
Journal of Computational Mathematics, Vol.25, No.4, 2007, 408–420.

SOME n-RECTANGLE NONCONFORMING ELEMENTS FOR
FOURTH ORDER ELLIPTIC EQUATIONS *1)

Ming Wang

(LMAM, School of Mathematical Sciences, Peking University, Beijing 100080, China

Email: mwang@math.pku.edu.cn)

Zhong-Ci Shi

(LSEC, ICMSEC, Academy of Mathematics and Systems Science, Chinese Academy of Sciences,

Beijing 100080, China

Email: shi@lsec.cc.ac.cn)

Jinchao Xu

(School of Mathematical Sciences, Peking University, Beijing 100080, China

and Department of Mathematics, Pennsylvania State University, USA

Email: xu@math.psu.edu)

Abstract

In this paper, three n-rectangle nonconforming elements are proposed with n ≥ 3. They

are the extensions of well-known Morley element, Adini element and Bogner-Fox-Schmit

element in two spatial dimensions to any higher dimensions respectively. These elements

are all proved to be convergent for a model biharmonic equation in n dimensions.
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1. Introduction

Motivated by both theoretical and practical interests, we will consider n-rectangle (n ≥ 2)

nonconforming finite elements for n-dimensional fourth order partial equations in this paper.

In the two dimensional case, there are well-known nonconforming elements, such as the Morley

element, the Zienkiewicz element and the Adini element, etc (see [1-4]). In a recent paper [10],

we have discussed the motivation to construct nonconforming finite elements in three dimensions

and proposed some tetrahedral nonconforming finite elements for 3-dimensional fourth order

partial equations. As for the Morley element, we have extended it to any higher simplex case

in another paper [11].

In this paper, we extend the Morley element, the Adini element and the Bogner-Fox-Schmit

element to any higher dimensions, and obtain the following three types of n-rectangle noncon-

forming finite elements:

1. The n-rectangle Morley element, whose degrees of freedom are the value of the normal

derivative at the centric point of each (n − 1)-dimensional face and the function value at

each vertex.
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2. The n-dimensional Adini element, whose degrees of freedom are the values of function

and all first order derivatives at each vertex.

3. The n-dimensional BFS element, whose degrees of freedom are the values of function, all

first order derivatives and all second order mixed derivatives at each vertex.

We will use the following standard notation. Ω denotes a general bounded polyhedral

domain in Rn (n ≥ 2), ∂Ω the boundary of Ω, and ν = (ν1, ν2, · · · , νn)⊤ the unit outer normal

to ∂Ω. For a nonnegative integer s, Hs(Ω), Hs
0(Ω), ‖ · ‖s,Ω and | · |s,Ω denote the usual Sobolev

spaces, its corresponding norm and semi-norm respectively, and (·, ·) denotes the inner product

of L2(Ω).

Given a multi-index α = (α1, · · · , αn), set |α| =
∑n

i=1 αi and xα = xα1

1 · · ·xαn
n , ∀x ∈ Rn.

For a subset B ⊂ Rn and a nonnegative integer r, let Pr(B) and Qr(B) be the spaces of

polynomials on B defined by

Pr(B) = span{ xα | |α| ≤ r}, Qr(B) = span{ xα | αi ≤ r}.

The paper is organized as follows. The rest of this section gives some notation. Section 2

gives a detailed description of the n-rectangle Morley element, the n-dimensional Adini element

and the BFS element. Section 3 and Section 4 show the convergence of these elements.

2. The n-Rectangle Elements

In this section, we will give our extensions of the Morley element, the Adini element and

the Bogner-Fox-Schmit element to higher dimensions. For a finite element, it can be described

by a triple (T, PT , ΦT ) with T the geometric shape, PT the shape function space and ΦT the

vector of degrees of freedom.

Given a0 = (a01, a02, · · · , a0n)⊤ ∈ Rn and positive numbers h1,· · · ,hn, an n-rectangle T is

given by

T = { x |xi = a0i + hiξi, −1 ≤ ξi ≤ 1, 1 ≤ i ≤ n}.

Let ξ = (ξ1, · · · , ξn)⊤, and let ai, 1 ≤ i ≤ 2n, be the vertices of T . The vertices are written by

ai = (a01 + ξi1h1, a02 + ξi2h2, · · · , a0n + ξinhn)⊤, 1 ≤ i ≤ 2n,

and the barycenters of the (n − 1)-dimensional faces of T are written as

{

b2k−1 = (a01, · · · , a0,k−1, a0k + hk, a0,k+1, · · · , a0n)⊤,

b2k = (a01, · · · , a0,k−1, a0k − hk, a0,k+1, · · · , a0n)⊤,
1 ≤ k ≤ n.

