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Abstract

In this paper we present a nonmonotone trust region algorithm for general nonlinear
constrained optimization problems. The main idea of this paper is to combine Yuan’s
technique[1] with a nonmonotone method similar to Ke and Han [2]. This new algorithm
may not only keep the robust properties of the algorithm given by Yuan, but also have
some advantages led by the nonmonotone technique. Under very mild conditions, global
convergence for the algorithm is given. Numerical experiments demonstrate the efficiency
of the algorithm.
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1. Introduction

In this article, we consider the following nonlinear programming problem :

mingcp £(2) (1.1)
s.t. ci(z) =0, 1=1,2,...,m; (1.2)

ci(z) >0, t=me+1,...,m, (1.3)

where f(z) and ¢;(z) (i = 1,...,m) are real functions defined in R", at least one of these

functions is nonlinear, and m > m, are two non-negative integers.

In recent years, due to its nice results in real calculations, for example see [3], the nonmono-
tone trust region method has received many successful applications. One of the important
reasons is that the nonmonotone method allows the sequence of iterates to follow the bottom
of curved valleys (a common occurrence in difficult nonlinear problems) much more loosely. On
the other hand, the monotonic reduction at every iteration, namely f(zy4+1) < f(zk), is not the
intrinsic property to the convergence of the trust region method. Especially when the merit
function is nondifferentiable, the nonsmoothness of the merit function may cause unnecessary
reduction of the trust region bound (see [9]), a phenomenon similar to “Maratos effect”. One
technique to overcome this undesirable effect is the “second order step”, but the price paid is
that it must compute the value of the constraints at an auxiliary point and solve an additional
subproblem. However the nonmonotone technique, like the watchdog technique, is a simple
way which is helpful to overcome this difficulty. This is also one of our motivations to use the
nonmonotone technique in our algorithm, as the merit function we use is nondifferentiable.
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Up to now most nonmonotone trust region algorithms are applied in the unconstrained
optimization, for example see [2] [5] [7], except Toint[3], which solves nonlinear optimization
problems subject to convex constraints. In addition, Ke and Han [4] proposed a nonmonotone
trust region method for equality constrained optimization problems based on a continuously
differentiable merit function. In this paper, we try to present a nonmonotone trust region
algorithm with a nondifferentiable merit function which can solve the general constrained op-
timization problems. The numerical results are also reported with this paper.

The paper is organized as follows. We present our algorithm in section 2 and give some
preliminary results in section 3. Global convergence analysis of the algorithm are provided in
section 4. Numerical results are reported in section 5. Conclusions are given in the last section.

2. The Algorithm

Define the Lo, exact penalty function associated with (1.1)—(1.3)

Pri(x) = f(2) + on,ille” (2)]loo, (2.1)

where oy ; is a penalty parameter and c¢(z) = (¢1(z),...,cm(2)), ¢ (z) € R™ with
c; () = ci(x), i=1,2,...,me; (2.2)
¢; (x) = min(c;(2),0), i=me+1,...,m. (2.3)

It is easy to see that ||c™(x)|lc = O if and only if x is a feasible point of (1.1)—(1.3). And
under certain conditions, we can prove that the minimizer of the L., penalty function is also a
solution of the original nonlinear programming problem (1.1)—(1.3).

The subproblem we solve in our algorithm has the following form :

. 1 _
Inin grd+ idTBkd +onill(er + ALd) oo = r,i(d) (2.4)
s-t. ldllee < Ay, (2.5)

where the superscript “-” has the same meaning as (2.2)—(2.3) and 4y € R"*™ is the Jacobi
matrix of the constraints. Assume that an inexact solution sy ; of (2.4)—(2.5) is computed such
that it satisfies

G1,i(0) — Pr,i(Sk,i) > 7€, min[Ay ;. € /|| Bil2], (2.6)

where, 0 < 7 < % is a constant, €x ; = ||gr — Ak Ak, illoo and Ay ; € R™ is the Lagrange mutipliers
at the current point z. Now we give our algorithm.
Algorithm 2.1 (a nonmonotone trust region algorithm)

Step 0 Given xy € R", Ao > 0, € > 0, By € ™" symmetric;
00,0 > 0, o0 >0, € >0, integer M >0, My = M;
1> n > 0, PT(O,U) = PO,O(:EO): k=i= 0, m(O) =0.

Step 1 Solve the subproblem (2.4)-(2.5) for sy ;andatthesametimecomputeey, ;.

