i)∆ai+

9riBi āi

4
sin φ̄i∆φi. (3.23b)
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According to Eq. (3.19), the characteristic equation of Eq. (3.23) can be expressed as∣∣∣∣∣∣∣
λi+

(
µi+

3riBi āi

2
sin φ̄i

) 3riBi ā2
i

4
cos φ̄i

9ri

4
(āi+Bi cos φ̄i) λi−

9riBi āi

4
sin φ̄i

∣∣∣∣∣∣∣
=λ2

i +2µiλi+
3
2

(3ri āi

4

)2
(ā2

i −Pi)=0. (3.24)

From the Routh-Hurwitz criterion [34], the steady-state vibration is asymptotically stable
if and only if

µi >0 and
3
2

(3ri āi

4

)2
(ā2

i −Pi)>0.

4 Numerical results and discussions

4.1 Verification of the present analytical methodology

In order to validate the present methodology, comparisons are made between the present
analytical solutions and the Runge-Kutta numerical integration method [35,36] in which
Eqs. (3.1) and (3.13) are directly solved by the numerical integration method. In the calcu-
lations, the structural and material properties of the two-span composite laminated plate
are: E11=7.6×1010N/m2, E22=5.6×109N/m2, G12=2.3×109N/m2, v12=0.21, v21=0.0136,
l=0.8m, h=0.0036m and ρ=1460kg/m3. The ply angle of the composite laminated plate
is [θ,−θ,−θ,θ], where θ changes from 0◦ to 90◦.

Figs. 2 and 3 show the amplitude-frequency curves at the center of each span of the
plate for the primary resonance and 1/3 sub-harmonic resonance obtained by the present
and the Runge-Kutta numerical integration methods. In these figures, the solid lines are
corresponding to the asymptotically stable solutions and the dashed lines correspond to
the unstable solutions. w represents the vibration amplitude at the center of each span of
the plate.

From the observation of Figs. 2 and 3, it can be concluded that the present approx-
imately analytical solutions coincide with the numerical integration results very well.
Satisfactory precision can be acceptable for engineering applications. These results certi-
fy the correctness of the approximately analytical solutions in this paper and can present
satisfactory precision.

4.2 Primary resonance

When the internal line support is placed at the symmetric location of the plate, i.e., l1= l2,
this plate is ordered two-span structure. However, the internal line support may usually
be displaced from the symmetric location for some reasons such as manufacturing tol-
erances which turn the ordered periodic structures into disordered ones. In this work,



1496 L. C. Meng and F. M. Li / Adv. Appl. Math. Mech., 9 (2017), pp. 1485-1505

 

 

 

 

 

 

 

 

 

Fig. 2 Comparison of the amplitude-frequency curves of primary resonance calculated by the present 
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Figure 2: Comparison of the amplitude-frequency curves of primary resonance calculated by the present method
with those by numerical integration method when v=0.05, θ=45◦.

 

 

 

 

 

 

 

 

 

Fig. 3 Comparison of the amplitude-frequency curves of 1/3 sub-harmonic resonance calculated by the 
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Figure 3: Comparison of the amplitude-frequency curves of 1/3 sub-harmonic resonance calculated by the
present method with those by numerical integration method when v=0.05, θ=45◦.

the disorder ratio v is firstly taken into consideration on the nonlinear resonance of the
two-span composite laminated plate. Here, v=0 denotes the ordered two-span structure
and v ̸=0 denotes the disordered one.

Figs. 4 and 5 display the effect of disorder ratio on the amplitude-frequency curves
of primary resonance when ply angle θ is a constant. Fig. 4(a) is the ordered case and it
can be seen that the amplitude-frequency curves of left and right span totally coincide
with each other. This means that the vibration responses of the same symmetric points
on both spans are total the same, including the same primary resonance frequencies and
vibration amplitudes. Figs. 4(b)-(d) show the amplitude-frequency curves of disordered
cases. It is observed that the resonance frequency of the right span is lower than that of
the left span, that is to say, the primary resonance phenomenon can occur in the right
span in relatively lower frequency than that in the left span. And the response amplitude
of the right span is bigger than that of the left span at the same excitation frequency
before resonance, which illustrates that the right span of the plate plays a leading role in
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Fig. 4 Amplitude-frequency curves of primary resonance varying with disorder ratio v when  = 45º. 
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Figure 4: Amplitude-frequency curves of primary resonance varying with disorder ratio v when θ=45◦.