Let Fi (1 ≤ i ≤ 2n) denote the (n − 1)-dimensional face with bi as its barycenter. Define

p̃i =
1

2n

n
∏

j=1

(1 + ξijξj), 1 ≤ i ≤ 2n.

It is known that p̃i, 1 ≤ i ≤ 2n, forms a basis of Q1(T ). For a mesh size h, let Th be a

triangulation of Ω consisting of n-rectangles described above.
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Fig. 2.1. Degrees of freedom of the n-rectangle Morley element.

2.1. The n-rectangle Morley element

Define

PM (T ) = Q1(T ) + span {x2
1, x

2
2, · · · , x2

n, x3
1, x

3
2, · · · , x3

n}.

It can be verified that P2(T ) ⊂ PM (T ). For the n-rectangle Morley element, (T, PT , ΦT ) is

given by (see Fig. 1).

• T is an n-rectangle described above.

• PT = PM (T ).

• For v ∈ C1(T ), the vector ΦT (v) of degrees of freedom is

ΦT (v) =
(

v(a1), · · · , v(a2n),
∂v

∂ν
(b1), · · · ,

∂v

∂ν
(b2n)

)⊤

.

Corresponding to ΦT , we define






































pi =
1

2n+1

(

2

n
∏

j=1

(1 + ξijξj) −
n
∑

j=1

ξijξj(ξ
2
j − 1)

)

, 1 ≤ i ≤ 2n,

q2k−1 =
hk

4
(ξk + 1)2(ξk − 1), 1 ≤ k ≤ n,

q2k = −
hk

4
(ξk + 1)(ξk − 1)2, 1 ≤ k ≤ n.

(2.1)

Let δij be the Kronecker delta. We can verify that







































pi(aj) = δij , 1 ≤ i, j ≤ 2n

∂pi

∂ν
(bj) = 0, 1 ≤ j ≤ 2n, 1 ≤ i ≤ 2n;

qi(aj) = 0, 1 ≤ j ≤ 2n, 1 ≤ i ≤ 2n,

∂qi

∂ν
(bj) = δij , 1 ≤ i, j ≤ 2n.

(2.2)

That is, pi (1 ≤ i ≤ 2n) and qj (1 ≤ j ≤ 2n) are basis functions. Consequently, ΦT is

PT -unisolvent.

The corresponding interpolation operator ΠT is given by

ΠT v =

2n

∑

i=1

piv(ai) +

2n
∑

i=1

qi
∂v

∂ν
(bi), ∀v ∈ C1(T ), (2.3)
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For the n-rectangle Morley element, we can define the corresponding finite element spaces

Vh and Vh0 as follows: Vh consists of all functions vh such that for any T ∈ Th, 1) vh|T ∈ PM (T ),

2) vh is continuous at all vertices of T and 3) the normal derivative of vh is continuous at the

barycenters of all (n− 1)-dimensional faces of T ; Vh0 consists of all functions vh ∈ Vh such that

for any T ∈ Th, vh vanishes at the vertices of T belonging to ∂Ω and the normal derivative of

vh vanishes at the barycenters of all (n − 1)-dimensional faces of T on ∂Ω.

Lemma 2.1. Let Vh and Vh0 be the finite element spaces of the n-rectangle Morley element.

Then
∫

F

∇(v|T ) =

∫

F

∇(v|T ′ ), ∀v ∈ Vh, (2.4)

where T and T ′ ∈ Th share a common (n − 1)-dimensional face F . If an (n − 1)-dimensional

face F of T ∈ Th is on ∂Ω, then

∫

F

∇(v|T ) = 0, ∀v ∈ Vh0. (2.5)

Proof. Let v ∈ Vh. Define w ∈ L2(Ω) by

w|T =

2n

∑

i=1

p̃iv(ai), ∀T ∈ T h.

Then w ∈ H1(Ω). For T ∈ Th and 1 ≤ k ≤ n, by (2.1) we have

∫

Fj

∂pi

∂xk
=











0, j = 2k − 1, 2k,
∫

Fj

∂p̃i

∂xk
, otherwise,

1 ≤ i ≤ 2n, (2.6)

∫

Fj

∂qi

∂xk
=















∏

1≤m≤n

m 6=k

2hm, j = i, j ∈ {2k − 1, 2k},

0, otherwise,

1 ≤ i ≤ 2n. (2.7)

Using (2.6) and (2.7), we obtain that for 1 ≤ k ≤ n and 1 ≤ j ≤ 2n,

∫

Fj

∂v|T
∂xk

=























∂v

∂xk
(bj)2

n−1
∏

1≤m≤n

m 6=k

hm, j = 2k − 1, 2k,

∫

Fj

∂w

∂xk
, otherwise.

