SOME n-RECTANGLE NONCONFORMING ELEMENTS FOR FOURTH ORDER ELLIPTIC EQUATIONS ${ }^{* 1)}$

Ming Wang
(LMAM, School of Mathematical Sciences, Peking University, Beijing 100080, China
Email: mwang@math.pku.edu.cn)
Zhong-Ci Shi
(LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100080, China
Email: shi@lsec.cc.ac.cn)
Jinchao Xu
(School of Mathematical Sciences, Peking University, Beijing 100080, China and Department of Mathematics, Pennsylvania State University, USA
Email: xu@math.psu.edu)

Abstract

In this paper, three n-rectangle nonconforming elements are proposed with $n \geq 3$. They are the extensions of well-known Morley element, Adini element and Bogner-Fox-Schmit element in two spatial dimensions to any higher dimensions respectively. These elements are all proved to be convergent for a model biharmonic equation in n dimensions.

Mathematics subject classification: 65N30.
Key words: Nonconforming finite element, Forth order elliptic equation, Biharmonic.

1. Introduction

Motivated by both theoretical and practical interests, we will consider n-rectangle ($n \geq 2$) nonconforming finite elements for n-dimensional fourth order partial equations in this paper. In the two dimensional case, there are well-known nonconforming elements, such as the Morley element, the Zienkiewicz element and the Adini element, etc (see [1-4]). In a recent paper [10], we have discussed the motivation to construct nonconforming finite elements in three dimensions and proposed some tetrahedral nonconforming finite elements for 3-dimensional fourth order partial equations. As for the Morley element, we have extended it to any higher simplex case in another paper [11].

In this paper, we extend the Morley element, the Adini element and the Bogner-Fox-Schmit element to any higher dimensions, and obtain the following three types of n-rectangle nonconforming finite elements:

1. The n-rectangle Morley element, whose degrees of freedom are the value of the normal derivative at the centric point of each $(n-1)$-dimensional face and the function value at each vertex.

[^0]2. The n-dimensional Adini element, whose degrees of freedom are the values of function and all first order derivatives at each vertex.
3. The n-dimensional BFS element, whose degrees of freedom are the values of function, all first order derivatives and all second order mixed derivatives at each vertex.

We will use the following standard notation. Ω denotes a general bounded polyhedral domain in $R^{n}(n \geq 2), \partial \Omega$ the boundary of Ω, and $\nu=\left(\nu_{1}, \nu_{2}, \cdots, \nu_{n}\right)^{\top}$ the unit outer normal to $\partial \Omega$. For a nonnegative integer $s, H^{s}(\Omega), H_{0}^{s}(\Omega),\|\cdot\|_{s, \Omega}$ and $|\cdot|_{s, \Omega}$ denote the usual Sobolev spaces, its corresponding norm and semi-norm respectively, and (\cdot, \cdot) denotes the inner product of $L^{2}(\Omega)$.

Given a multi-index $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$, set $|\alpha|=\sum_{i=1}^{n} \alpha_{i}$ and $x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}, \forall x \in R^{n}$. For a subset $B \subset R^{n}$ and a nonnegative integer r, let $P_{r}(B)$ and $Q_{r}(B)$ be the spaces of polynomials on B defined by

$$
P_{r}(B)=\operatorname{span}\left\{x^{\alpha}| | \alpha \mid \leq r\right\}, \quad Q_{r}(B)=\operatorname{span}\left\{x^{\alpha} \mid \alpha_{i} \leq r\right\}
$$

The paper is organized as follows. The rest of this section gives some notation. Section 2 gives a detailed description of the n-rectangle Morley element, the n-dimensional Adini element and the BFS element. Section 3 and Section 4 show the convergence of these elements.

2. The n-Rectangle Elements

In this section, we will give our extensions of the Morley element, the Adini element and the Bogner-Fox-Schmit element to higher dimensions. For a finite element, it can be described by a triple (T, P_{T}, Φ_{T}) with T the geometric shape, P_{T} the shape function space and Φ_{T} the vector of degrees of freedom.

Given $a_{0}=\left(a_{01}, a_{02}, \cdots, a_{0 n}\right)^{\top} \in R^{n}$ and positive numbers h_{1}, \cdots, h_{n}, an n-rectangle T is given by

$$
T=\left\{x \mid x_{i}=a_{0 i}+h_{i} \xi_{i},-1 \leq \xi_{i} \leq 1,1 \leq i \leq n\right\}
$$

Let $\xi=\left(\xi_{1}, \cdots, \xi_{n}\right)^{\top}$, and let $a_{i}, 1 \leq i \leq 2^{n}$, be the vertices of T. The vertices are written by

$$
a_{i}=\left(a_{01}+\xi_{i 1} h_{1}, a_{02}+\xi_{i 2} h_{2}, \cdots, a_{0 n}+\xi_{i n} h_{n}\right)^{\top}, \quad 1 \leq i \leq 2^{n}
$$

and the barycenters of the $(n-1)$-dimensional faces of T are written as

$$
\left\{\begin{array}{rl}
b_{2 k-1} & =\left(a_{01}, \cdots, a_{0, k-1}, a_{0 k}+h_{k}, a_{0, k+1}, \cdots, a_{0 n}\right)^{\top}, \\
b_{2 k} & =\left(a_{01}, \cdots, a_{0, k-1}, a_{0 k}-h_{k}, a_{0, k+1}, \cdots, a_{0 n}\right)^{\top},
\end{array} \quad 1 \leq k \leq n .\right.
$$

Let $F_{i}(1 \leq i \leq 2 n)$ denote the $(n-1)$-dimensional face with b_{i} as its barycenter. Define

$$
\tilde{p}_{i}=\frac{1}{2^{n}} \prod_{j=1}^{n}\left(1+\xi_{i j} \xi_{j}\right), \quad 1 \leq i \leq 2^{n}
$$

It is known that $\tilde{p}_{i}, 1 \leq i \leq 2^{n}$, forms a basis of $Q_{1}(T)$. For a mesh size h, let \mathcal{T}_{h} be a triangulation of Ω consisting of n-rectangles described above.

Fig. 2.1. Degrees of freedom of the n-rectangle Morley element.

2.1. The n-rectangle Morley element

Define

$$
P_{M}(T)=Q_{1}(T)+\operatorname{span}\left\{x_{1}^{2}, x_{2}^{2}, \cdots, x_{n}^{2}, x_{1}^{3}, x_{2}^{3}, \cdots, x_{n}^{3}\right\}
$$

It can be verified that $P_{2}(T) \subset P_{M}(T)$. For the n-rectangle Morley element, $\left(T, P_{T}, \Phi_{T}\right)$ is given by (see Fig. 1).

