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Abstract

In this paper, the concept of generalized Nekrasov matrices is introduced, some prop-
erties of these matrices are discussed, obtained equivalent representation of generalized
diagonally dominant matrices.
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1. Introduction

In matrix computations, the investigation of Nekrasov matrices is both important in theory
and applications. The concept of generalized Nekrasov matrices is introduced in this paper.
Let the set of complex (real) n x n matrices be C"*"™(R"*™), and denoted:

ri(A) = lail, Vie<n>={1,2,...,n}
J#i
R;(A .
Ri(4) = ri(4), Ri4) = Clal 1)+ el 2 < <
j<i 7 j>i

Oé(A) = {’L e<n> | |a“| = Rl(A)}, ﬂ(A) = {’L e<n> | |0,“| = TZ(A)}
JQ(A) = {Z e<n> | |a“| > Rz(A)}, Jg(A) = {Z e<n> | |a“| > Tl(A)}

Va = {i1 <iy < ... <ip} C<n >, denote o/ =< n >\, A[a] is the principal submatrix
whose rows and columns are indexed by «, and A[a’] = A(a). Denote the directed graph of A
by I'(A), the sets V(A) and E(A) are called the vertex set and arc set, respectively.

Definition 1.1. Suppose A = (a;;) € C"*" satisfies

|aii| ZRZ(A), Vie<n> (].)

then A is called the weak Nekrasov matrix and denote A € Np; if all inequalities in (1) are
strict, then A is called the Nekrasov matrix and denote A € N; if there exists a permutation
matrix P such PAPT € N, then A is called the quasi-Nekrasov matrix and denote A € N;
if there exists a positive diagonal matrix X such AX € N, then A is called the generalized
Nekrasov matrix and denote A € N*; if < n >= a(A)UJy(A), Jo(A) # ¢ and for any i € a(A)
there exists a path in I'(A4) : i - 43 — ... = i, = j such j € J,(A), then A is called the
Nekrasov matrix with nonzero element chain and denote A € C'N.
Definition 1.2. Suppose A = (a;;) € C™*™ satisfies

|aii| Z’I"l(A), Vie<n> (2)

then A is called the diagonally dominant matrix and denote A € Dy; if all inequalities in (2)
are strict, then A is called strictly diagonally dominant matrix and denote A € D; if A € Dy,
Js(A) # ¢, and for any i € B(A) there exists a path in I'(4) : i - iy — ... = i, = j such
j € Ja(A), then A is called the diagonally dominant matrix with nonzero element chain and
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denote A € CD; if there exists a positive diagonal matrix X such AX € D then A is called the
generalized strictly diagonally dominant matrix and denote A € D*.
Clearly if a;; # 0(i €< n >) then Dy C Ny, D C N.

2. Results

Lemma 2.1. Let A = (a;;) € C"*™ N N, then there exist a positive diagonal matrix X
and a matrix B € CD such A = BX.
Proof. Without loss of generality assume r;(A) > 0 for Vi €< n >, (if not for example
r1(A) = 0, then only discuss A(1) € N). Denote
X, = diag(ri(A)/|an|,1,...,1), AX) = AW = (a!V)

L)

= diag(1,r>(AM)/|a%})], 1,. .., 1), AM Xy = A®) = (a?)

Xoo1 =diag(l,..., 1, 1 (A®2)/1a"72 | 1), A X, ; = A1 = (")

n—1ln—1 5]

Moreover denote X! = X1 X5...X,,_; = diag(dy,ds,...,d,_1,1). Then
d; = r;(AGD )/|a(Z Y= R(A)/|as| <1, 1<i<n-—1
where A©) = A. Therefore A1 = AX~! = (a{" V) satisfies

7/.7
|a(n 1)| =7 (A) = Rl(A) > rl(A(nfl))
ol V] = ra(AM) = Ry(4) > ry(A—D)

02 1] = a1 (A®2) = Ry 1(A) > 1y (AGD)

n—1ln—1
|a(n Y | = |ann| > Rn(A) = rn(A(nfl))

so A=Y € Dy and B(A"Y) #< n >. For first row of A=Y, since r(A=D) =37 .,
lai;j| dj + |ain], if there exists jo €< n — 1 > \{1} such a1, # 0, then r{ (A=) < r (4) =
|agrf—1)|, hence 1 ¢ B(AV). If a;; = 0,Vj €< n — 1> \{1}, then ay, # 0. Since |a(" b | =
r1(A) = |a1,] > 0 and n g B(AM™ V), so vertex 1 € B(A™ V) and vertex n are adjoin.