(2.8)

By (2.8), the definition of Vh and the fact that w ∈ H1(Ω), we obtain (2.4).

Using similar argument, we can obtain (2.5). This completes the proof of the lemma.

2.2. The n-dimensional Adini element

Define

PA(T ) = Q1(T ) + span{ x2
i x

α | 1 ≤ i ≤ n, αj ≤ 1, 1 ≤ j ≤ n}.

Obviously, P3(T ) ⊂ PA(T ). For the n-dimensional Adini element, (T, PT , ΦT ) is defined as

follows (see Fig. 2).
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Fig. 2.2. Degrees of freedom of the n-dimensional Adini element.

• T is an n-rectangle described above.

• PT = PA(T ).

• For v ∈ C1(T ), the vector ΦT (v) is given by

ΦT (v) =
(

v(a1),∇v(a1)
⊤, v(a2),∇v(a2)

⊤, · · · , v(a2n),∇v(a2n)⊤
)⊤

.

For i ∈ {1, 2, · · · , 2n} and j ∈ {1, 2, · · · , n}, we define























p0i =
1

2n+1

(

2 +

n
∑

k=1

(ξikξk − ξ2
k)
)

n
∏

k=1

(1 + ξikξk),

pji =
hjξij

2n+1
(ξ2

j − 1)

n
∏

k=1

(1 + ξikξk).

(2.9)

It can be verified that pji, 0 ≤ j ≤ n, 1 ≤ i ≤ 2n, are the basis functions with respect to

the degrees of freedom. Consequently, ΦT is PT -unisolvent. The corresponding interpolation

operator ΠT is written by

ΠT v =
2n

∑

i=1

p0iv(ai) +
n
∑

j=1

2n

∑

i=1

pji
∂v

∂xj
(ai), ∀v ∈ C1(T ). (2.10)

For the n-dimensional Adini element, we can define the finite element spaces Vh and Vh0 as

follows: Vh = { vh ∈ L2(Ω) | vh|T ∈ PA(T ), ∀T ∈ Th, vh and ∇vh are continuous at all vertices

of elements in Th}, Vh0 = { vh ∈ Vh | vh and ∇vh vanish at the vertices along ∂Ω}.

Given v ∈ Vh and an (n − 1)-dimensional face F of T ∈ Th, the restriction v|F of v on F

is a polynomial of (n − 1) variables in the shape function space PA(F ). Then v|F is uniquely

determined by the values of v and ∇v at 2n−1 vertices of F . That is, v is continuous through

F . Thus, v ∈ H1(Ω). If v ∈ Vh0 and F ⊂ ∂Ω in addition then v|F ≡ 0, and this leads to

v ∈ H1
0 (Ω).

Although Vh ⊂ H1(Ω) and Vh0 ⊂ H1
0 (Ω), the n-dimensional Adini element is still a noncon-

forming element for the fourth order problem.

2.3. The n-dimensional BFS element

Define

ST = { x2
1, x

2
2, · · · , x2

n} + { x2
i x

2
j | 1 ≤ i < j ≤ n},

PB(T ) = Q1(T ) + span{ pxα | ∀p ∈ ST , αi ≤ 1, 1 ≤ i ≤ n}.
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Fig. 2.3. Degrees of freedom of the n-dimensional BFS element.

We can verify that P3(T ) ⊂ PB(T ). For the n-dimensional Bogner-Fox-Schmit (BFS) element,

(T, PT , ΦT ) is defined as follows (see Fig. 3).

• T is an n-rectangle described above.

• PT = PB(T ).

• For v ∈ C2(T ), all components of vector ΦT (v) are:

v(ai), ∇v(ai),
∂2v

∂xj∂xk
(ai), 1 ≤ j < k ≤ n, 1 ≤ i ≤ 2n.

Lemma 2.2. For the n-dimensional BFS element, ΦT is PT -unisolvent.

Proof. Since the dimension of PT and the number of degrees of freedom are all

(n(n − 1)

2
+ n + 1

)

2n,

it is enough to show that if p ∈ PB(T ) and ΦT (p) = 0 then p ≡ 0. We show the conclusion by

induction.