 

 

 

 

 

 

 

 

 

Fig. 5 Amplitude-frequency curves of primary resonance on each span of the plate varying with 
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Figure 5: Amplitude-frequency curves of primary resonance on each span of the plate varying with disorder ratio
v when θ=45◦.

the primary resonance. These disparities become more obvious with the disorder ratio
increasing. This is the so called vibration localization phenomenon.

Fig. 5 illustrates that the vibration amplitude gradually decreases and the resonance
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Fig. 6 Amplitude-frequency curves of primary resonance on each span of the plate varying with ply 
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Figure 6: Amplitude-frequency curves of primary resonance on each span of the plate varying with ply angle θ
when v=0.05.

frequency gradually increases with the increase of the disorder ratio at the same excita-
tion frequency for the left span when the ply angle is a constant. Oppositely, the vibration
amplitude gradually increases and the resonance frequency gradually decreases with the
disorder ratio increasing at the same excitation frequency for the right span.

Fig. 6 displays the effect of different ply angles on the amplitude-frequency curves
of primary resonance when disorder ratio is constant. It can be observed that the vibra-
tion amplitude is minimal at the same excitation frequency and resonance frequency is
maximal when ply angle θ=60◦ for both the left and right spans of the plate.

4.3 1/3 Sub-harmonic resonance

Figs. 7 and 8 show the effects of different disorder ratios on the amplitude-frequency
curves of 1/3 sub-harmonic resonance when ply angle θ is constant. The solid lines are
for the asymptotically stable solutions and the dashed lines are for the unstable ones.
It is observed from Fig. 7(a) that the left and right spans of the plate have totally the
same amplitude-frequency curves for the ordered two-span composite laminated plate,
including the length of interval of the frequency and vibration amplitude. Figs. 7(b)-(d)
correspond to the disordered cases. From these figures, it can be seen that the intervals of
resonance frequency for the right span plate are bigger than those for the left span plate,
and also the response amplitudes of the right span are bigger than those of the left one at
the same excitation frequency, which illustrates that the right span plate plays a leading
role in the 1/3 sub-harmonic resonance. Furthermore, these differences of vibration am-
plitudes and resonance intervals between the right and left spans become more obvious
with the disorder ratio increasing. So, it can be concluded that with the increase of the
disorder ratio, the nonlinear vibration localization degree will be strengthened.

From Fig. 8, it can be observed that the vibration amplitude and length of interval
of resonance frequency gradually decrease with the increase of the disorder ratio for the
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Fig. 7 Amplitude-frequency curves of 1/3 sub-harmonic resonance varying with disorder ratio v when 
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Figure 7: Amplitude-frequency curves of 1/3 sub-harmonic resonance varying with disorder ratio v when ply
angle θ=45◦.

 

 

 

 

 

 

 

 

 

Fig. 8 Amplitude-frequency curves of 1/3 sub-harmonic resonance on each span of the plate varying 
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Figure 8: Amplitude-frequency curves of 1/3 sub-harmonic resonance on each span of the plate varying with
disorder ratio v when ply angle θ=45◦.

left span plate when θ = 45◦. Oppositely, the vibration amplitude and length of interval
of resonance frequency gradually increase with the disorder ratio increasing for the right
span.
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Fig. 9 Amplitude-frequency curves of 1/3 sub-harmonic resonance on each span of the plate varying 
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Figure 9: Amplitude-frequency curves of 1/3 sub-harmonic resonance on each span of the plate varying with
ply angle θ when v=0.05.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10 Amplitude-frequency curves of 1/3 sub-harmonic resonance varying with ply angle  when v = 
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Figure 10: Amplitude-frequency curves of 1/3 sub-harmonic resonance varying with ply angle θ when v=0.05.

Figs. 9 and 10 illustrate the influences of ply angle on 1/3 sub-harmonic resonance
curves for a certain disorder ratio. From Fig. 9, it can be seen that the vibration amplitude
is minimal at the same excitation frequency and the length of interval of the frequency is
also minimal when ply angle θ is 60◦ for both the left and right spans of the plate. From
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Fig. 11 Regions for 1/3 sub-harmonic resonance on each span of the plate varying with disorder ratio v 
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Figure 11: Regions for 1/3 sub-harmonic resonance on each span of the plate varying with disorder ratio v when
ply angle θ=45◦.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12 Regions for 1/3 sub-harmonic resonance with different v when  = 45º. 