For second row of A1) since ry(A=1) = > jz2 lazjld; + |azn|, if there exists jo €<
n —1 > \{1,2} such asj, # 0, then rg(A("fl)) < Ry(A) = dylas| + Zy>2 las;| = |a22 1)|,
hence 2 € ﬂ( (n=1)), If az; = 0,Vj €< n— 1 > \{1,2}, then ro(A" V) = di|az | + az, =
Ry(A) = |a22 1)| ie. 2 € B(A=D). If ay # 0, then vertex 2 and vertex 1 are adjoin, and
vertex 1 either satisfies 1 & B(A"=1) or 1 € B(A=D) but is adjoin with vertex n ¢ B(AM"~1),
thus vertex 2 is adjoin with vertex in set < n > \B(A™ D). If ay; = 0, then must be ay, # 0,
hence vertex 2 and vertex n & B(A(™ 1) are adjoin. Therefore if vertex 2 € (A1) | then
there exists a path in T'(A4) such vertex 2 and some vertex of set < n > \B(A"~D) are adJ01n

In general, for any i €< n—1 > \{1}, by above deduction we have that vertices 1,2,...,i—1
either not belong in B(A™~1) or belong in B(A™V)) but there exists a path in F(A) such

these vertices are adjoin with vertices of set < n > \B(A(™ V). For i-th row of A1,
n—1

since 7;(AM=1) = Z laij|d;j + |ain|, if there exists i < jo < m — 1 such a;5, # 0, then
J#i
ri(AP=D) < R;i(A) = Z|ai]-|dj + Z|aij| = la{"” 1)|, hence i ¢ B(AMV). If a;; = 0

Jj<i j>i
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for Vj €< n—1 > \{i}, then r;(A D) = " ayld; + |am| = Ri(4) = |a{f "], hence
j<i

i € B(A™D). There exist two cases: if a;, # 0, then vertex i and vertex n & (A1) are

adjoin; if a;, = 0, then must exist jo €< —1 > such a;j, # 0, hence vertex ¢ and some vertex

jo of set < i —1 > are adjoin, by assumptions we have that either jo & 3(A™~1) or there exists

a path in ['(A) such vertex jo and some vertex of set < n > \B(A~1) are adjoin, thus vertex

i and some vertex of set < n > \B(A™ D) must be adjoin. Therefore we deduce A~ € CD.

Let B = A= the proof is completed.

Corollary 2.2. Let A € C"*™ N N, then there exist a positive diagonal matrix X and a
matrix B € CD such XAX~! = B.

Proof. By Lemma 2.1 there exist a positive diagonal matrix X and a matrix By € C'D such
A= ByX,ie,XAX~' + XBy. Let B = X By, then B € CD.

Theorem 2.3. Let A = (a;;) € C"*", if A € N, then there exist a positive diagonal
matrix X and a matrix B € CD such A = BX; conversely, for any B € CD there exists a
positive diagonal matrix X such BX € N.

Proof. Let A € N, then there exists a permutation matrix P such PAPT € N. By Lemma
2.1 there exist a positive diagonal matrix X; and a matrix B; € CD such PAPT = B, X.
Let B = P'B,P,X = PTX, P, then X is also positive diagonal matrix and A = BX. Since
By € D*([3]), hence B € D*, additionally B € Dy so B € CD([3]).

Conversely assume B = (b;;) € CD and denote 8(B) = {j:,t €< s >} C< n >. Since
B € CD hence there exist t; €< s > and iy € 8'(B) = jg(B) such bj, ;; #0. Take 1 > ¢ >0

such i, (B) < |biyi,Je1, and let X, = diag(1,---,1,,1,---,1). Then B = BX; = (b))
satisfies B") € C'D and for Vi € #'(B)

(1) _
|bji11jt1 | - |bjt11jt1| Jt1 Z |b]t1J|
]#Jtl
>61|bjt1i1| + Z |bjt1j| = Tjyy (B(l)))
JFJe, JFU

|b1511)| = |bu| > TZ(B) > ri(B(l)),

thus 3(BM) = B(B) \ {ji, }. If B(BM) = 6, then conclusion holds. If 8'(B(")) #< n >, since
(1) € OD, then there exist ts €< s > \{t:} and is € 3(B")) = #/(B) U {j, } such b;tlz)iz #0,

take 1 > e > 0 such ry,(BY) < |byyi,le, and let Xy = diag(1,---,1,65,1,---,1). Then
can deduce that B??) = B X, satisfies B®?) € CD and B(B®) = 3(BW) \ {ji,} = B(B) \
{jt,,den }. If B(BP)) = ¢, then conclusion holds. If 3(B®)) # ¢, then for B(® continuously
make above analogical deductions, we have that there exist at most |3(B)| positive diagonal
matrices Xl,XQ, T 7X|B(B)| such BX; X, -- X\ﬁ(B)\ € D, denote X = X; X5 -+ 'Xlﬁ(B)la then
X is also a positive diagonal matrix, and since D C N hence BX € N.