The 2-dimensional BFS element is just the Bogner-Fox-Schmit element in two dimensions.

The conclusion is true when n = 2 (see [2]). Assume that the conclusion is true for n = k, k ≥ 2.

Now let n = k + 1. Write p = p(ξ1, ξ2, · · · , ξn). On the k-dimensional faces F± of ξ1 = ±1,

p is a polynomial of ξ2, · · · , ξn in k-dimensional shape function space PB(F±). Since

p(±1, ξ2, · · · , ξn),
∂p

∂ξj
(±1, ξ2, · · · , ξn), 2 ≤ j ≤ n,

∂2p

∂ξj∂ξl
(±1, ξ2, · · · , ξn), 2 ≤ k < l ≤ n,

are all zero at each vertex of F±, p(±1, ξ2, · · · , ξn) = 0 for all ξ2, · · · , ξn ∈ [−1, 1] by the

inductive assumption. This leads that ξ2
1 − 1 is a factor of p. Repeating the same argument for

ξ2 to ξn, we obtain that (ξ2
1 − 1) · · · (ξ2

n − 1) is a factor of p. Consequently, p ≡ 0.

For the n-dimensional BFS element, we can define the finite element spaces Vh and Vh0 as

follows: Vh = { vh ∈ L2(Ω) | vh|T ∈ PB(T ), ∀T ∈ Th, vh, ∇vh and ∂2

∂xj∂xk
vh, 1 ≤ j < k ≤ n,

are continuous at all vertices of elements in Th}, Vh0 = { vh ∈ Vh | vh, ∇vh and ∂2

∂xj∂xk
vh,

1 ≤ j < k ≤ n, vanish at the vertices along ∂Ω}.

Given v ∈ Vh and an (n − 1)-dimensional face F of T ∈ Th, the restriction v|F of v on F

is a polynomial of (n − 1) variables in the shape function space PB(F ). Then it is uniquely
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determined by the values of v. ∇v and all second order mixed derivatives at all vertices of F .

That is, v is continuous through F . Consequently, v ∈ H1(Ω). If v ∈ Vh0 and F ⊂ ∂Ω in

addition then v|F ≡ 0, and this leads to v ∈ H1
0 (Ω).

Although the 2-dimensional BFS element is a conforming element for the fourth order prob-

lem, one can verify that the general n-dimensional BSF element is not a C1 element when

n > 2.

3. Approximation Property

For nonconforming elements, the basic mathematical theory has been established (see [2,3,5-

9]). We will use it to give the convergence analysis of our elements. In this section, we will

consider the approximation properties.

For each element T ∈ Th, let hT be the diameter of the smallest ball containing T and ρT be

the diameter of the largest ball contained in T . Let {Th} be a family of triangulations described

in previous section with h → 0. We assume that {Th} satisfied that hT ≤ h ≤ ηρT , ∀T ∈ Th

for a positive constant η independent of h.

We introduce the following mesh-dependent norm ‖ · ‖m,h and semi-norm | · |m,h:

‖v‖m,h =
(

∑

T∈Th

‖v‖2
m,T

)1/2

, |v|m,h =
(

∑

T∈Th

|v|2m,T

)1/2

for a function v with v|T ∈ Hm(T ), ∀T ∈ Th.

For convenience, following [12], the symbols <
∼ , >

∼ and =
∼ will be used in this paper:

X1
<
∼ Y1 and X2

>
∼ Y2 mean that X1 ≤ c1Y1 and c2X2 ≥ Y2 for some positive constants c1 and

c2 that are independent of mesh size h. That X3
=
∼ Y3 means that X3

<
∼ Y3 and X3

>
∼ Y3.

Theorem 3.1. Let ΠT be the interpolation operator of the n-rectangle Morley element, the

n-dimensional Adini element or the n-dimensional BFS element. If n < 4 then for any T ∈ Th,

|v − ΠT v|m,T
<
∼ hr−m|v|r,T , 0 ≤ m ≤ r, ∀v ∈ Hr(T ), (3.1)

where r = 3 for the n-rectangle Morley element, r = 4 for the other two elements.

Theorem 3.1 can be obtained directly from the interpolation theory (see [2]). Although

Theorem 3.1 is enough for practical situations, we would like to consider a result for all n ≥ 2.