- T is an n-rectangle described above.
- $P_{T}=P_{M}(T)$.
- For $v \in C^{1}(T)$, the vector $\Phi_{T}(v)$ of degrees of freedom is

$$
\Phi_{T}(v)=\left(v\left(a_{1}\right), \cdots, v\left(a_{2^{n}}\right), \frac{\partial v}{\partial \nu}\left(b_{1}\right), \cdots, \frac{\partial v}{\partial \nu}\left(b_{2 n}\right)\right)^{\top}
$$

Corresponding to Φ_{T}, we define

$$
\begin{cases}p_{i}=\frac{1}{2^{n+1}}\left(2 \prod_{j=1}^{n}\left(1+\xi_{i j} \xi_{j}\right)-\sum_{j=1}^{n} \xi_{i j} \xi_{j}\left(\xi_{j}^{2}-1\right)\right), & 1 \leq i \leq 2^{n} \tag{2.1}\\ q_{2 k-1}=\frac{h_{k}}{4}\left(\xi_{k}+1\right)^{2}\left(\xi_{k}-1\right), & 1 \leq k \leq n \\ q_{2 k}=-\frac{h_{k}}{4}\left(\xi_{k}+1\right)\left(\xi_{k}-1\right)^{2}, & 1 \leq k \leq n\end{cases}
$$

Let $\delta_{i j}$ be the Kronecker delta. We can verify that

$$
\begin{cases}p_{i}\left(a_{j}\right)=\delta_{i j}, & 1 \leq i, j \leq 2^{n} \tag{2.2}\\ \frac{\partial p_{i}}{\partial \nu}\left(b_{j}\right)=0, & 1 \leq j \leq 2 n, 1 \leq i \leq 2^{n} \\ q_{i}\left(a_{j}\right)=0, & 1 \leq j \leq 2^{n}, 1 \leq i \leq 2 n \\ \frac{\partial q_{i}}{\partial \nu}\left(b_{j}\right)=\delta_{i j}, & 1 \leq i, j \leq 2 n\end{cases}
$$

That is, $p_{i}\left(1 \leq i \leq 2^{n}\right)$ and $q_{j}(1 \leq j \leq 2 n)$ are basis functions. Consequently, Φ_{T} is P_{T}-unisolvent.

The corresponding interpolation operator Π_{T} is given by

$$
\begin{equation*}
\Pi_{T} v=\sum_{i=1}^{2^{n}} p_{i} v\left(a_{i}\right)+\sum_{i=1}^{2 n} q_{i} \frac{\partial v}{\partial \nu}\left(b_{i}\right), \quad \forall v \in C^{1}(T) \tag{2.3}
\end{equation*}
$$

For the n-rectangle Morley element, we can define the corresponding finite element spaces V_{h} and $V_{h 0}$ as follows: V_{h} consists of all functions v_{h} such that for any $\left.T \in T_{h}, 1\right)\left.v_{h}\right|_{T} \in P_{M}(T)$, 2) v_{h} is continuous at all vertices of T and 3) the normal derivative of v_{h} is continuous at the barycenters of all $(n-1)$-dimensional faces of $T ; V_{h 0}$ consists of all functions $v_{h} \in V_{h}$ such that for any $T \in T_{h}, v_{h}$ vanishes at the vertices of T belonging to $\partial \Omega$ and the normal derivative of v_{h} vanishes at the barycenters of all $(n-1)$-dimensional faces of T on $\partial \Omega$.

Lemma 2.1. Let V_{h} and $V_{h 0}$ be the finite element spaces of the n-rectangle Morley element. Then

$$
\begin{equation*}
\int_{F} \nabla\left(\left.v\right|_{T}\right)=\int_{F} \nabla\left(\left.v\right|_{T^{\prime}}\right), \quad \forall v \in V_{h}, \tag{2.4}
\end{equation*}
$$

where T and $T^{\prime} \in \mathcal{T}_{h}$ share a common $(n-1)$-dimensional face F. If an $(n-1)$-dimensional face F of $T \in \mathcal{T}_{h}$ is on $\partial \Omega$, then

$$
\begin{equation*}
\int_{F} \nabla\left(\left.v\right|_{T}\right)=0, \quad \forall v \in V_{h 0} \tag{2.5}
\end{equation*}
$$

Proof. Let $v \in V_{h}$. Define $w \in L^{2}(\Omega)$ by

$$
\left.w\right|_{T}=\sum_{i=1}^{2^{n}} \tilde{p}_{i} v\left(a_{i}\right), \quad \forall T \in \mathcal{T}_{h}
$$

Then $w \in H^{1}(\Omega)$. For $T \in \mathcal{T}_{h}$ and $1 \leq k \leq n$, by (2.1) we have

$$
\begin{align*}
& \int_{F_{j}} \frac{\partial p_{i}}{\partial x_{k}}= \begin{cases}0, & j=2 k-1,2 k, \\
\int_{F_{j}} \frac{\partial \tilde{p}_{i}}{\partial x_{k}}, & \text { otherwise, } \quad 1 \leq i \leq 2^{n},\end{cases} \tag{2.6}\\
& \int_{F_{j}} \frac{\partial q_{i}}{\partial x_{k}}= \begin{cases}\prod_{\substack{1 \leq m \leq n \\
m \neq k}} 2 h_{m}, & j=i, j \in\{2 k-1,2 k\}, \\
0, & 1 \leq i \leq 2 n\end{cases} \tag{2.7}
\end{align*}
$$

Using (2.6) and (2.7), we obtain that for $1 \leq k \leq n$ and $1 \leq j \leq 2 n$,

$$
\int_{F_{j}} \frac{\left.\partial v\right|_{T}}{\partial x_{k}}= \begin{cases}\frac{\partial v}{\partial x_{k}}\left(b_{j}\right) 2^{n-1} \prod_{\substack{1 \leq m \leq n \\ m \neq k}} h_{m}, & j=2 k-1,2 k \tag{2.8}\\ \int_{F_{j}} \frac{\partial w}{\partial x_{k}}, & \text { otherwise }\end{cases}
$$

By (2.8), the definition of V_{h} and the fact that $w \in H^{1}(\Omega)$, we obtain (2.4).
Using similar argument, we can obtain (2.5). This completes the proof of the lemma.

2.2. The n-dimensional Adini element

Define

$$
P_{A}(T)=Q_{1}(T)+\operatorname{span}\left\{x_{i}^{2} x^{\alpha} \mid 1 \leq i \leq n, \alpha_{j} \leq 1,1 \leq j \leq n\right\}
$$

Obviously, $P_{3}(T) \subset P_{A}(T)$. For the n-dimensional Adini element, $\left(T, P_{T}, \Phi_{T}\right)$ is defined as follows (see Fig. 2).

$n=2$

$n=3$

Fig. 2.2. Degrees of freedom of the n-dimensional Adini element.