Remark 1. By Theorem 1 easy deduce CD C N*.

Lemma 2.4. Let A = (a;;) € No N N*, then J,(A4) # ¢.

Proof. If conclusion is false, then we have that

lai1] = Ri(A) = (A)

lazz| = R2(A) = |021|

+Z|a2y| =Y lazj| =2(A

Jj>2 J#2

In general, Vi €< n > \{1}, assume |ai_1i_1| =R;—1(A) = r;—1(A4) then

laii| = R Z|am| +Z| zJ|—Z|aza|—rz (4)

j<i j>i j#i
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i.e., A€ Dg and Jp(A) = ¢. But since A € N*, hence there exists a positive diagonal matrix X
such AX; € N, since N C D*, so there exists a positive diagonal matrix Xz such AX; X5 € D.
Denote X = X1 X3, then X is a positive diagonal matrix, so AX € D, i.e., A € D*. By [4] and
A € D*, hence Jg(A) # ¢, this is a contradiction. Therefor J,(A) # ¢.

Lemma 2.5. Let A = (a;;) € C™*" N Ny satisfy a;; # 0 for any i €< n >, and J,(4) # ¢,
for any ip € a(A) there exists a path in I'(A) : ig = 41 — ... = ip — j such j € J,(A). Then
Ae N*.

Proof. Assume a(A) = {i; < i» < --- < i}, then there exist jo € a(A) and j; € J,(A)
such aj,j, #0. Take 1 > € > 0 such |aj,j, |e1 > Rj, (A), and denote X; = {1,-, 1,é1,1,---,1},
Ay = AXy = (a}})). Then Vi € a(A) \ {jO}, if i< jy

Z| ZJ| +|a131|61+ Z |as]

j<i J>4,#5

1
<Z|am| +Z| aij| = Ri(A) = |aii| = |a}]

Jj<i j>i
ifi>g
R;(A) Rj, (Ay)
Ri(A) = Y layl= |a | +|am|€1| |1+ Y lail
J<w7ﬁ]1 i ®jrda J>i,5#5
1
<Z|a”| +Z| aij] = = lai| = |af}|
Jj<i Jj>i

And for jg € a(A), assume j; > jo(if j1 < jo may analogically deduce) , then

Rj, (A1) Z la JOJ| + |ajoj.l€1 + Z |ajo ;]

Jj<jo J>jo,j#i
1
< Z la JOJ| + Z |ajoj] = Rjo (A) = lajojol = |a§0;0|
J<jo J>Jjo

For any i € a(A) \ {j1},if i < j

Z| ZJ| +|a131|61+ Z |as]

J>i,5#51
1
<Z| m| +Z| aij| = Ri(A) < |ai| = |a}}]

Jj<i j>i
ifi=7
R (41) = Z |ay1y| | | + Z |aj, ;]
J<i ” P>
1
<y |am| LS ol = Rin(4) < etlag| = lal|
i<j1 >
ifi>gn )
R;(A
Ri(4) = Y |aij|m + |am|€1 | + Y laij]
J<i,j# 7 Ghaler 55
<Z|am| +Z| aij] = Ri(A) < |ag| = |ay}|
J<i j>i

Therefore a(A41) = a(A) \ {jo}, Ja(A1) = Jo(A) U {jo}, and A; € CN. By above analogical
productions we have that there exist at most k positive diagonal matrices X7, Xs, - - -, X} such
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AX1X5--- X € N. Denote X = X;X5--- X}, then X is also positive diagonal matrix, hence
A € N*. The proof is completed.

Corollary 2.6. Let A = (a;;) € C™*"™ N Ny be irreducible and J,(A) # ¢, then A € N*.

Theorem 2.7. Let A = (a;;) € C"*™ N Ny. The following statements are equivalent:

(1) A€ D~

(2) Ae N*.

(3) Ae CN.

Proof. (3) = (2): From Lemma 2.5 can deduce conclusion.

(2) = (3): By Lemma 2.4 we have J,(A) # ¢. Suppose a(A) = {i; <iz < -+ <ip}, k €<
n >. If conclusion is false, then a;; = 0, Vi € a(A), j € Jo(A). Thus r;(4) = Z laij],

J€Ja(AN\{i}
Vi € a(A). Moreover for any i; € a(A), t €< n > we have

ail =B = Y S e =ra)

j<iz,jEa(A) |1 §>it,jEa(A)

hence A[a(A)] € Dy and either B(A[a(A4)]) = a(A) or Jz(A[a(A)]) = ¢. But since A € D* so
Ala(A)] € D* ([5]), and Jz(A[a(A)]) # ¢ ([4]). This is a contradiction, hence (3) holds.