Theorem 3.2. Let Vh and Vh0 be the finite element spaces of the n-rectangle Morley element,

the n-dimensional Adini element or the n-dimensional BFS element. Then

inf
vh∈Vh

r
∑

m=0

hm|v − vh|m,h
<
∼ hr|v|r,Ω, ∀v ∈ Hr(Ω), (3.2)

inf
vh∈Vh0

r
∑

m=0

hm|v − vh|m,h
<
∼ hr|v|r,Ω, ∀v ∈ Hr(Ω) ∩ H2

0 (Ω), (3.3)

where r = 3 for the n-rectangle Morley element, r = 4 for the other two elements.

Proof. First, we consider the n-rectangle Morley element and inequality (3.3). For v ∈

H3(Ω) ∩ H2
0 (Ω), let wh ∈ L2(Ω) such that for any T ∈ Th, wh|T ∈ PM (T ) and

∫

T

qwh =

∫

T

qv, ∀q ∈ PM (T ).
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By the interpolation theory, we have

|v − wh|m,h
<
∼ h3−m|v|3,Ω, 0 ≤ m ≤ 3. (3.4)

Given a set B ⊂ Rn, let Th(B) = {T ∈ Th |B ∩ T 6= ∅ } and Nh(B) be the number of the

elements in Th(B). For w ∈ L2(Ω) and T ∈ Th, let wT denote the restriction of w on T .

Now we define vh ∈ Vh0 as follows: for any T ∈ Th,

• if the vertex ai (1 ≤ i ≤ 2n) of T is in Ω, then

vh(ai) =
1

Nh(ai)

∑

T ′∈Th(ai)

wT ′

h (ai),

• if Fi (1 ≤ i ≤ 2n) of T is also a face of another element T ′ ∈ Th, then

∂vh

∂ν
(bi) =

1

2

(∂wT
h

∂ν
(bi) +

∂wT ′

h

∂ν
(bi)
)

,

where ν is the unit outer normal to Fi respect to T .

Obviously, vh is well-defined. We will show

|v − vh|m,h
<
∼ h3−m|v|3,Ω, 0 ≤ m ≤ 3. (3.5)

Let T ∈ Th. By a standard scaling argument, we obtain that

|p|2m,T
<
∼ hn−2m

(

2n

∑

i=1

|p(ai)|
2 + h2

2n
∑

i=1

∣

∣

∣

∂p

∂ν
(bi)
∣

∣

∣

2
)

, 0 ≤ m ≤ 3, ∀p ∈ PM (T ). (3.6)

Set φh = wh − vh. Obviously, φT
h ∈ PM (T ). If the vertex ai of T is in Ω then by the definition

of vh,

φT
h (ai) =

1

Nh(ai)

∑

T ′∈Th(ai)

(

wT
h (ai) − wT ′

h (ai)
)

.

For T ′ ∈ Th(ai) there exist T1, · · · , TJ ∈ Th(ai) such that T1 = T , TJ = T ′ and F̃j = Tj ∩ Tj+1

is a common (n − 1)-dimensional face of Tj and Tj+1 and ai ∈ F̃j , 1 ≤ j < J . By the inverse

inequality, we have

∣

∣

∣
wT

h (ai) − wT ′

h (ai)
∣

∣

∣

2

=
∣

∣

∣

J−1
∑

j=1

(

w
Tj

h (ai) − w
Tj+1

h (ai)
)

∣

∣

∣

2

<
∼

J−1
∑

j=1

∣

∣

∣
w

Tj

h (ai) − w
Tj+1

h (ai)
∣

∣

∣

2

≤ Ch1−n
J−1
∑

j=1

∣

∣

∣
w

Tj

h − w
Tj+1

h

∣

∣

∣

2

0,F̃j

<
∼ h1−n

J−1
∑

j=1

( ∣

∣

∣
v − w

Tj

h

∣

∣

∣

2

0,F̃j

+
∣

∣

∣
v − w

Tj+1

h

∣

∣

∣

2

0,F̃j

)

.

By the interpolation theory, we obtain

∣

∣

∣
wT

h (ai) − wT ′

h (ai)
∣

∣

∣

2
<
∼ h6−n

J
∑

j=1

|v|23,Tj
.
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Since Nh(T ) is bounded, it follows that

|φT
h (ai)|

2 <
∼ h6−n

∑

T ′∈Th(T )

|v|23,T ′ . (3.7)

If the vertex ai of T is on ∂Ω then there exists T ′ ∈ Th(ai) with an (n− 1)-dimensional face

F of T ′ belonging to ∂Ω and ai ∈ F . By the definitions of wh and vh,

|φT
h (ai)| = |wT

h (ai) − wT ′

h (ai) + wT ′

h (ai)| ≤ |wT
h (ai) − wT ′

h (ai)| + |wT ′

h (ai)|.