- T is an n-rectangle described above.
- $P_{T}=P_{A}(T)$.
- For $v \in C^{1}(T)$, the vector $\Phi_{T}(v)$ is given by

$$
\Phi_{T}(v)=\left(v\left(a_{1}\right), \nabla v\left(a_{1}\right)^{\top}, v\left(a_{2}\right), \nabla v\left(a_{2}\right)^{\top}, \cdots, v\left(a_{2^{n}}\right), \nabla v\left(a_{2^{n}}\right)^{\top}\right)^{\top}
$$

For $i \in\left\{1,2, \cdots, 2^{n}\right\}$ and $j \in\{1,2, \cdots, n\}$, we define

$$
\left\{\begin{align*}
p_{0 i} & =\frac{1}{2^{n+1}}\left(2+\sum_{k=1}^{n}\left(\xi_{i k} \xi_{k}-\xi_{k}^{2}\right)\right) \prod_{k=1}^{n}\left(1+\xi_{i k} \xi_{k}\right) \tag{2.9}\\
p_{j i} & =\frac{h_{j} \xi_{i j}}{2^{n+1}}\left(\xi_{j}^{2}-1\right) \prod_{k=1}^{n}\left(1+\xi_{i k} \xi_{k}\right)
\end{align*}\right.
$$

It can be verified that $p_{j i}, 0 \leq j \leq n, 1 \leq i \leq 2^{n}$, are the basis functions with respect to the degrees of freedom. Consequently, Φ_{T} is P_{T}-unisolvent. The corresponding interpolation operator Π_{T} is written by

$$
\begin{equation*}
\Pi_{T} v=\sum_{i=1}^{2^{n}} p_{0 i} v\left(a_{i}\right)+\sum_{j=1}^{n} \sum_{i=1}^{2^{n}} p_{j i} \frac{\partial v}{\partial x_{j}}\left(a_{i}\right), \quad \forall v \in C^{1}(T) \tag{2.10}
\end{equation*}
$$

For the n-dimensional Adini element, we can define the finite element spaces V_{h} and $V_{h 0}$ as follows: $V_{h}=\left\{v_{h} \in L^{2}(\Omega)\left|v_{h}\right|_{T} \in P_{A}(T), \forall T \in \mathcal{T}_{h}, v_{h}\right.$ and ∇v_{h} are continuous at all vertices of elements in $\left.\mathcal{T}_{h}\right\}, V_{h 0}=\left\{v_{h} \in V_{h} \mid v_{h}\right.$ and ∇v_{h} vanish at the vertices along $\left.\partial \Omega\right\}$.

Given $v \in V_{h}$ and an ($n-1$)-dimensional face F of $T \in \mathcal{T}_{h}$, the restriction $\left.v\right|_{F}$ of v on F is a polynomial of $(n-1)$ variables in the shape function space $P_{A}(F)$. Then $\left.v\right|_{F}$ is uniquely determined by the values of v and ∇v at 2^{n-1} vertices of F. That is, v is continuous through F. Thus, $v \in H^{1}(\Omega)$. If $v \in V_{h 0}$ and $F \subset \partial \Omega$ in addition then $\left.v\right|_{F} \equiv 0$, and this leads to $v \in H_{0}^{1}(\Omega)$.

Although $V_{h} \subset H^{1}(\Omega)$ and $V_{h 0} \subset H_{0}^{1}(\Omega)$, the n-dimensional Adini element is still a nonconforming element for the fourth order problem.

2.3. The n-dimensional BFS element

Define

$$
\begin{aligned}
& S_{T}=\left\{x_{1}^{2}, x_{2}^{2}, \cdots, x_{n}^{2}\right\}+\left\{x_{i}^{2} x_{j}^{2} \mid 1 \leq i<j \leq n\right\} \\
& P_{B}(T)=Q_{1}(T)+\operatorname{span}\left\{p x^{\alpha} \mid \forall p \in S_{T}, \alpha_{i} \leq 1,1 \leq i \leq n\right\}
\end{aligned}
$$

Fig. 2.3. Degrees of freedom of the n-dimensional BFS element.
We can verify that $P_{3}(T) \subset P_{B}(T)$. For the n-dimensional Bogner-Fox-Schmit (BFS) element, $\left(T, P_{T}, \Phi_{T}\right)$ is defined as follows (see Fig. 3).

- T is an n-rectangle described above.
- $P_{T}=P_{B}(T)$.
- For $v \in C^{2}(T)$, all components of vector $\Phi_{T}(v)$ are:

$$
v\left(a_{i}\right), \nabla v\left(a_{i}\right), \frac{\partial^{2} v}{\partial x_{j} \partial x_{k}}\left(a_{i}\right), \quad 1 \leq j<k \leq n, 1 \leq i \leq 2^{n}
$$

Lemma 2.2. For the n-dimensional BFS element, Φ_{T} is P_{T}-unisolvent.
Proof. Since the dimension of P_{T} and the number of degrees of freedom are all

$$
\left(\frac{n(n-1)}{2}+n+1\right) 2^{n}
$$

it is enough to show that if $p \in P_{B}(T)$ and $\Phi_{T}(p)=0$ then $p \equiv 0$. We show the conclusion by induction.

The 2-dimensional BFS element is just the Bogner-Fox-Schmit element in two dimensions. The conclusion is true when $n=2$ (see [2]). Assume that the conclusion is true for $n=k, k \geq 2$.

Now let $n=k+1$. Write $p=p\left(\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right)$. On the k-dimensional faces $F_{ \pm}$of $\xi_{1}= \pm 1$, p is a polynomial of ξ_{2}, \cdots, ξ_{n} in k-dimensional shape function space $P_{B}\left(F_{ \pm}\right)$. Since

$$
\begin{aligned}
& p\left(\pm 1, \xi_{2}, \cdots, \xi_{n}\right), \quad \frac{\partial p}{\partial \xi_{j}}\left(\pm 1, \xi_{2}, \cdots, \xi_{n}\right), \quad 2 \leq j \leq n \\
& \frac{\partial^{2} p}{\partial \xi_{j} \partial \xi_{l}}\left(\pm 1, \xi_{2}, \cdots, \xi_{n}\right), \quad 2 \leq k<l \leq n
\end{aligned}
$$

are all zero at each vertex of $F_{ \pm}, p\left(\pm 1, \xi_{2}, \cdots, \xi_{n}\right)=0$ for all $\xi_{2}, \cdots, \xi_{n} \in[-1,1]$ by the inductive assumption. This leads that $\xi_{1}^{2}-1$ is a factor of p. Repeating the same argument for ξ_{2} to ξ_{n}, we obtain that $\left(\xi_{1}^{2}-1\right) \cdots\left(\xi_{n}^{2}-1\right)$ is a factor of p. Consequently, $p \equiv 0$.

For the n-dimensional BFS element, we can define the finite element spaces V_{h} and $V_{h 0}$ as follows: $V_{h}=\left\{v_{h} \in L^{2}(\Omega)\left|v_{h}\right|_{T} \in P_{B}(T), \forall T \in \mathcal{T}_{h}, v_{h}, \nabla v_{h}\right.$ and $\frac{\partial^{2}}{\partial x_{j} \partial x_{k}} v_{h}, 1 \leq j<k \leq n$, are continuous at all vertices of elements in $\left.\mathcal{T}_{h}\right\}, V_{h 0}=\left\{v_{h} \in V_{h} \mid v_{h}, \nabla v_{h}\right.$ and $\frac{\partial^{2}}{\partial x_{j} \partial x_{k}} v_{h}$, $1 \leq j<k \leq n$, vanish at the vertices along $\partial \Omega\}$.