Left Span 

Right Span 

 

v = 0 

f 

1/3 sub-harmonic 

resonance region 

Left Span 

Right Span 

f 
(b)(a) 

1/3 sub-harmonic 

resonance region 

Left Span 

Right Span

 

v = 0.04 

f 

v = 0.06

f 

1/3 sub-harmonic 

resonance region 

(c) (d)

v = 0.02

1/3 sub-harmonic 

resonance region 

Right Span 

Left Span 

Figure 12: Regions for 1/3 sub-harmonic resonance with different v when θ=45◦.

Fig. 10, it is observed that the response amplitude of the right span is bigger than that of
the left span at the same excitation frequency when ply angle θ is 60◦, 45◦ and 15◦, but
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the contrary case happens when ply angle θ is increased to 75◦.
Figs. 11 and 12 display the effect of disorder ratio on the existence regions for 1/3

sub-harmonic resonance on each span of the plate. From Fig. 11, it can be found that the
regions for 1/3 sub-harmonic resonance change slightly for different disorder ratios for
each span plate. With the increase of the disorder ratio, the excitation amplitude f for
1/3 sub-harmonic resonance becomes a little large for the left span and a little small for
the right span plate.

Fig. 12(a) shows that the left and right spans of the plate have exactly the same exis-
tence regions for 1/3 sub-harmonic resonance for the ordered two-span plate. Figs. 12(b)-
(d) represent the disordered cases and from these figures it can be observed that the in-
tervals of the frequency ratio for 1/3 sub-harmonic resonance are almost equal for both
the left and right spans, but the ranges for 1/3 sub-harmonic resonance of the left span
are wider than those of the right span. And the larger the disorder degree is, the more
different the ranges for 1/3 sub-harmonic resonance between the left and right spans
become.

5 Conclusions

The nonlinear primary resonance and 1/3 sub-harmonic resonance of ordered and disor-
dered 2D two-span composite laminated plates are investigated. The equation of motion
of the structure is established applying Hamilton’s principle considering the geomet-
rical nonlinearity, and is transformed into ordinary differential equation by Galerkin’s
method. The method of multiple scales is used to obtain the amplitude-frequency rela-
tions of the primary and 1/3 sub-harmonic resonances. The effects of the disorder ratio
and ply angle on the nonlinear resonances and vibration localization phenomenon are
analyzed. The comparisons of the present analytical solutions with those of the numeri-
cal integration are made to verify the correctness and satisfactory precision of the present
results. From the investigation, the following conclusions can be drawn:

(1) For the ordered two-span composite laminated plate, the amplitude-frequency
curves for both the primary resonance and the 1/3 sub-harmonic resonance of the
two spans of the plate are totally the same. And the existence regions for 1/3 sub-
harmonic resonance of the two spans totally coincide with each other.

(2) The nonlinear vibration localization phenomenon occurs for the disordered two-
span plate. The differences of the vibration amplitude and resonance frequency
between the left and right span plate become more obvious with the increase of
the disorder ratio, i.e., the larger the disorder degree is, the stronger the nonlinear
vibration localization property becomes.

(3) The ply angle is a very influential factor on the nonlinear vibration behaviors in-
cluding the primary and the sub-harmonic resonances.
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Nomenclature

l,l1,l2,h = total length, left span length, right span length,
uniform thickness of the two-span plate

E11,E22,G12 = elastic and shear moduli
ρ = plate density
v12,v21 = Poisson’s ratio
∆l = displacement of the internal line support to the

symmetric location of the plate
Ti,Ui,δWi = strain energy, kinetic energy, virtual work
v = disorder ratio
c = structural damping coefficient
n = number of layers
σ = detuning parameter
θ = ply angle of the composite laminated plate
ε = small parameter
N = in-plane compression force
D0,D1 = d( )/dT0, d( )/dT1
Fcos(Ωt) = uniform harmonic external excitation
D2

0 = d2( )/dT2
0

w1,w2 = transverse displacement of left, right span plate
ω = structural natural frequency
Wi(xi),Qi(t) = mode shape, generalized coordinate
ω = dimensionless external excitation frequency
Q11,Q12,Q22,Q66 = stiffness coefficients
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