By the inverse inequality and the interpolation theory, we have

|wT ′

h (ai)|
2 <
∼ h1−n|wT ′

h |20,F
=
∼ h1−n|v − wT ′

h |20,F
<
∼ h6−n|v|23,T ′ .

By a similar analysis for |wT
h (ai) − wT ′

h (ai)|, we conclude that (3.7) is also true in this case.

If the face Fi of T is also a face of another element T ′ ∈ Th then

∣

∣

∣

∂φT
h

∂ν
(bi)
∣

∣

∣

2

=
1

4

∣

∣

∣

∂(wT
h − wT ′

h )

∂ν
(bi)
∣

∣

∣

2
<
∼ h1−n

∣

∣

∣

∂(wT
h − wT ′

h )

∂ν

∣

∣

∣

2

0,Fi

<
∼ h1−n

∣

∣

∣

∂(wT
h − v)

∂ν

∣

∣

∣

2

0,Fi

+ h1−n
∣

∣

∣

∂(v − wT ′

h )

∂ν

∣

∣

∣

2

0,Fi

.

By the interpolation theory, we have

∣

∣

∣

∂φT
h

∂ν
(bi)
∣

∣

∣

2
<
∼ h4−n

∑

T ′∈Th(T )

|v|23,T ′ . (3.8)

If the face Fi of T is on ∂Ω, then

∣

∣

∣

∂φT
h

∂ν
(bi)
∣

∣

∣

2

=
∣

∣

∣

∂wT
h

∂ν
(bi)
∣

∣

∣

2
<
∼ h1−n

∣

∣

∣

∂wT
h

∂ν

∣

∣

∣

2

0,Fi

= h1−n
∣

∣

∣

∂(wT
h − v)

∂ν

∣

∣

∣

2

0,Fi

.

Thus (3.8) is also true by the interpolation theory.

Combining (3.6), (3.7) and (3.8), we have

h2m|φh|
2
m,T

<
∼ h6

∑

T ′∈Th(T )

|v|23,T ′ .

Summing the above inequality over all T ∈ Th, we obtain that

h2m|φh|
2
m,h

<
∼ h6

∑

T∈Th

∑

T ′∈Th(T )

|v|23,T ′ .

Consequently,

h2m|φh|
2
m,h

<
∼ h6|v|23,Ω. (3.9)

Inequality (3.5) follows from (3.9) and (3.4).

We have proved (3.3) for the n-rectangle Morley element. Using a similar argument, we can

prove (3.3) for the other two elements as well as (3.2).
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4. Convergence Analysis

In this section, we will give the convergence analysis of the elements given in Section 2 for

the boundary value problem of fourth order partial differential equations.

For f ∈ L2(Ω), we consider the following problem:







∆2u = f, in Ω,

u|∂Ω =
∂u

∂ν

∣

∣

∣

∂Ω
= 0,

(4.1)

where ν = (ν1, ν2, · · · , νn)⊤ is the unit outer normal to ∂Ω and ∆ is the standard Laplacian

operator.

Define

a(v, w) =

∫

Ω

n
∑

i,j=1

∂2v

∂xi∂xj

∂2w

∂xi∂xj
, ∀v, w ∈ H2(Ω). (4.2)

The weak form of problem (4.1) is: find u ∈ H2
0 (Ω) such that

a(u, v) = (f, v), ∀v ∈ H2
0 (Ω). (4.3)

For v, w ∈ L2(Ω) that v|T , w|T ∈ H2(T ), ∀T ∈ Th, we define

ah(v, w) =
∑

T∈Th

∫

T

n
∑

i,j=1

∂2v

∂xi∂xj

∂2w

∂xi∂xj
. (4.4)

Corresponding to the n-rectangle Morley element, the n-dimensional Adini element or the n-

dimensional BFS element, the finite element method for problem (4.3) is: find uh ∈ Vh0 such

that

ah(uh, vh) = (f, vh), ∀vh ∈ Vh0. (4.5)

Using Lemma 2.1 and the argument used in [5] for the Morley element, we can show the

following lemma.