Given $v \in V_{h}$ and an $(n-1)$-dimensional face F of $T \in \mathcal{T}_{h}$, the restriction $\left.v\right|_{F}$ of v on F is a polynomial of $(n-1)$ variables in the shape function space $P_{B}(F)$. Then it is uniquely
determined by the values of $v . \nabla v$ and all second order mixed derivatives at all vertices of F. That is, v is continuous through F. Consequently, $v \in H^{1}(\Omega)$. If $v \in V_{h 0}$ and $F \subset \partial \Omega$ in addition then $\left.v\right|_{F} \equiv 0$, and this leads to $v \in H_{0}^{1}(\Omega)$.

Although the 2-dimensional BFS element is a conforming element for the fourth order problem, one can verify that the general n-dimensional BSF element is not a C^{1} element when $n>2$.

3. Approximation Property

For nonconforming elements, the basic mathematical theory has been established (see [2,3,59]). We will use it to give the convergence analysis of our elements. In this section, we will consider the approximation properties.

For each element $T \in \mathcal{T}_{h}$, let h_{T} be the diameter of the smallest ball containing T and ρ_{T} be the diameter of the largest ball contained in T. Let $\left\{\mathcal{I}_{h}\right\}$ be a family of triangulations described in previous section with $h \rightarrow 0$. We assume that $\left\{\mathcal{T}_{h}\right\}$ satisfied that $h_{T} \leq h \leq \eta \rho_{T}, \forall T \in \mathcal{T}_{h}$ for a positive constant η independent of h.

We introduce the following mesh-dependent norm $\|\cdot\|_{m, h}$ and semi-norm $|\cdot|_{m, h}$:

$$
\|v\|_{m, h}=\left(\sum_{T \in \mathcal{T}_{h}}\|v\|_{m, T}^{2}\right)^{1 / 2}, \quad|v|_{m, h}=\left(\sum_{T \in \mathcal{T}_{h}}|v|_{m, T}^{2}\right)^{1 / 2}
$$

for a function v with $\left.v\right|_{T} \in H^{m}(T), \forall T \in \mathcal{T}_{h}$.
For convenience, following [12], the symbols $\lesssim, ~ \gtrsim$ and \equiv will be used in this paper: $X_{1} \lesssim Y_{1}$ and $X_{2} \gtrsim Y_{2}$ mean that $X_{1} \leq c_{1} Y_{1}$ and $c_{2} X_{2} \geq Y_{2}$ for some positive constants c_{1} and c_{2} that are independent of mesh size h. That $X_{3} \equiv Y_{3}$ means that $X_{3} \lesssim Y_{3}$ and $X_{3} \gtrsim Y_{3}$.

Theorem 3.1. Let Π_{T} be the interpolation operator of the n-rectangle Morley element, the n-dimensional Adini element or the n-dimensional BFS element. If $n<4$ then for any $T \in \mathcal{T}_{h}$,

$$
\begin{equation*}
\left|v-\Pi_{T} v\right|_{m, T} \lesssim h^{r-m}|v|_{r, T}, \quad 0 \leq m \leq r, \forall v \in H^{r}(T), \tag{3.1}
\end{equation*}
$$

where $r=3$ for the n-rectangle Morley element, $r=4$ for the other two elements.
Theorem 3.1 can be obtained directly from the interpolation theory (see [2]). Although Theorem 3.1 is enough for practical situations, we would like to consider a result for all $n \geq 2$.

Theorem 3.2. Let V_{h} and $V_{h 0}$ be the finite element spaces of the n-rectangle Morley element, the n-dimensional Adini element or the n-dimensional BFS element. Then

$$
\begin{align*}
& \inf _{v_{h} \in V_{h}} \sum_{m=0}^{r} h^{m}\left|v-v_{h}\right|_{m, h} \lesssim h^{r}|v|_{r, \Omega}, \quad \forall v \in H^{r}(\Omega), \tag{3.2}\\
& \inf _{v_{h} \in V_{h 0}} \sum_{m=0}^{r} h^{m}\left|v-v_{h}\right|_{m, h} \lesssim h^{r}|v|_{r, \Omega}, \quad \forall v \in H^{r}(\Omega) \cap H_{0}^{2}(\Omega), \tag{3.3}
\end{align*}
$$

where $r=3$ for the n-rectangle Morley element, $r=4$ for the other two elements.
Proof. First, we consider the n-rectangle Morley element and inequality (3.3). For $v \in$ $H^{3}(\Omega) \cap H_{0}^{2}(\Omega)$, let $w_{h} \in L^{2}(\Omega)$ such that for any $T \in \mathcal{T}_{h},\left.w_{h}\right|_{T} \in P_{M}(T)$ and

$$
\int_{T} q w_{h}=\int_{T} q v, \quad \forall q \in P_{M}(T) .
$$

By the interpolation theory, we have

$$
\begin{equation*}
\left|v-w_{h}\right|_{m, h} \lesssim h^{3-m}|v|_{3, \Omega}, \quad 0 \leq m \leq 3 \tag{3.4}
\end{equation*}
$$

Given a set $B \subset R^{n}$, let $\mathcal{T}_{h}(B)=\left\{T \in \mathcal{T}_{h} \mid B \cap T \neq \emptyset\right\}$ and $N_{h}(B)$ be the number of the elements in $\mathcal{T}_{h}(B)$. For $w \in L^{2}(\Omega)$ and $T \in \mathcal{T}_{h}$, let w^{T} denote the restriction of w on T.

Now we define $v_{h} \in V_{h 0}$ as follows: for any $T \in \mathcal{T}_{h}$,

- if the vertex $a_{i}\left(1 \leq i \leq 2^{n}\right)$ of T is in Ω, then

$$
v_{h}\left(a_{i}\right)=\frac{1}{N_{h}\left(a_{i}\right)} \sum_{T^{\prime} \in \mathcal{T}_{h}\left(a_{i}\right)} w_{h}^{T^{\prime}}\left(a_{i}\right)
$$

- if $F_{i}(1 \leq i \leq 2 n)$ of T is also a face of another element $T^{\prime} \in \mathcal{T}_{h}$, then

$$
\frac{\partial v_{h}}{\partial \nu}\left(b_{i}\right)=\frac{1}{2}\left(\frac{\partial w_{h}^{T}}{\partial \nu}\left(b_{i}\right)+\frac{\partial w_{h}^{T^{\prime}}}{\partial \nu}\left(b_{i}\right)\right)
$$

where ν is the unit outer normal to F_{i} respect to T.
Obviously, v_{h} is well-defined. We will show

$$
\begin{equation*}
\left|v-v_{h}\right|_{m, h} \lesssim h^{3-m}|v|_{3, \Omega}, \quad 0 \leq m \leq 3 \tag{3.5}
\end{equation*}
$$

