Journal of Computational Mathematics, Vol.21, No.2, 2003, 229-236.

A SELF-ADAPTIVE TRUST REGION ALGORITHM*"

Long Heif
(Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of
Mathematics and Systems Sciences, Chinese Academy of Sciences, Beijing 100080, China)
(Department of Industrial Engineering and Management Sciences Northwestern University C230,
2145 Sheridan Road Evanston, Illinois 60208, USA)

Abstract

In this paper we propose a self-adaptive trust region algorithm. The trust region radius
is updated at a variable rate according to the ratio between the actual reduction and the
predicted reduction of the objective function, rather than by simply enlarging or reducing
the original trust region radius at a constant rate. We show that this new algorithm
preserves the strong convergence property of traditional trust region methods. Numerical
results are also presented.

Key words: Trust region, Unconstrained optimization, Nonlinear optimization.

1. Introduction

In this paper we study a new type of trust region method for solving the following uncon-
strained optimization problem:

min f(x). (1.1)

zER™
A trust region method calculates a trial step dj, by solving the trust region subproblem

: R L &
min @1 (d) := g d + 5d" Byd (1.2)
s.t. [ld]]2 < Ap, (1.3)

where gr = V f(zy) is the gradient of the objective function at the current approximate solution
Tk, By is an n x n symmetric matrix approximating the Hessian of f(z), and Ag > 0 is the
current trust region radius. Compared with the line search methods, one of the most important
advantages of trust region methods is that By, is allowed to be indefinite.

After obtaining a trial step dg, which is an exact or approximate solution of subproblem
(1.2)-(1.3), a trust region method computes the ratio p; between the actual reduction in the
objective function and the predicted reduction in the quadratic model of the objective function,
that is,

_Aredy
Pk "= Pred, (14)
fl@r) = flr+di) (1.5)

@4 (0) — Py (dy,)

Then the trust region radius Ay, is updated according to the value of pg. The common method
for updating Ay is to enlarge it by a constant time (say, double):

Ap1 = B Ay (61 > 1), (1.6)

* Received July 1, 2000.
DSupported partially by Chinese NSF grant.
t Email address: lhei@neruda.ece.nwu.edu.

230 L. HEI

if py is satisfactory enough, and to reduce it by a constant fraction (say, a half):

Ak+1 = ﬂgAk (0 < ﬂg < 1), (17)

in the case py is not satisfactory enough. Now, if the trial step dj, is successful, one then accepts
this step, and sets zy4+1 = x + di; otherwise, the step dy is rejected.

The trust region algorithm stated above is often used to solve problem (1.1). It converges
globally and superlinearly. However, in the course of updating the trust region radius Ay, we
do not make full use of the ratio pg. In fact, the value of pg, in some degree, reflects the extent
to which the quadratic model ®4(d) approximates the objective function f(x). Our goal in this
paper is to design an algorithm in which Ay is updated at a variable rate according to the value
of py directly.

2. Ideal Trust Region and R-Function

Now let us reconsider the idea of trust region algorithms. At the current solution xy, if the
trial step dj, is successful and the ratio py, is satisfactory, one accepts the trial step and enlarges
the trust region radius. On the contrary, if the trial step dj is not successful and the ratio py
is not satisfactory, dy is rejected and Ay is reduced. As the ratio between the actual reduction
Ared), and the predicted reduction Predy, py reflects the extent to which we are satisfied with
the solution dj, of the subproblem (1.2)-(1.3), or to say, the extent to which the quadratic model
@, (d) approximates the original objective function f(z).

We now think about the extreme case when py, is +00, which means the computed step dy, is
very successful. At this time we may, from the idealized point of view, enlarge the trust region
radius Ay greatly, even to +00. In the other extreme case, say, when py is —oo, which implies
that the trial step di is so bad that it causes the objective function value to rise rapidly, it is
then reasonable for us to imagine the trust region radius Ay should be reduced to a very small
value, even near 0. These ideal cases, which we call ideal trust region, inspire us to study the
following type of functions of py, named R-function:

Definition Any one-dimensional function Ry(t) that is defined in R = (—o0, +00) with the
parameter 1) € (0,1) is an R-function if and only if it satisfies:

(i) R,(t) is non-decreasing in (—00,+00);