Lemma 4.1. Let Vh0 be the finite element space of the n-rectangle Morley element. Then for

v ∈ H3(Ω) ∩ H2
0 (Ω) with ∆2v ∈ L2(Ω),

|ah(v, vh) − (∆2v, vh)| <
∼ h

(

|v|3,Ω + h‖∆2v‖0,Ω

)

|vh|2,h, ∀vh ∈ Vh0. (4.6)

Lemma 4.2. Let Vh0 be the finite element space of the n-dimensional Adini element or the

n-dimensional BFS element. Then for v ∈ H3(Ω)

|ah(v, vh) − (∆2v, vh)| <
∼ h|v|3,Ω|vh|2,h, ∀vh ∈ Vh0. (4.7)

Proof. First, we consider the n-dimensional Adini element. Given T ∈ Th, let Π1
T be the

n-linear interpolation operator on T , that is,

Π1
T v =

2n

∑

i=1

p̃iv(ai), ∀v ∈ C(T ),

and let Π1
h be the one corresponding to Th. Let P 0

T : L2(T ) → P0(T ) be the orthogonal

projection.
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Let vh ∈ Vh0 and φ ∈ H1(Ω). For i ∈ {1, 2, · · · , n}, we have that Π1
h

∂vh

∂xi
∈ H1

0 (Ω). Using

Green’s formula gives

∑

T∈Th

∫

T

(

φ
∂2vh

∂x2
i

+
∂φ

∂xi

∂vh

∂xi

)

=
∑

T∈Th

∫

∂T

φ
∂vh

∂xi
νi =

∑

T∈Th

∫

∂T

φ
(∂vh

∂xi
− Π1

h

∂vh

∂xi

)

νi

=
∑

T∈Th

∫

∂T

(φ − P 0
T φ)

(∂vh

∂xi
− Π1

h

∂vh

∂xi

)

νi +
∑

T∈Th

∫

∂T

P 0
T φ
(∂vh

∂xi
− Π1

h

∂vh

∂xi

)

νi

=
∑

T∈Th

∫

∂T

(φ − P 0
T φ)

(∂vh

∂xi
− Π1

h

∂vh

∂xi

)

νi +
∑

T∈Th

∫

T

P 0
T φ

∂

∂xi

(∂vh

∂xi
− Π1

h

∂vh

∂xi

)

.

Using the Schwarz inequality and the interpolation theory, we have
∣

∣

∣

∑

T∈Th

∫

∂T

(φ − P 0
T φ)

(∂vh

∂xi
− Π1

h

∂vh

∂xi

)

νi

∣

∣

∣

≤
∑

T∈Th

‖φ − P 0
T φ‖0,∂T

∥

∥

∥

∂vh

∂xi
− Π1

h

∂vh

∂xi

∥

∥

∥

0,∂T

<
∼
∑

T∈Th

h|φ|1,T |vh|2,T
<
∼ h|φ|1,Ω|vh|2,h.

For T ∈ Th, we define

Gi(T ) = span{ (ξ2
j − 1)ξα | 1 ≤ j ≤ n; αi = 0, αj ≤ 1, j 6= i},

and we have
∫

T

∂p

∂xi
= 0, ∀p ∈ Gi(T ).

By the definition of PA(T ),

∂vh

∂xi
− Π1

h

∂vh

∂xi
∈ Q1(T ) + Gi(T ).

Because the left hand side above vanishes at the vertices of T ,

∂vh

∂xi
− Π1

h

∂vh

∂xi
∈ Gi(T ).

Consequently, we obtain that for any φ ∈ H1(Ω) and any vh ∈ Vh0,

∣

∣

∣

∑

T∈Th

∫

T

(

φ
∂2vh

∂xi∂xj
+

∂φ

∂xi

∂vh

∂xj

)
∣

∣

∣

<
∼ h|φ|1,Ω|vh|2,h (4.8)

is true when 1 ≤ i = j ≤ n.

Now let i, j ∈ {1, 2, · · · , n} and i 6= j. On each (n−1)-dimensional face of T ∈ Th, νiνj = 0.

It follows that ∂
∂xi

vh is the tangent derivative along the faces on which νj is not zero. Since

vh ∈ H1
0 (Ω), it is follows that

∑

T∈Th

∫

T

(

φ
∂2vh

∂xi∂xj
+

∂φ

∂xi

∂vh

∂xj

)

=
∑

T∈Th

∫

∂T

φ
∂vh

∂xj
νi = 0.
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That is, (4.8) holds for all i, j ∈ {1, 2, · · · , n}.