Step 2 If e; < € and ||c” (@)oo <€, then stop.
If predi,; = ¢r,i(0) — dr,i(ski) < € and |lc (@)l < €, then stop.
If
predy; < ok Ok, min[Ay ;. [l ||so], (2.7)

then .

Okyitl = 204,i, O it1 = 1 Okyiy Apit1 = Dp4y 2 =1+ 1, (2.8)

go to Step 1;

else  go to Step 3.
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Step 8 Let P, ) = max {Py;(zp_;
P r(k,z) Ogjgm(k){ ,l( J)}
m(k) = min{m(k — 1) + 1, M.} (2.9)

Prike,iy = Pr,i(T6+5k,i) |
ki (0)—@r,i(sk,:) 7

(i) if pri>mn, then Ty = Tk + Sk,
20k ifpri 209,
Appr =

Compute py,; =

15A, if0.9> pr; > 0.5, (2.10)
Ag otherwise;

Ok+1,0 = Oki, Okt1,0 = Oki, 1:=0, k:=k+1, My = M;

generate By .

(ZZ) Zf 0< Pk <1, then Akﬂ' = Ak,z/4
(ZZZ) Zf Pr,i < 0, then Ak,i = Ak,i/47 M =2 M.
Go to Step 1.

It is easy to see that our algorithm does not require the value of the merit function at x4 1
is lower than that at zj. So the algorithm is a nonmonotone algorithm. M}, a parameter for
determining the reference value P, (), is adjusted in the algorithm according to the ratio py ;.
By, is usually updated by adding a lower rank matrix, such as the BEFGS method which only
depends on the first order derivatives of the objective and that of the constraints.

3. Some Preliminary Results

In this section we make the following assumption:
Assumption 3.1. f(z) and ¢;(z),i=1,...,m are twice continuously differentiable.
Because three different stationary points, which were given by Yuan [1], are strongly asso-
ciated with our algorithm, first we introduce them as follows:
Definition 3.2. z* is called a stationary point if
¢ (z*) =0;
dTg(z*) > 0 holds for all d satisfying
d"Vei(z*) =0, (i=1,...,m.);
d'Vei(z*) >0, (ci(z*) =0,i=me+1,...,m).
Definition 3.3. z* is called an infeasible stationary point if
1. |lem(@")||eo > 0;
2. mingern [|(c(z*) + A(z*)" d) " |l = lle™(2") oo
Definition 3.4. z* is called a singular stationary point if
1. ¢ (z*)=0;
there ezists a sequence yy, converging to x* such that ¢ (yr) # 0 and

T _
lim N l(c(yr) + Alyr)" d) " [loo
k=00 [[d]|so <lle= (y1) |l o lle™ (i) lloo

N =

=1

From the definitions above, a stationary point is also a Kuhn-Tucher point. The infeasible
and singular stationary points are all Fritz John points. For more details of the properties of
the three stationary points, one can see [1]. In the following lemmas we show that our algorithm
will not cycle infinitely at an iterate unless it is an infeasible stationary point.

Lemma 3.5 For any iteration point xy, if xy is not an infeasible stationary point, then
cycle “stepl — step2 — step1” must be finished in finite steps.

Proof. If ||c™ (z)]|o =0, it is obvious that the lemma is true.
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Now we assume that ||¢™ (z)||o > 0. Because xy is not an infeasible stationary point, there
exists a constant uy > 0 such that

i 4+ AL D)7 oo = leg oo — fk- 3.1
”ﬁgﬂ@ﬁ_k)n lleg lloo — bk (3.1)

Let di, be a solution for
(e + AF di) " [loo = ”dfﬁlinq (e + AF &) [|oo- (3.2)

From the convexity of ||(cx + AT d)~||o and the boundedness of By, we can get

Ap,i
$1,i(0) = Pr.ilsi) 2 61,i(0) — n,i(dy min[l, ||d:|| D

L]+ O(Ag). (3.3)