Let $T \in \mathcal{T}_{h}$. By a standard scaling argument, we obtain that

$$
\begin{equation*}
|p|_{m, T}^{2} \lesssim h^{n-2 m}\left(\sum_{i=1}^{2^{n}}\left|p\left(a_{i}\right)\right|^{2}+h^{2} \sum_{i=1}^{2 n}\left|\frac{\partial p}{\partial \nu}\left(b_{i}\right)\right|^{2}\right), \quad 0 \leq m \leq 3, \forall p \in P_{M}(T) \tag{3.6}
\end{equation*}
$$

Set $\phi_{h}=w_{h}-v_{h}$. Obviously, $\phi_{h}^{T} \in P_{M}(T)$. If the vertex a_{i} of T is in Ω then by the definition of v_{h},

$$
\phi_{h}^{T}\left(a_{i}\right)=\frac{1}{N_{h}\left(a_{i}\right)} \sum_{T^{\prime} \in \mathcal{T}_{h}\left(a_{i}\right)}\left(w_{h}^{T}\left(a_{i}\right)-w_{h}^{T^{\prime}}\left(a_{i}\right)\right)
$$

For $T^{\prime} \in \mathcal{T}_{h}\left(a_{i}\right)$ there exist $T_{1}, \cdots, T_{J} \in \mathcal{T}_{h}\left(a_{i}\right)$ such that $T_{1}=T, T_{J}=T^{\prime}$ and $\tilde{F}_{j}=T_{j} \cap T_{j+1}$ is a common $(n-1)$-dimensional face of T_{j} and T_{j+1} and $a_{i} \in \tilde{F}_{j}, 1 \leq j<J$. By the inverse inequality, we have

$$
\begin{aligned}
& \left|w_{h}^{T}\left(a_{i}\right)-w_{h}^{T^{\prime}}\left(a_{i}\right)\right|^{2}=\left|\sum_{j=1}^{J-1}\left(w_{h}^{T_{j}}\left(a_{i}\right)-w_{h}^{T_{j+1}}\left(a_{i}\right)\right)\right|^{2} \\
\lesssim & \sum_{j=1}^{J-1}\left|w_{h}^{T_{j}}\left(a_{i}\right)-w_{h}^{T_{j+1}}\left(a_{i}\right)\right|^{2} \leq C h^{1-n} \sum_{j=1}^{J-1}\left|w_{h}^{T_{j}}-w_{h}^{T_{j+1}}\right|_{0, \tilde{F}_{j}}^{2} \\
\lesssim & h^{1-n} \sum_{j=1}^{J-1}\left(\left|v-w_{h}^{T_{j}}\right|_{0, \tilde{F}_{j}}^{2}+\left|v-w_{h}^{T_{j+1}}\right|_{0, \tilde{F}_{j}}^{2}\right) .
\end{aligned}
$$

By the interpolation theory, we obtain

$$
\left|w_{h}^{T}\left(a_{i}\right)-w_{h}^{T^{\prime}}\left(a_{i}\right)\right|^{2} \lesssim h^{6-n} \sum_{j=1}^{J}|v|_{3, T_{j}}^{2} .
$$

Since $N_{h}(T)$ is bounded, it follows that

$$
\begin{equation*}
\left|\phi_{h}^{T}\left(a_{i}\right)\right|^{2} \lesssim h^{6-n} \sum_{T^{\prime} \in \mathcal{T}_{h}(T)}|v|_{3, T^{\prime}}^{2} . \tag{3.7}
\end{equation*}
$$

If the vertex a_{i} of T is on $\partial \Omega$ then there exists $T^{\prime} \in \mathcal{T}_{h}\left(a_{i}\right)$ with an ($n-1$)-dimensional face F of T^{\prime} belonging to $\partial \Omega$ and $a_{i} \in F$. By the definitions of w_{h} and v_{h},

$$
\left|\phi_{h}^{T}\left(a_{i}\right)\right|=\left|w_{h}^{T}\left(a_{i}\right)-w_{h}^{T^{\prime}}\left(a_{i}\right)+w_{h}^{T^{\prime}}\left(a_{i}\right)\right| \leq\left|w_{h}^{T}\left(a_{i}\right)-w_{h}^{T^{\prime}}\left(a_{i}\right)\right|+\left|w_{h}^{T^{\prime}}\left(a_{i}\right)\right|
$$

By the inverse inequality and the interpolation theory, we have

$$
\left|w_{h}^{T^{\prime}}\left(a_{i}\right)\right|^{2} \lesssim h^{1-n}\left|w_{h}^{T^{\prime}}\right|_{0, F}^{2} \equiv h^{1-n}\left|v-w_{h}^{T^{\prime}}\right|_{0, F}^{2} \lesssim h^{6-n}|v|_{3, T^{\prime}}^{2} .
$$

By a similar analysis for $\left|w_{h}^{T}\left(a_{i}\right)-w_{h}^{T^{\prime}}\left(a_{i}\right)\right|$, we conclude that (3.7) is also true in this case.
If the face F_{i} of T is also a face of another element $T^{\prime} \in \mathcal{T}_{h}$ then

$$
\begin{aligned}
\left|\frac{\partial \phi_{h}^{T}}{\partial \nu}\left(b_{i}\right)\right|^{2} & =\frac{1}{4}\left|\frac{\partial\left(w_{h}^{T}-w_{h}^{T^{\prime}}\right)}{\partial \nu}\left(b_{i}\right)\right|^{2} \lesssim h^{1-n}\left|\frac{\partial\left(w_{h}^{T}-w_{h}^{T^{\prime}}\right)}{\partial \nu}\right|_{0, F_{i}}^{2} \\
& \lesssim h^{1-n}\left|\frac{\partial\left(w_{h}^{T}-v\right)}{\partial \nu}\right|_{0, F_{i}}^{2}+h^{1-n}\left|\frac{\partial\left(v-w_{h}^{T^{\prime}}\right)}{\partial \nu}\right|_{0, F_{i}}^{2}
\end{aligned}
$$

By the interpolation theory, we have

$$
\begin{equation*}
\left|\frac{\partial \phi_{h}^{T}}{\partial \nu}\left(b_{i}\right)\right|^{2} \lesssim h^{4-n} \sum_{T^{\prime} \in \mathcal{T}_{h}(T)}|v|_{3, T^{\prime}}^{2} \tag{3.8}
\end{equation*}
$$

If the face F_{i} of T is on $\partial \Omega$, then

$$
\left|\frac{\partial \phi_{h}^{T}}{\partial \nu}\left(b_{i}\right)\right|^{2}=\left|\frac{\partial w_{h}^{T}}{\partial \nu}\left(b_{i}\right)\right|^{2} \lesssim h^{1-n}\left|\frac{\partial w_{h}^{T}}{\partial \nu}\right|_{0, F_{i}}^{2}=h^{1-n}\left|\frac{\partial\left(w_{h}^{T}-v\right)}{\partial \nu}\right|_{0, F_{i}}^{2}
$$

Thus (3.8) is also true by the interpolation theory.
Combining (3.6), (3.7) and (3.8), we have

$$
h^{2 m}\left|\phi_{h}\right|_{m, T}^{2} \lesssim h^{6} \sum_{T^{\prime} \in \mathcal{T}_{h}(T)}|v|_{3, T^{\prime}}^{2}
$$

Summing the above inequality over all $T \in \mathcal{T}_{h}$, we obtain that

$$
h^{2 m}\left|\phi_{h}\right|_{m, h}^{2} \lesssim h^{6} \sum_{T \in \mathcal{T}_{h}} \sum_{T^{\prime} \in \mathcal{T}_{h}(T)}|v|_{3, T^{\prime}}^{2}
$$

Consequently,

$$
\begin{equation*}
h^{2 m}\left|\phi_{h}\right|_{m, h}^{2} \lesssim h^{6}|v|_{3, \Omega}^{2} . \tag{3.9}
\end{equation*}
$$

Inequality (3.5) follows from (3.9) and (3.4).
We have proved (3.3) for the n-rectangle Morley element. Using a similar argument, we can prove (3.3) for the other two elements as well as (3.2).