(ii)

tiirgl R,(t) =0 (where B € [0,1) is a small constant); (2.1)

fii)
R,(t) <1—91 (for allt <n, where y1 € (0,1 —) is a constant); (2.2)

iv)
Ry(n) =1+ (where v € (0,4+00) is a constant); (2.3)

(v)
lim R,(t)=M (where M € (1 + v2,+00) is a constant). (2.4)

t—+00

From this definition we can easily see some properties of R-functions:
Theorem 2.2. An R-function R,(t) (where n € (0,1)) satisfies:

0<B<R(t)<1—m <1, Vt € (—o0,n); (2.5)
1<14+v < Ry(t) <M < +00, Vt € [n,+00). (2.6)

A Self-adaptive Trust Region Algorithm 231

This theorem can be easily proven by the definition of R-functions. A typical figure of an
R-function is shown in the following image. Due to Theorem 2.2, we can use R,(p;) as the
standard of enlarging or reducing the trust region radius. Just as we have already mentioned,
the scale to which one updates the trust region radius is determined by the problem itself, so we
call our new algorithm the self-adaptive trust region algorithm. As we will show later, Theorem
2.2 is important when we prove the convergence of the new algorithm.

6 T T T T v
=1
5t M E
" R
4
at N
2k
1+r2
s 4
1-r1
1
A1) e
or - 8 1 -
-1 . . . L L L
-6 -4 -2 o 2 a 6 8

3. The Self-Adaptive Trust Region Algorithm

We describe the self-adaptive trust region algorithm (SATR) as following;:

Algorithm 3.1. (SATR)
Step 1. Givex; € R”, B e R"*", A1 >0,e>0,0<8<1,0<m <
1-8,% >0, M>14+7v,c1 >1,0< ¢ <1, set k=0;
Step 2. If||gk|l2 <€, stop. Otherwise solve subproblem (1.2)-(1.3) for dy;

red

Step 3. Compute p, = ﬁredk. Set

| x4+ dy, if pr > c1;
Tht1 = { Tk, otherwise (3.1)
and
Apr1 = Re, (pr)|ld]2- (3.2)

Step 4. Update By, set k =k + 1. Go to Step 2.

The commonly used values of ¢; and ¢y are, respectively, 0 and 0.25. ¢; is usually set as 0
because it causes any trial step dj, to be accepted as long as dj, reduces the objective function
value, thereby ensuring that our algorithm will never reject any good point whose function value
has been computed. This technique is especially important in the case when function values of
f(z) are difficult to compute. ¢y is the standard of judging whether py is satisfactory enough
or not. Alternative methods to give ¢; and ¢y are mentioned in [1]. One can also see [6], [7],
[8],[9] for help. In the algorithm (SATR), the parameters 8, M, 1, ¥2, € are give by users.

It is easy to see that the traditional trust region algorithm is equivalent to the case when
we set

N 52 c (0,1), ifpk, <62;
R, (pk) - { B € (]_,-|-oo), otherwise. (33)

232 L. HEI

4. The Global Convergence Property of Algorithm (SATR)

To analyze the new algorithm (SATR) we make the following assumptions:
Assumption 4.1.
(i) The sequence {zy} generated by Algorithm 3.1 is bounded, that is,

2y €S (4.1)

for all k, where S is a closed convez set in R";
(ii) V f(x) is uniformly continuous in R";
(iii) The solution dy, of subproblem (1.2)-(1.3) satisfies:

: gl]
®,(0) — p(dy) > 6 Ay, —1IEL2_ | 42
£(0) = 4(a) > Slgellamin | A, 12 (42

where 0 is a positive constant;
(iv)

+001

> G =+ (43)
k=1

where

M;p, := max ||Bl||2 + 1. (4.4)
1<i<k

As we will see, the proof to the convergence of Algorithm 3.1 is mainly based on inequality
(4.2), which we call the sufficient model reduction condition. In fact Powell (in [4]) has proved
that the exact solution dj, of subproblem (1.2)-(1.3) satisfies (4.2) with § = 1. In [5] Nocedal
and Yuan also presented an algorithm, by using which the approximate solution dy, of (1.2)-(1.3)
would satisfy (4.2). Here we regard inequality (4.2) as one of our basic assumptions.