> g Op,; minl, ||dk||
o0

If the lemma is not true, i — oo for some fixed k. We have lim o}; = oo and Ay ; remains
71— 00

unchanged. Thus, there exists N > 0 and fir, > 0 such that

O5,i(0) — Or,i(Ski) > fik Ok, Dk
> ik og,i min[Ag g, [log [loo] (3.4)
holds for all ¢ > Nj. This contradicts (2.8) as d;,; — 0. so the lemma is true. O
By the above lemma, it is straightforward to see that for any fixed k if the Algorithm 2.1
does not stop in finite steps and i — oo, then z; must be an infeasible stationary point.
Lemma 3.6 For any iteration point xy, if Ty is not an infeasible stationary point, then the
innercycle “step1 — step2 — step3 — ((i1) or (i1i)) — step 1” must be finished in finite steps.
Proof. If the innercycle does not terminate in finite steps, then pfm(t) < n, Afm(t) -0
when ¢t — 0o, where ¢ is the number of the cycles in the innercycle. For simplicity, we omit the
subscripts k,i(t) of P, ¢, s, 0, €, A, §, p in the following analysis.
From the Algorithm 2.1, we know that
Pay) = Plag +5°) _ Prriy = Plan + ")
P(zk) — dlar +5') = dlae) — dlak + 5°)
Similar to (3.4) in the Lemma 3.5, there exists a constant Nj, > 0 such that i(t) < Nj when
t — o0o. So there exists ¢; > 0 such that ¢! = ¢%* and & = 6 when t > t;. In addition,
maz{e’, ||c; ||} > €, for the algorithm does not stop. So if ¢ > ¢!,

‘ — P(xy + st)

d(zr) — Pp(xg + st)

5 (s’ ) (Br — V2f(2))(s") + Ut(||(0k + 475" oo = lle” (@i + 5")|)
J,0t0* min[A, [[c; [0 ]}

<p<l. (3.5)

max{7et min[Af, ”Bk B

$I1Be = V2 F(Z1) oI5 112 + o™ 0[5 [|oc)
M, min[Af, 7]

IN

, (3.6)

where 7, is a constant and T = z;, + 0s® for some 0 < < 1. Because A* — 0 when t — oo
and ||st]|e < AF,
P(zy) — P(og +5°)
d(wr) — d(wg + s)

This contradicts (3.5). So the lemma is true.

— 1. (3.7)

4. Global Convergence

Throughout this section we make the following assumptions.
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Assumption 4.1. 1. f(z) and ¢;(z), i =1,...,m are twice continuously differentiable.

2. {zx} and {By} are uniformly bounded. Suppose ||Bi|lz2 < w for all k.
The assumption on {z} is common in analysis of the convergence of many algorithms, for
in the case that {x} is unbounded the original optimization may be ill-posed. However the
boundedness of {Bj} can be relaxed to be linearly increasing, that is || Bl < T k for some
constant 7. We will discuss this condition at the end of the section. For the analysis of
convergence we let ¢ = 0 and € = 0 in our algorithm.

By Lemma 3.6 we know that if all the iteration points are not infeasible stationary points,
the number of updating penalty parameter at the k-th iteration, denoted by N(k), must be a
finite positive integer. From the Algorithm 2.1 we can see that o n(x) = Ok+1,0-

Assumptoin 4.2. We assume all the iteration points are not infeasible stationary points.
Under the Assumption 4.2, if the algorithm does not stop after finite iterations we can give our
following lemmas.

Lemma 4.3. If Assumption is satisfied and the sequence of iteration points {x} is bounded
away from both infeasible stationary points and singular stationary points, there must exist two
constants 0 < p < 1 and L > 0 such that

min (ex+ A7 )7l < (1= 0) (7 1) (4.1
lldlleo <lle™ (x)lloo
holds for all k > L.
Proof. If (4.1) does not hold, there exists a subsequence {z,} such that

I(c(@r) + AT (2k,) d) " [loo > (1 = pi)(lle™ (i)

min I 4.2
lldlloo<lle™ (z;) o | (42)

and

lle™ @k )lloo > 0, (4.3)
where p; is a number sequence converging to 0. By the boundedness of assumption on {z;} and
the continuity of ||¢™ (z)||c0, ¢ € R", there must exist a constant L; such that ||¢™ (zx)||co < L1
for all k. So there also exists a converging subsequence of {z,}, also denoted by {z,}, such
that

lim zy, = 7, 'lim lle™ (k) loo = |l (Z)]|oo < 00. (4.4)

im0
Hence, using (4.2) (4.3) and (4.4) we can prove

lim l(c(zr,) + AT (21,) d) |loo
00 ||d]lco <[le= (zk; )l oo lle™ (w;)

=1. (4.5)

| oo

If [|c7(Z)]lc = 0, by the defination of singular stationary point Z is a singular stationary
point.