4. Convergence Analysis

In this section, we will give the convergence analysis of the elements given in Section 2 for the boundary value problem of fourth order partial differential equations.

For $f \in L^{2}(\Omega)$, we consider the following problem:

$$
\left\{\begin{array}{l}
\Delta^{2} u=f, \quad \text { in } \Omega \tag{4.1}\\
\left.u\right|_{\partial \Omega}=\left.\frac{\partial u}{\partial \nu}\right|_{\partial \Omega}=0
\end{array}\right.
$$

where $\nu=\left(\nu_{1}, \nu_{2}, \cdots, \nu_{n}\right)^{\top}$ is the unit outer normal to $\partial \Omega$ and Δ is the standard Laplacian operator.

Define

$$
\begin{equation*}
a(v, w)=\int_{\Omega} \sum_{i, j=1}^{n} \frac{\partial^{2} v}{\partial x_{i} \partial x_{j}} \frac{\partial^{2} w}{\partial x_{i} \partial x_{j}}, \quad \forall v, w \in H^{2}(\Omega) \tag{4.2}
\end{equation*}
$$

The weak form of problem (4.1) is: find $u \in H_{0}^{2}(\Omega)$ such that

$$
\begin{equation*}
a(u, v)=(f, v), \quad \forall v \in H_{0}^{2}(\Omega) \tag{4.3}
\end{equation*}
$$

For $v, w \in L^{2}(\Omega)$ that $\left.v\right|_{T},\left.w\right|_{T} \in H^{2}(T), \forall T \in \mathcal{T}_{h}$, we define

$$
\begin{equation*}
a_{h}(v, w)=\sum_{T \in \mathcal{T}_{h}} \int_{T} \sum_{i, j=1}^{n} \frac{\partial^{2} v}{\partial x_{i} \partial x_{j}} \frac{\partial^{2} w}{\partial x_{i} \partial x_{j}} \tag{4.4}
\end{equation*}
$$

Corresponding to the n-rectangle Morley element, the n-dimensional Adini element or the n dimensional BFS element, the finite element method for problem (4.3) is: find $u_{h} \in V_{h 0}$ such that

$$
\begin{equation*}
a_{h}\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right), \quad \forall v_{h} \in V_{h 0} \tag{4.5}
\end{equation*}
$$

Using Lemma 2.1 and the argument used in [5] for the Morley element, we can show the following lemma.

Lemma 4.1. Let $V_{h 0}$ be the finite element space of the n-rectangle Morley element. Then for $v \in H^{3}(\Omega) \cap H_{0}^{2}(\Omega)$ with $\Delta^{2} v \in L^{2}(\Omega)$,

$$
\begin{equation*}
\left|a_{h}\left(v, v_{h}\right)-\left(\Delta^{2} v, v_{h}\right)\right| \lesssim h\left(|v|_{3, \Omega}+h\left\|\Delta^{2} v\right\|_{0, \Omega}\right)\left|v_{h}\right|_{2, h}, \quad \forall v_{h} \in V_{h 0} \tag{4.6}
\end{equation*}
$$

Lemma 4.2. Let $V_{h 0}$ be the finite element space of the n-dimensional Adini element or the n-dimensional BFS element. Then for $v \in H^{3}(\Omega)$

$$
\begin{equation*}
\left|a_{h}\left(v, v_{h}\right)-\left(\Delta^{2} v, v_{h}\right)\right| \lesssim h|v|_{3, \Omega}\left|v_{h}\right|_{2, h}, \quad \forall v_{h} \in V_{h 0} \tag{4.7}
\end{equation*}
$$

Proof. First, we consider the n-dimensional Adini element. Given $T \in \mathcal{T}_{h}$, let Π_{T}^{1} be the n-linear interpolation operator on T, that is,

$$
\Pi_{T}^{1} v=\sum_{i=1}^{2^{n}} \tilde{p}_{i} v\left(a_{i}\right), \quad \forall v \in C(T)
$$

and let Π_{h}^{1} be the one corresponding to \mathcal{T}_{h}. Let $P_{T}^{0}: L^{2}(T) \rightarrow P_{0}(T)$ be the orthogonal projection.

Let $v_{h} \in V_{h 0}$ and $\phi \in H^{1}(\Omega)$. For $i \in\{1,2, \cdots, n\}$, we have that $\Pi_{h}^{1} \frac{\partial v_{h}}{\partial x_{i}} \in H_{0}^{1}(\Omega)$. Using Green's formula gives

$$
\begin{aligned}
& \sum_{T \in \mathcal{T}_{h}} \int_{T}\left(\phi \frac{\partial^{2} v_{h}}{\partial x_{i}^{2}}+\frac{\partial \phi}{\partial x_{i}} \frac{\partial v_{h}}{\partial x_{i}}\right) \\
= & \sum_{T \in \mathcal{T}_{h}} \int_{\partial T} \phi \frac{\partial v_{h}}{\partial x_{i}} \nu_{i}=\sum_{T \in \mathcal{T}_{h}} \int_{\partial T} \phi\left(\frac{\partial v_{h}}{\partial x_{i}}-\Pi_{h}^{1} \frac{\partial v_{h}}{\partial x_{i}}\right) \nu_{i} \\
= & \sum_{T \in \mathcal{T}_{h}} \int_{\partial T}\left(\phi-P_{T}^{0} \phi\right)\left(\frac{\partial v_{h}}{\partial x_{i}}-\Pi_{h}^{1} \frac{\partial v_{h}}{\partial x_{i}}\right) \nu_{i}+\sum_{T \in \mathcal{T}_{h}} \int_{\partial T} P_{T}^{0} \phi\left(\frac{\partial v_{h}}{\partial x_{i}}-\Pi_{h}^{1} \frac{\partial v_{h}}{\partial x_{i}}\right) \nu_{i} \\
= & \sum_{T \in \mathcal{T}_{h}} \int_{\partial T}\left(\phi-P_{T}^{0} \phi\right)\left(\frac{\partial v_{h}}{\partial x_{i}}-\Pi_{h}^{1} \frac{\partial v_{h}}{\partial x_{i}}\right) \nu_{i}+\sum_{T \in \mathcal{T}_{h}} \int_{T} P_{T}^{0} \phi \frac{\partial}{\partial x_{i}}\left(\frac{\partial v_{h}}{\partial x_{i}}-\Pi_{h}^{1} \frac{\partial v_{h}}{\partial x_{i}}\right) .
\end{aligned}
$$