Under Assumption 4.1, we will prove that the sequence {z} generated by Algorithm 3.1 is

globally convergent in the sense that
liminf ||gg||2 = 0. 4.
lim inf {|g[|> = 0 (4.5)
We proceed by contradiction. If (4.5) were not true, there would exist a constant e > 0 such
that ||gk||2 > € > 0. First, we have the following lemma:

Lemma 4.2. If g(z) is uniformly continuous and the sequence {1} generated by Algorithm
3.1 satisfies

llgkll2 > € >0, (4.6)

where € > 0 is a constant, then there exists a constant v > 0 such that

lillo > 37 (k=1,23,..), (4.7)

where My, is defined by (4.4).
Proof. If the lemma were not true, there would exist a subsequence {k;} such that

||dkl 2Mkl- — 0, 17— 4o0. (48)
The above limit and (4.4) show that
1
(I>ki (0) - (I>ki (dki) = —ngi dki - id%: Bkidki (4'9)

O([lds,

2).

A Self-adaptive Trust Region Algorithm 233

(4.9) and (4.2) give
Predy, > deAy,;, for all large i. (4.10)

Theorem 2.2 shows that there exist an upper bound and a lower bound for R-function R, (%),
thus by the criterion of updating the trust region radius in Algorithm SATR (formula (3.2)),
we have

Ap; = O(|ldg, []2)- (4.11)
Then (4.8) and (4.11) imply
Ay, My, =0, ©— +4o0. (4.12)
Thus we can assume that
Ap, < Ap_, (4.13)

holds for all ¢ because {M},} is monotonely increasing. (4.9), (4.10) and the uniform continuity
of g(x) give

ATEdki = f(mki) - f(x]‘/z + dki) = _glz;dki + 0(||dki ||2)
= Predy, + o(||dk;||2)- (4.14)
Hence
Aredy,

lim k; — =
irroo P Predy,

which contradicts (4.13). So (4.7) holds

(4.15)

That is, for large enough i, Ay, > ||dg;,_, ||z = Ax
for ||dk||2 S Ak Q.E.D.

Here we also have to cite another famous lemma from [2]:

Lemma 4.3. Let {Ay}, {My} be two arbitrary positive sequences. If there exist constants
7>0,0 >0,0< By <1 and a subsequence I of {1,2,3,...} such that

i—17

A1 < BiAyg, Vk € I; (4.16)
Ak+1 S ﬁgAk, Vk € I; (417)
T
Ay > — k; 4.1
k Z Mk, v ’ (8)
Mk+1 Z Mk, Vk‘, (419)
1
= < +oo, (4.20)
My,
kel
then
+00 1
> — < +oo. (4.21)
My,
k=1
Now we are going to prove our main theorem:
Theorem 4.4. The sequence {x} generated by Algorithm 3.1 satisfies
lim inf = 4.22
lim inf || g | = 0 (4.22)

under Assumption 4.1.
Proof. If (4.22) were not true, {f(zx)} is bounded below and there exists € > 0, from
Lemma 4.2, such that (4.6) and (4.7) hold. Define

I={k:pr>ca}. (4.23)

234 L. HEI

Assumption 4.1(iii) and Lemma 4.2 give

+oo

+o0 > Z[f(iﬂk) — f(@r41)]

k=1

> > [f(xk) = f@is)]
kel

> ZCQPT'@dk
kel

> dc emin{A ,L}
% > 257a

min {7, €}

> dcpe—————=. (4.24)

2

Thus D, Mik < +00. Applying Lemma 4.3 we have

-i-oo1

> 3 < oo (4.25)
k=1
which contradicts Assumption 4.1(iv). Hence the theorem is true. Q.E.D.