If | (%)l > 0, by the defination of infeasible stationary point and the convexity of
|(c(z) + AT (Z) d) ||, We can get T is an infeasible stationary point.

However this contradicts the conditions of the lemma. So the lemma is true. o

Using Lemma 4.3, we can easily give the following result.

Lemma 4.4. If leII;O Ok N(k) = 00, then the sequence of iteration points {xy} is not bounded

away from infeasible stationary points or singular stationary points.

Proof. Assume the lemma were not true, by the Lemma 4.3, there must exist two constants
0 < u<1and L > 0 such that (4.1) holds for all k¥ > L. We define the vector dj to be a
solution for

l(c(zi) + Awr)" di) [l = I(c(zi) + AT (21) ) [|oo- (4.6)

min
ldlloo<lle™ (z&)ll
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Hence by the convexity of ||(c(z) + AT (z)d) ™ ||oo, the boundedness of {By}, the definition of
i and og; > o1 N(k—1) for 0 < i < N(k), if [|c™ (z1)]|o # 0 we can get

Api
Ok,i(0) = Gri(ski) = 6r,i(0) — dr,i(di minl, ||dk|| b
> pok,ille” (zk)]|oo minfl, ||dk||;]+
O(min[||le™ (zx) |0, Ak,i])
Agi
> pog,illc” ()]|co min(l, e (;k)||oo]+

O(minl|c™ (z)loc, Ak,q])
> [fog,; minf|lc” (zk)ll oo, Ak, (4.7)
for all large k and 0 < i < N(k), i being a constant. If ||¢™ (xg)|lco = 0, (4.7) can certainly be
established. But (4.7) implies the boundedness of the penalty parameter. This contradicts the
condition klim Ok N(k) = 00 in the lemma. So the lemma is true. O
k— 00

From the Lemma 4.3 and Lemma 4.4 we can see that if the optimization problem has neither
infeasible stationary points nor singular stationary points, the penalty parameter will remains
bounded. In the following we will study the case the penalty parameter does not tend to infinity.
The global convergence theorem states as follows :

Theorem 4.5. If oy, ; = o for all large k, then the sequence of iteration points {x} is not
bounded away from a K-T point.

Proof. Without loss of generality, we can assume that oy; = og0 = 0, 0k, = ko0 = 0,
Py, i(x) = Pyo(z) = P(x), and % = 0 hold for all k. For simplicity, we also omit the subscript
0 of ¢r.0, €k,0, Al g, ko Where ¢ stands for the t-th innercycle in the k-th iteration. Thus we
can also assume

o1 (0) — ¢r(sh) > max{re; min[AL,

holds for all &.
Now we will prove

€ . —
BT oo minlAk Nl lloal} (4.8)

lim inf max[e, [|c;, ||oc] = O. (4.9)
k—o00

If (4.9) does not hold, we can assume max[ey, ||c;, ||oo] > p for all k, where > 0 is a constant.
Thus by (4.8) there exists constants p; > 0 and T > 0 such that
¢ P — Pl +53)
Pro = o1(0) — ¢r(s)
P(zy) — P(zy + s},)
¢k (0) — dr(s},)
o([Iskll0)
min[AL, p]
Therefore there exists a constant p» > 0 such that if AL < po then /’2,0 > 1. Thus, by the
technique of updating A%, we can easily prove that
Al >pz >0 (4.10)
for all k and ¢ € [1, L(k)] where p3 is a constant and L(k) is the total number of innercycles in
the k-th iteration. So using (4.8) and the definition x, + sf(k) = Tpy1 We can get

Py (ko) — Pk + s, r®y = Pr(k,0) — P(zr+1)

1-—

v

> n min{rp min[us, g], od min[us, u}
= & (4.11)
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From (2.9) we know m(k) + 1 > m(k + 1). Thus considering (4.11), for any k, we get

Prk,0) 2 Pr(k+1,0)- (4.12)
Similar to (4.11) we can get

Prkg1,0) — P(wpe2) > €

Prey2m0) — P(Thtam41) > € (4.13)
From (4.12) (4.13) we have that
Pr(k,()) > maX{P(mk+1), P(:Uk+2), - ;P($k+2M+1)} + €. (414)
Using (2.9) and the above equation we know
Pr(k,0) 2 Pr(k+2m+1,0) + € (4.15)