(2) = (1): By A € N* there exists a positive diagonal matrix X; such AX; € N. Moreover
since N C D*, so there exists a positive diagonal matrix X, such AX; X, € D. Let X = X; X5
then X is also positive diagonal matrix and by AX € D we have A € D*.

(1) = (3): If a(A) =< n >, by Lemma 2.4 we have A € Dy and 8(A) =<n > or Jg(A) = ¢
this contradits to A € D*. Thus Jg(A4) # ¢. And if A ¢ CN by deduction of (2) = (3)
we deduce A[a(A)] € Dy and B(Ala(A4)]) = a(4), ie.,Jg(A[a(A)]) = ¢, this contradicts to
A € D*, so (3) holds. The proof is completed.

Lemma 2.8. Let A = (a;;) € C™*"NN*, a = {i1 <i» << iy} C<n >, then Ala] € N*.

Proof. Firstly prove that Aja] € N, Va C<n >, when A € N. Since

Ril (A[Oé]) < Z |a’11]| + Z |a’l1]| - l1 ) < |a’i1i1|7

= |a JJ| =

and if suppose
Rit—l (A[Oé]) < Rii—l(A) < |a'it—1it—1| Vie<k> \{1}7

then can deduce

Ro(lod = Y Jaid T 4 S il = Ri(4) < Jaal

jEa,j<iy laji | JE,j>i

thus A[a] € N. When A € N* then exists a positive diagonal matrix X such AX € N. Notice
that (AX)[a] = Ale] - X[a], YVa C< n >, and (AX)[a] € N, ie., Ala] - X[a] € N, hence
Ala] € N*.

Lemma 2.9. Let A = (a;;) € C"*™" N Ny, and a;; # 0, for all i e< n >. If Ala(A)] € N*,
then A € N*.

Proof. Must have |a(A4)| < n, if not, J4(A) = ¢ but A[ (A)] = A € N*, thisis a contraction.
Denote a(A) = {i; < iz < -+ < i}. Since R;(A) > R;(A[a(4)]),Yi € a(A), and A € Ny,
hence A[a(A)] € No. Moreover, since Aja(A)] € N*, so Ala(A)] € LN, and ¢ # Jo(A[a(A4)]) =
{#} <ih <---,i}} C a(A), and there exist j1,j2,"‘,jt € Ja(A) such @i j,, iy, g, #0
(if not then R;(A) = R;(Ala(A4)]) = |aii|,Vi € a(A) i.e., Jo(A[a(A4)]) = ¢, this contradicts to
Ala(A)] € N*). If t = kji.e., Jo(AJa(A)]) = a(A), then each vertex in a(A) is adjoin with some
vertex in set J,(A), hence A € LN, ie., A € N*.

If t < k, since Ala(A)] € LN, hence for any i € a(A4) \ Jo(A[a(4)]) (ie.,i € a(A[a(A)]))
there exists a path in I'(A[a(A)]) such vertex i and vertex in set J,(A[a(A)]) are adjoin. Thus,
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for any i € a(A), there exists a path in I'(A) such vertex i and vertex in set J,(A) are adjoin,
i.e., A€ LN, hence A € N*.
Theorem 2.10. Let A = (a;;) € C™*™ N Ny. The following statements are equivalent:
1) Ala(A)] € D*
Ala(A)] € N*

AeCN
there exists a positive integer k¥ €< n > such set {a1, a9, -, ar} satisfies ¢ = o C
Cap C<n>and g # ay # -+ # o #< n >, where a1 = a(4), o = a(4;-1),
Aj_l = A[Oéj_l],j e<k> \{1}

Proof. By Theorem 2.7 can deduce (1) and (2) are equivalent, (3) and (4) with (5) are
equivalent. By Lemma 2.8 and Lemma 2.9 we have (4) and (2) are equivalent.

(1) = (6): Since a3 = a(A) and (1) and (3) are equivalent, hence a; #< n > ([4]). If
ay = ¢, the conclusion holds. If ay # ¢, since as = a(A;) and A; € D* hence a; # as,
ie,az C ai. If ay = ¢, the conclusion holds, if not, since Ay € D*([5]) so az C a2, cdots,
continuously make above deductions, we have that there exist at most k < |a(A)| deductions,
then must have A1 € N or aj = ¢.

(6) = (4): By A € Ny we have 4; € Ny,Vj €< k —1 >, again by o, = ¢ have 4;_» € N,
by (2) and (4) are equivalent, have Ay_; € N*, moreover have Ay_5 € N*,---, A = Ala(4)] €
N*, finally deduce A € N*. The proof is completed.

Remark 2. When A € Dy, for any i € a(A) we have |a;;| = R;(A) < ri(A4) < laii|, hence
i € B(A), i.e.,, a C B(A). Hence Theorem 2.10 improved corresponding results in [1] and [2].
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