Using the Schwarz inequality and the interpolation theory, we have

$$
\begin{aligned}
& \left|\sum_{T \in \mathcal{T}_{h}} \int_{\partial T}\left(\phi-P_{T}^{0} \phi\right)\left(\frac{\partial v_{h}}{\partial x_{i}}-\Pi_{h}^{1} \frac{\partial v_{h}}{\partial x_{i}}\right) \nu_{i}\right| \\
\leq & \sum_{T \in \mathcal{T}_{h}}\left\|\phi-P_{T}^{0} \phi\right\|_{0, \partial T}\left\|\frac{\partial v_{h}}{\partial x_{i}}-\Pi_{h}^{1} \frac{\partial v_{h}}{\partial x_{i}}\right\|_{0, \partial T} \\
\lesssim & \sum_{T \in \mathcal{T}_{h}} h|\phi|_{1, T}\left|v_{h}\right|_{2, T} \lesssim h|\phi|_{1, \Omega}\left|v_{h}\right|_{2, h} .
\end{aligned}
$$

For $T \in \mathcal{T}_{h}$, we define

$$
G_{i}(T)=\operatorname{span}\left\{\left(\xi_{j}^{2}-1\right) \xi^{\alpha} \mid 1 \leq j \leq n ; \alpha_{i}=0, \alpha_{j} \leq 1, j \neq i\right\}
$$

and we have

$$
\int_{T} \frac{\partial p}{\partial x_{i}}=0, \quad \forall p \in G_{i}(T)
$$

By the definition of $P_{A}(T)$,

$$
\frac{\partial v_{h}}{\partial x_{i}}-\Pi_{h}^{1} \frac{\partial v_{h}}{\partial x_{i}} \in Q_{1}(T)+G_{i}(T)
$$

Because the left hand side above vanishes at the vertices of T,

$$
\frac{\partial v_{h}}{\partial x_{i}}-\Pi_{h}^{1} \frac{\partial v_{h}}{\partial x_{i}} \in G_{i}(T) .
$$

Consequently, we obtain that for any $\phi \in H^{1}(\Omega)$ and any $v_{h} \in V_{h 0}$,

$$
\begin{equation*}
\left|\sum_{T \in \mathcal{T}_{h}} \int_{T}\left(\phi \frac{\partial^{2} v_{h}}{\partial x_{i} \partial x_{j}}+\frac{\partial \phi}{\partial x_{i}} \frac{\partial v_{h}}{\partial x_{j}}\right)\right| \lesssim h|\phi|_{1, \Omega}\left|v_{h}\right|_{2, h} \tag{4.8}
\end{equation*}
$$

is true when $1 \leq i=j \leq n$.
Now let $i, j \in\{1,2, \cdots, n\}$ and $i \neq j$. On each $(n-1)$-dimensional face of $T \in \mathcal{T}_{h}, \nu_{i} \nu_{j}=0$. It follows that $\frac{\partial}{\partial x_{i}} v_{h}$ is the tangent derivative along the faces on which ν_{j} is not zero. Since $v_{h} \in H_{0}^{1}(\Omega)$, it is follows that

$$
\sum_{T \in \mathcal{T}_{h}} \int_{T}\left(\phi \frac{\partial^{2} v_{h}}{\partial x_{i} \partial x_{j}}+\frac{\partial \phi}{\partial x_{i}} \frac{\partial v_{h}}{\partial x_{j}}\right)=\sum_{T \in \mathcal{T}_{h}} \int_{\partial T} \phi \frac{\partial v_{h}}{\partial x_{j}} \nu_{i}=0
$$

That is, (4.8) holds for all $i, j \in\{1,2, \cdots, n\}$.
By (4.8) and the following equality,

$$
\begin{align*}
a_{h}\left(v, v_{h}\right)-\left(\Delta^{2} v, v_{h}\right)= & \sum_{i=1}^{n} \sum_{T \in \mathcal{T}_{h}} \int_{T}\left(\Delta v \frac{\partial^{2} v_{h}}{\partial x_{i}^{2}}+\frac{\partial \Delta v}{\partial x_{i}} \frac{\partial v_{h}}{\partial x_{i}}\right) \\
& +\sum_{1 \leq i \neq j \leq n} \sum_{T \in \mathcal{T}_{h}} \int_{T}\left(\frac{\partial^{2} v}{\partial x_{i} \partial x_{j}} \frac{\partial^{2} v_{h}}{\partial x_{i} \partial x_{j}}+\frac{\partial^{3} v}{\partial x_{i}^{2} \partial x_{j}} \frac{\partial v_{h}}{\partial x_{j}}\right) \\
& -\sum_{1 \leq i \neq j \leq n} \sum_{T \in \mathcal{T}_{h}} \int_{T}\left(\frac{\partial^{2} v}{\partial x_{i}^{2}} \frac{\partial^{2} v_{h}}{\partial x_{j}^{2}}+\frac{\partial^{3} v}{\partial x_{i}^{2} \partial x_{j}} \frac{\partial v_{h}}{\partial x_{j}}\right) \tag{4.9}
\end{align*}
$$

we obtain the conclusion of the lemma for the n-dimensional Adini element.
Now we consider the n-dimensional BFS element. Let $1 \leq i \leq n$, and let $F_{i}^{ \pm}$be the ($n-1$)-dimensional faces of T with $\xi_{i}= \pm 1$. Let $\bar{G}_{i}(T)$ be defined by

$$
\bar{G}_{i}(T)=\operatorname{span}\left\{\left(\xi_{j}^{2}-1\right)\left(\xi_{k}^{2}-1\right) \xi^{\alpha} \mid 1 \leq j<k \leq n, j, k \neq i ; \alpha_{i}=0, \alpha_{l} \leq 1, l \neq i\right\}
$$

It can be verified that for any $v_{h} \in V_{h 0}, \frac{\partial}{\partial x_{i}} v_{h}$ can be divided into two parts:

$$
\frac{\partial v_{h}}{\partial x_{i}}=\tilde{Q}_{i}\left(\frac{\partial v_{h}}{\partial x_{i}}\right)+\bar{Q}_{i}\left(\frac{\partial v_{h}}{\partial x_{i}}\right)
$$

where for any $T \in \mathcal{T}_{h}$,

$$
\left.\tilde{Q}_{i}\left(\frac{\partial v_{h}}{\partial x_{i}}\right)\right|_{F_{i}^{ \pm}} \in P_{A}\left(F_{i}^{ \pm}\right),\left.\quad \bar{Q}_{i}\left(\frac{\partial v_{h}}{\partial x_{i}}\right)\right|_{T} \in \bar{G}_{i}(T) .
$$