But (4.15) contradicts the boundedness of P(z). So (4.9) holds. Therefore using the bounded-
ness of {xy} there exits a subsequence of {x}} converging to a K-T point. Thus the the theorem
is true. O
Now we consider the relaxation for the boundedness of {By}. We know for many updating

techniques of By,
|Bell <T'k (4.16)

can be established for some constant 7. In the rest of the section we assume By is updated
from iteration to iteration such that (4.16) is satisfied. In ths case, however, we should modify
our algorithm slightly, replacing (2.7) by

1
predk,i < Ok, 5k,i min[Ak,i, E, ||C];||oo] (417)
When we consider the preliminary results in section 2, k is a fixed number. So the Lemma
3.5 and 3.6 are still valid. It can also be seen that the Lemma 4.3 is independent of ||By|| and
independent of (2.7). Hence Lemma 4.3 remains valid. As for Lemma 4.4, if it does not hold,
similar to (4.7) we can prove

Gk,i(0) — dk,i(Sk,i) > ¢k,i(0) — ¢p,i(dx min[l, min[Ay,i, 1/k]

)

lldkloo
_ . mln[Ak iy ]./k‘]
> pog;llc (Tr)]|loo min|l, ———"—
vl oo mint e e
O(min|c™ (zk)|loo, 1/k, Ak,])
> fiow; minfle” (@)oo Ar, 17K, (4.18)

which gives a contradiction. As for Theorem 4.5, if it does not hold, similar to (4.10) we can
prove

t> _Hs 4.19
= TElogk (4.19)

for all k and t € [1, L(k)] where us3 is a constant. Similar to (4.15) we can get
€ (4.20)

P.roy > Py
r(k0) Z Fr(et2M 410 F GTS N e (e 200)
where € is another constant. So we also get a contradiction. From the reason above, we can
re-establish Lemma 4.4 and Theorem 4.5.

5. Numerical Results

A FORTRAN subroutine was programmed to test our algorithm. Our experiments were
done in double precision arithmatic on an indigo workstation at the State Key Laboratory of
Scientific and Engineering Computing.
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As in Yuan [1] we also solve the nonsmooth subproblem (2.4)- (2.5) by reformulating it as
the following equivalent quadratic program :

-1 _
min g .d+ 5cZTBkJT (5.1)
subject to
dpy1 + (ci(zp) +dTVei(zp) >0, i=1,...,m
dns1 — (ci(zy) +d" Veg(zp)) >0, i=1,...,me
—Api <di <Ay, i=1,...,n
dn+1 > 07
where d = (dy,...,d,)T,d = (dT,dnH)T,g,Zi = (g},01,), and By is the (n + 1) x (n + 1)
matrix that is defined by
=[5 5]
By = .

0 0

We solve the quadratic programming subproblems by Flecher’s Harvell subroutine VEO2AD.
The test problems are from Hock and Schittkowski. For each problem, the standard initial
point is used. We choose initial parameters M = 2, Ago = 10, 090 = 10, do0 = 0.01,n =
0.1, e = 1078, € = 107'%. We only update B; at acceptable points. The initial Lagrangian
Hessian estimating By is I and By, is updated by the Powell’s safeguarded BFGS formula:

BisesFBe  ywyl

Brer =B ) 5.2
k+1 k sT Bsk sTy; (5.2)
where i ]
—{ if §7sp > 0.1 5% Bysy,
e { OxJr + (1 — k) Bisy, otherwise, (5.3)

and ﬂk = Gk+1 — 9k + (VC(ZEk+1) — Vc(:vk)) Ak,N(k): Sk = Tk4+1 — Tk, ak = OQSZBkSk/(SZBkSk —
St yk), Ak,N(k) is a multiplier associated with (2.4)—(2.5).

The test problems are also solved by Powell’s subroutine VM CWD, which is a very successful
algorithm and uses watch-dog techniques. The error tolerance for VMCWD is 10~8. For
comparison, we let M = 0 in our algorithm to make the algorithm become a monotone one
and solve the algorithm again. The numerical results are listed in Table 1(see the Appendix).
In the table, for example, “No0.43” means problem 43 in Hock and Schittkowski [11]. (F-G)
means the numbers of function and gradient calculations respectively. “Total” is the total
number of calculations which means Total = (1 4+ m) x F +n x (m +1) x G. “Res” is the
infinite norm of the residual for the K-T condition at the computed solution # which means
Res = ||c(Z) " |loo + [l9(%) — A(@)TA(Z)||c0, where A(Z) is an approximate Langrange multiplier
for the subproblem at the solution.