5. Numerical Results

We have implemented the new algorithm and compared it with the traditional trust region
algorithm. In both the traditional trust region algorithm and the new algorithm SATR, the
trial step is computed by the novel algorithm for solving the subproblem (1.2)-(1.3) proposed
by Nocedal and Yuan in [5] (Algorithm 2.6), and By, is updated by the BFGS formula. However
we do not update By, if the curvature condition

sty >0 (5.1)

fails, where
S = Tk+1 — Tk, (5.2)
Ye = Gk+1 — Gk- (5.3)

For the new trust region algorithm SATR, we set
2(]\4— 1 — o) arctan(p, — c2) + (1 4+ 72), if pr > co;

Re,(pr) = { 2

1—y —fB)(err—2 + —B), otherwise. (54)
Y 1-v1—3

It it easy to test that this R.,(px) is an R-function. We implemented two versions, one, called
Version 1, using parameters y; = 72 = 0.01, the other, called Version 2, using 71, = 72 = 0.15,
and both using # = 0.1, M =5 and ¢z = 0.25. We choose the initial trust region radius A; =1
for both algorithms. The algorithms terminate if, at the k-th step, the norm of the gradient
llgkll2 < 1078, The global convergence results for the traditional trust region algorithm and
Theorem 4.4 ensure both algorithms to end after a limited number of iterations.

We tested the algorithms on some of the problems given by Moré, Garbow and Hillstrom
in [3]. These are small problems, with the number of variables ranging from 2 to 20. We have
used the same numbering system as in [3]. The results are given in Table 1. We only list the
number of iterations because this equals the number of function and gradient evaluations (i.e.
there is exactly one function and gradient evaluation per iteration).

We observe from the table that Algorithm SATR performs better than the traditional trust
region algorithm in most of the problems. To make further studies, we tested them on some

A Self-adaptive Trust Region Algorithm 235

of the problems with larger number of variables ranging from 20 to 50 in [3]. The results are
listed in Table 2. Comparing the corresponding problems in Table 1 (with less variables) with
those in Table 2 (with more variables), we may conclude that our new algorithm SATR is more
efficient in solving large problems.
The algorithms were coded in MATLAB, and the tests were performed with MATLAB 5.0.
Acknowledgement. I would like to thank my supervisor, Professor Ya-xiang Yuan for
his encouragement and help.

Table 1. Results on some of the problems of Moré, Garbow and Hillstrom

Traditional Trust Region SATR SATR
BFGS Version 1 Version 2
n Iter Tter Iter
1 3 28 27 26
2 6 43 47 42
3 3 9 7 7
5 3 30 34 35
6 6 16 16 16
7 9 81 78 68
8 8 72 216 109
10 2 79 54 53
12 3 45 43 41
13 20 49 52 53
14 14 160 149 148
15 16 98 125 123
16 2 17 16 17
17 4 59 58 55
18 8 43 34 35
Table 2. Results on some medium-size problems
Traditional Trust Region SATR SATR
BFGS Version 1 Version 2
n Iter Iter Iter
6 20 28 28 28
40 35 37 37
50 36 36 36
8 20 204 148 165
40 157 219 112
50 255 298 139
13 20 49 52 53
40 57 57 57
50 54 56 57
14 20 197 169 192
40 313 292 275
50 388 326 318
15 20 94 118 89
40 165 159 138
18 20 102 102 101
References

[1] Y. Yuan, On the convergence of trust region algorithms (in Chinese), Mathematica Numerica Sinica,
August 1994, 333-346.

236

2]
3]
[4]

L. HEI

Y. Yuan and W.Sun, Theories and Methods for Optimization (in Chinese), Science Press, Beijing,
1997, 563-565.

J. J. Moré, B. S. Garbow and K. E. Hillstrom, Testing unconstrained optimization software, ACM
transactions on Mathematical Software 7, 1981, 17-41.

M. J. D. Powell, Convergence properties of a class of minimization algorithms, in: O. L. Mangasar-
ian, R. R. Meyer and S. M. Robinson, eds., Nonlinear Programming 2, Academic press, New York,
1975, 1-27.

J. Nocedal and Y. Yuan, Combining trust region and line search techniques, in: Y. Yuan, ed.,
Advances in Nonlinear Programming (Kluwer), 1998, 153-175.

R. Fletcher, A model algorithm for composite NDO problem, Math. Prog. Study, 17(1982), 67-76.
R. Fletcher, Practical Methods of Optimization (second edition), John Wiley and Sons, Chichester,
1987.

J. J. Moré, Recent developments in algorithms and software for trust region methods, in: A. Bachem,
M. Gritschel and B. Korte, eds., Math. Prog.: The State of the Art, Springer-Verlag, Berlin, 1983,
258-287.

M. J. D. Powell, On the global convergence of trust region algorithms for unconstrained optimization,
Math. Prog., 29(1984), 297-303.