Using Green's formula gives

$$
\begin{aligned}
& \sum_{T \in \mathcal{T}_{h}} \int_{T}\left(\phi \frac{\partial^{2} v_{h}}{\partial x_{i}^{2}}+\frac{\partial \phi}{\partial x_{i}} \frac{\partial v_{h}}{\partial x_{i}}\right)=\sum_{T \in \mathcal{T}_{h}} \int_{\partial T} \phi \frac{\partial v_{h}}{\partial x_{i}} \nu_{i} \\
= & \sum_{T \in \mathcal{T}_{h}} \int_{\partial T} \phi \tilde{Q}_{i}\left(\frac{\partial v_{h}}{\partial x_{i}}\right) \nu_{i}+\sum_{T \in \mathcal{T}_{h}} \int_{\partial T} \phi \bar{Q}_{i}\left(\frac{\partial v_{h}}{\partial x_{i}}\right) \nu_{i} \\
= & \sum_{T \in \mathcal{T}_{h}}\left(\int_{F_{i}^{+}} \phi \tilde{Q}_{i}\left(\frac{\partial v_{h}}{\partial x_{i}}\right)-\int_{F_{i}^{-}} \phi \tilde{Q}_{i}\left(\frac{\partial v_{h}}{\partial x_{i}}\right)\right)+\sum_{T \in \mathcal{T}_{h}} \int_{\partial T} \phi \bar{Q}_{i}\left(\frac{\partial v_{h}}{\partial x_{i}}\right) \nu_{i} .
\end{aligned}
$$

From the definition of $\bar{G}_{i}(T)$, we know that $\left.\tilde{Q}_{i}\left(\frac{\partial v_{h}}{\partial x_{i}}\right)\right|_{F_{i}^{ \pm}}$is just the Adini interpolation function of $\frac{\partial v_{h}}{\partial x_{i}}$ with respect to variable $x_{1}, \cdots, x_{i-1}, x_{i+1}, \cdots, x_{n}$, and we obtain that

$$
\begin{equation*}
\sum_{T \in \mathcal{T}_{h}}\left(\int_{F_{i}^{+}} \phi \tilde{Q}_{i}\left(\frac{\partial v_{h}}{\partial x_{i}}\right)-\int_{F_{i}^{-}} \phi \tilde{Q}_{i}\left(\frac{\partial v_{h}}{\partial x_{i}}\right)\right)=0 \tag{4.10}
\end{equation*}
$$

Since $\bar{Q}_{i}\left(\frac{\partial v_{h}}{\partial x_{i}}\right)$ is independent of ξ_{i} on each element $T \in \mathcal{T}_{h}$, we have

$$
\sum_{T \in \mathcal{T}_{h}} \int_{\partial T} \phi \bar{Q}_{i}\left(\frac{\partial v_{h}}{\partial x_{i}}\right) \nu_{i}=\sum_{T \in \mathcal{T}_{h}} \int_{\partial T}\left(\phi-P_{T}^{0} \phi\right) \bar{Q}_{i}\left(\frac{\partial v_{h}}{\partial x_{i}}\right) \nu_{i}
$$

Using the Schwarz inequality and the interpolation theory, we obtain

$$
\begin{equation*}
\left|\sum_{T \in \mathcal{T}_{h}} \int_{\partial T} \phi \bar{Q}_{i}\left(\frac{\partial v_{h}}{\partial x_{i}}\right) \nu_{i}\right| \lesssim h|v|_{1, \Omega}\left|v_{h}\right|_{2, h} \tag{4.11}
\end{equation*}
$$

It follows from (4.10) and (4.11) that (4.8) is true for $1 \leq i=j \leq n$.
Similarly, we can show that (4.8) is true for all $i, j \in\{1,2, \cdots, n\}$. Then the conclusion of the lemma holds for the n-dimensional BFS element.

By a similar argument used in [11], we can obtain the following lemma.
Lemma 4.3. Let $V_{h 0}$ be the finite element space of the n-rectangle Morley element, the n dimensional Adini element or the n-dimensional BFS element. Then

$$
\begin{equation*}
\left|v_{h}\right|_{2, h} \leq\left\|v_{h}\right\|_{2, h} \lesssim\left|v_{h}\right|_{2, h}, \quad \forall v_{h} \in V_{h 0} . \tag{4.12}
\end{equation*}
$$

Now let u and u_{h} be the solutions of problems (4.3) and (4.5) respectively. Combining Theorem 3.2, Lemmas 4.1-4.3 and the well-known Strang Lemma, we finally obtain the following convergence results.

Theorem 4.1. Let $V_{h 0}$ be the finite element space of the n-rectangle Morley element. Then

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{2, h} \lesssim h\left(|u|_{3, \Omega}+h\|f\|_{0, \Omega}\right) \tag{4.13}
\end{equation*}
$$

when $u \in H^{3}(\Omega)$.
Theorem 4.2. Let $V_{h 0}$ be the finite element space of the n-dimensional Adini element or the n-dimensional BFS element. Then

$$
\begin{equation*}
\left\|u-u_{h}\right\|_{2, h} \lesssim h\left(h|u|_{4, \Omega}+|u|_{3, \Omega}\right) \tag{4.14}
\end{equation*}
$$

when $u \in H^{4}(\Omega)$.

References

[1] G.P. Bazeley, Y.K. Cheung, B.M. Irons and O.C. Zienkiewicz, Triangular elements in plate bending-conforming and nonconforming solutions, in Proceedings of the Conference on Matrix Methods in Structural Mechanics, Wright Patterson A.F. Base, Ohio, 1965, 547-576.
[2] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, New York, 1978.
[3] P. Lascaux and P. Lesaint, Some nonconforming finite elements for the plate bending problem, RAIRO Anal. Numer., R-1 (1985), 9-53.
[4] L.S.D. Morley, The triangular equilibrium element in the solution of plate bending problems, Aero Quart, 19 (1968), 149-169.
[5] Z.C. Shi, On the error estimates of Morley element, Numer. Math. Sinica, 12:2 (1990), 113-118.
[6] G. Strang and G.J. Fix, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, 1973.
[7] F. Stummel, The generalized patch test, SIAM J. Numer. Anal., 16 (1979), 449-471.
[8] F. Stummel, Basic compactness properties of nonconforming and hybrid finite element spaces, RAIRO Anal. Numer., 4:1 (1980), 81-115.
[9] M. Wang, On the necessity and sufficiency of the patch test for convergence of nonconforming finite elements, SIAM J. Numer. Anal., 39:2 (2002), 363-384.
[10] M. Wang and J. Xu, Nonconforming tetrahedral finite elements for fourth order elliptic equations, Math. Comput., 76:257 (2007), 1-18.
[11] M. Wang and J. Xu, The Morley element for fourth order elliptic equations in any dimensions, Numer. Math., 103:1 (2006), 155-169.
[12] J. Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev., 34:4 (1992), 581-613.

[^0]: * Received August 31, 2005; accepted June 29, 2006.

 1) The work of the first author was supported by the National Natural Science Foundation of China (10571006). The work of the third author was supported by the Changjiang Professorship of the Ministry of Education of China through Peking University.