From the numerical results we can see that when the scale of the problem is small, our
nonmonotone algorithm is comparable to VMCWD and the monotone one. But when the
scale of the problem is a little larger and the condition is more complex, the numerical results
show that our nonmonotone algorithm is better than the other two algorithms. However in
real computation our algorithm seems to have to solve a little more subproblems. And how to
solve the subproblem (2.4)-(2.5) efficiently is another important matter in real computation.
When we uses VE02AD to solve the subproblem, in some iterations VE02AD failed to provide
accurate solutions for the subproblem. For example, due to this reason the monotone algorithm
failed to solve the problem No.27. What’s more, it is important to select the parameter M.
We have tested the condition when M = 1, M = 3, M = 4. Numerical results show that both
a large M and a small M will cause the algorithm become worse. We know at least M and at
most 2M recent merit function values will be used for selecting the k-th reference value. So if
we have computed a very “good” iteration point in the recent M or 2M iterations, namely the
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merit function value at this point is very “low” compared with other points, it may be discarded
away and hasn’t any contribution on the following iterations. And we observed that this case
often occured in real computation when M is large. However, if M is small, the algorithm can
not make full use of the advantages of the nonmonotone technique. Therefore finally we select
M =2 in our algorithm.

6. Conclusions and Discussions

In this paper we present a nonmonotone trust region algorithm for general constraints and
give its global convergence. The numerical results show that the nonmonotone technique is
really helpful to solve difficult nonlinear problems. We think it should be nteresting to combine
the nonmonotone and “second order step” techniques in trust region method when the merit
function is nonsmooth. And the similar case in line search method have been studied in [10].
How to select an efficient parameter M is another important problem in real computations which
still merits further studies. In general, nonmonotone trust region method is still in infancy and
a lot of questions need to be solved.

Acknowledgements. The author would like to thank professor Ya-xiang Yuan very much,
who carefully directed me to write this paper. Thanks are also due to two anonymous referees,
whose comments and suggestions greatly improved this paper.

Appendix
Table 1
VMCWD Our Algorithm Our Algorithm
(M=0) (M=2)
No. Total Res Total Res Total Res
(n-m) | (F-G) (F-G) (F-G)
7 84 4.27E-9 62 7.74E-9 66 3.22E-8
(1) | (14-14) (11-10) (11-11)
12 60 2.19E-9 90 1.20E-7 68 2.21e-13
(2-1) | (10-10) (19-13) (14-10)
22 63 4.78E-12 45 3.56E-13 45 3.56E-13
(22) | (1-7) (5-5) (5-5)
27 504 5.82E-5 fail - 114 1.49E-5
(3-1) (63-63) (15-14)
35 64 2.77TE-6 54 3.95E-7 52 1.31E-8
(3-1) | (8-8) (9-6) (8-6)
43 300 2.24E-6 256 6.10E-8 260 1.63E-7
(4-3) | (15-15) (16-12) (17-12)
48 180 8.44E-6 189 1.78E-8 174 1.47E-5
(5-2) (10-10) (13-10) (13-9)
66 84 1.10E-6 672 8.54E-6 114 4.31E-9
(3-2) (7-7) (68-52) (11-9)
100 1000 2.79E-5 1170 2.69E-7 760 3.24E-6
(7-4) | (25-25) (38-28) (26-18)
113 1683 2.79E-5 14094 8.37E-5 1818 2.47E-8
(10-8) | (17-17) (166-140) (22-18)
285 13024 5.93E-6 8096 3.89E-9 4895 3.82E-7
(15-10) | (74-74) (61-45) (40-27)
384 13904 7.7TE-5 11088 2.85E-6 5236 1.00E-7
(15-10) | (79-79) (78-62) (41-29)
385 12486 3.24E-5 20020 6.17E-4 6347 7.70E-8
(15-10) | (71-71) (140-112) (52-35)
386 19008 4.51E-5 50484 4.60E-4 6696 8.93E-8
(15-11) | (99-99) (292-261) (48-34)
387 17664 2.62E-4 17400 5.10E-4 5124 1.38E-6
(15-11) | (92-92) (115-89) (37-26)
388 16280 2.14E-6 42976 6.13E-4 6560 3.48E-8
(15-15) | (55-55) (196-166) (35-25)
389 15688 3.60E-6 47104 1.93E-4 6512 1.04E-8
(15-15) | (53-53) (214-182) (32-25)
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