By (4.8) and the following equality,

ah(v, vh) − (∆2v, vh) =

n
∑

i=1

∑

T∈Th

∫

T

(

∆v
∂2vh

∂x2
i

+
∂∆v

∂xi

∂vh

∂xi

)

+
∑

1≤i6=j≤n

∑

T∈Th

∫

T

( ∂2v

∂xi∂xj

∂2vh

∂xi∂xj
+

∂3v

∂x2
i ∂xj

∂vh

∂xj

)

−
∑

1≤i6=j≤n

∑

T∈Th

∫

T

(∂2v

∂x2
i

∂2vh

∂x2
j

+
∂3v

∂x2
i ∂xj

∂vh

∂xj

)

, (4.9)

we obtain the conclusion of the lemma for the n-dimensional Adini element.

Now we consider the n-dimensional BFS element. Let 1 ≤ i ≤ n, and let F±
i be the

(n − 1)-dimensional faces of T with ξi = ±1. Let Ḡi(T ) be defined by

Ḡi(T ) = span{(ξ2
j − 1)(ξ2

k − 1)ξα| 1 ≤ j < k ≤ n, j, k 6= i; αi = 0, αl ≤ 1, l 6= i}.

It can be verified that for any vh ∈ Vh0,
∂

∂xi
vh can be divided into two parts:

∂vh

∂xi
= Q̃i

(∂vh

∂xi

)

+ Q̄i

(∂vh

∂xi

)

,

where for any T ∈ Th,

Q̃i

(∂vh

∂xi
)
∣

∣

∣

F±
i

∈ PA(F±
i ), Q̄i

(∂vh

∂xi

)

|T ∈ Ḡi(T ).

Using Green’s formula gives

∑

T∈Th

∫

T

(

φ
∂2vh

∂x2
i

+
∂φ

∂xi

∂vh

∂xi

)

=
∑

T∈Th

∫

∂T

φ
∂vh

∂xi
νi

=
∑

T∈Th

∫

∂T

φQ̃i

(∂vh

∂xi

)

νi +
∑

T∈Th

∫

∂T

φQ̄i

(∂vh

∂xi

)

νi

=
∑

T∈Th

(

∫

F+

i

φQ̃i

(∂vh

∂xi

)

−

∫

F−
i

φQ̃i

(∂vh

∂xi

))

+
∑

T∈Th

∫

∂T

φQ̄i

(∂vh

∂xi

)

νi.

From the definition of Ḡi(T ), we know that Q̃i(
∂vh

∂xi
)|F±

i
is just the Adini interpolation function

of ∂vh

∂xi
with respect to variable x1, · · · , xi−1, xi+1, · · · , xn, and we obtain that

∑

T∈Th

(

∫

F+

i

φQ̃i

(∂vh

∂xi

)

−

∫

F−
i

φQ̃i

(∂vh

∂xi

))

= 0. (4.10)

Since Q̄i

(

∂vh

∂xi

)

is independent of ξi on each element T ∈ Th, we have

∑

T∈Th

∫

∂T

φQ̄i

(∂vh

∂xi

)

νi =
∑

T∈Th

∫

∂T

(φ − P 0
T φ)Q̄i

(∂vh

∂xi

)

νi.

Using the Schwarz inequality and the interpolation theory, we obtain

∣

∣

∣

∑

T∈Th

∫

∂T

φQ̄i

(∂vh

∂xi

)

νi

∣

∣

∣

<
∼ h|v|1,Ω|vh|2,h. (4.11)
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It follows from (4.10) and (4.11) that (4.8) is true for 1 ≤ i = j ≤ n.

Similarly, we can show that (4.8) is true for all i, j ∈ {1, 2, · · · , n}. Then the conclusion of

the lemma holds for the n-dimensional BFS element.

By a similar argument used in [11], we can obtain the following lemma.

Lemma 4.3. Let Vh0 be the finite element space of the n-rectangle Morley element, the n-

dimensional Adini element or the n-dimensional BFS element. Then

|vh|2,h ≤ ‖vh‖2,h
<
∼ |vh|2,h, ∀vh ∈ Vh0. (4.12)

Now let u and uh be the solutions of problems (4.3) and (4.5) respectively. Combining

Theorem 3.2, Lemmas 4.1-4.3 and the well-known Strang Lemma, we finally obtain the following

convergence results.

Theorem 4.1. Let Vh0 be the finite element space of the n-rectangle Morley element. Then

‖u − uh‖2,h
<
∼ h(|u|3,Ω + h‖f‖0,Ω) (4.13)

when u ∈ H3(Ω).

Theorem 4.2. Let Vh0 be the finite element space of the n-dimensional Adini element or the

n-dimensional BFS element. Then

‖u − uh‖2,h
<
∼ h(h|u|4,Ω + |u|3,Ω) (4.14)

when u ∈ H4(Ω).
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