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Abstract. The high-order harmonic generation (HHG) has attracted much attention due to its wide 

application in attosecond science in last decades. The selection rules have also been broadly studied in 

experiments and theories since they play an important role in HHG. In this review, we give an overview of 

recent developments on selection rules of HHG from atoms to molecules. For targets with rotational 

symmetries, if the rotational symmetries of targets and laser pulses are the M-fold (the projective symmetry 

on the laser polarization plane) and L-fold, the selection rules are Nk±1, where N is the the greatest common 

divisor of M and L. However, for asymmetric molecules in non-Born-Oppenheimer approximation, the 

situation is more complicated, where the nuclear dipole acceleration can produce even harmonics, but it is 

three orders lower than that of the electron. Hence, the HHG is mainly relied on the electronic dipole 

acceleration. In this case, the broken degree of system-symmetry dominates the generation of even-order 

harmonics. 

 1. Introduction 

When atoms or molecules interact with strong laser fields, many 
interesting intense field phenomena will occur, such as high-order 
harmonic generation (HHG) [1-10], non-sequential 
double ionization [11], below-threshold harmonic generation (BTH) 
[12-16], multiple ionization [17,18], above-threshold ionization 
[19], and Coulomb explosion (CE) [20], and so on. These 
phenomena deepen on our understanding of dynamic 
mechanisms in the interaction between atoms or molecules and 
intense fields. 

The HHG attracts a lot of attention since it provides a new 
type of coherence light source of ultra-short wavelength. Many 
fancy phenomena and applications have also been found in last 
decades [21-26]. One of the most important achievements is that 
the HHG supplies us an important avenue to generate ultra-short 
attosecond laser pulses [27, 28], which pushes the investigations 
on the ultra-fast measurement from the femtosecond magnitude 
to the attosecond magnitude [26].  

The step of HHG developments dramatically increased in 
1980s. Many groups successfully observed HHG from gaseous 
targets in experiments [29-34]. However, the early experiments 
only observed the harmonics with few orders. In 1993, Macklin et 
al. [33] firstly found that harmonics beyond 100 orders could be 
produced by a laser field with the wavelength of 806nm and the 
peak intensity ≥10

15
 W/cm

2
. At the same year, L’Huillier et al. also 

reported the generation of 135th harmonics from Ne driven by a 
1ps, 1.06µm laser pulse [34]. These findings indicate the potential 
possibility for the high efficient generation of coherent radiation 
at the extreme ultraviolet region (XUV). 

After the HHG potential applications were discovered, the 
HHG has been widely investigated [35-37]. So far the physical 

process of HHG can be well understood by the semi-classical 
three-step model [38]: ionization, acceleration and recombination. 
Moreover, the harmonic spectra produced from the atoms in a 
multi-cycle laser pulse present some common features: (i) the 
harmonic spectrum consists of three parts: a fast drop in the low-
order yield, following a plateau and a sharp cutoff [39], the cutoff 
energy is around Ip+3.17Up, where Ip is the ionization energy of the 
atom and Up is the ponderomotive energy [40], (ii) only odd 
harmonics are produced [41-43]. In order to explain the 
disappearance of even harmonics, the early explanation is given 
upon the foundation of a perturbative analysis about the non-
linear optical susceptibilities [44]. However, since perturbation 
theory has been broken down in so strong fields, one may expect 
that a more reasonable explanation can be proposed. Then a non-
perturbative proof which invokes the concept of inversion 
symmetry is given by Ben-Tal et al. [45]. In this theory, they 
concluded that when the system possesses inversion symmetry, 
the selection rules for HHG are 2k±1 (k=1,2,3,...), that is to say, the 
harmonic spectrum is composed of only odd harmonics. 

Molecules have more degrees of freedom than that of atoms, 
thus the selection rules for the molecular high-order harmonic 
generation (MHOHG) are more complex. Specifically, in a circularly 
polarized (CP) laser pulse, the allowed harmonics for molecular 
targets are determined by the rotational symmetries of molecules. 
If a molecule possesses M-fold rotational symmetry, the allowed 
harmonic orders in one CP laser field are kM±1 (M is a positive 
integer and k=0,1,2,...), in which the efficiency of HHG is low [46]. 
In a linearly polarized (LP) laser field, the molecules with inversion 
symmetry obey the same selection rules as atoms [47]. Very 
recently, the group of professor Peixiang Lu [47] investigated the 
selection rules in HHG from more complicated molecules driven by 
different laser fields and got an important conclusion: the allowed 
harmonic orders can be directly judged by the associated 
rotational symmetries (ARS) of the target-laser system. For the 
stereoscopic targets, the ARS is determined by the symmetry of 
the projection of the targets rather than by the symmetry of the 
targets itself. For the laser pulse, the symmetry contributing to 
ARS can be decided by the symmetries of the Lissajous figure and 
its dynamical directivity [47]. Recently, the circularly polarized 
molecular high-order harmonics have been generated due to the 
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optional selection rules of HHG in a bicircular laser [48, 49]. 
However, for asymmetric molecules in non-Born-Oppenheimer 
approximation, the situation is confusing. In 2001, Kreibich et al. 
firstly found that a model HD molecule can produce intense even 
harmonics in non-Born-Oppenheimer approximation [50]. Then 
the even harmonics were also observed from asymmetric 
molecules in Born-Oppenheimer approximation [51]. These works 
seemed to indicate that the even-order harmonics could appear as 
long as the systemic symmetry was broken regardless of in Born-
Oppenheimer approximation or non-Born-Oppenheimer 
approximation. Nevertheless, in 2016, Du et al. found that the HD 
molecule still generated only odd harmonics in non-Born-
Oppenheimer approximation though the generation of even 
harmonics is possible in principle [52]. Then Yue et al. investigated 
the HHG for HD

+
 and HeH

2+
 in non-Born-Oppenheimer 

approximation and found that HD
+
 generated only odd harmonics 

while HeH
2+

 generated both odd and even harmonics [53]. And 
they invoke a concept of broken degree of system-symmetry to 
interpret the different odd-even property between the harmonic 
spectra of asymmetric molecules HD

+
 and HeH

2+
 [53]. 

The purpose of this review is to give an account of the history 
and recent status of the studies on the selection rules for HHG 
from atoms or molecules in Born-Oppenheimer approximation 
and non-Born-Oppenheimer approximation. The organization of 
this paper is as follows. In Sec. 2, we briefly introduce the methods 
of solving the time-dependent Schrödinger equation (TDSE). In Sec. 
3, we will present the selection rules for HHG in Born-
Oppenheimer approximation and non-Born-Oppenheimer 
approximation. Finally, we will summarize in Sec. 4. 

2. Theoretical methods  

In this section, we will sketch some theoretical methods for the 
HHG, including the numerical solution to TDSE in Born-
Oppenheimer approximation and non-Born-Oppenheimer 
approximation.  

2.1. Numerical solution of TDSE in Born-Oppenheimer 
approximation 

Here we just present a one-dimensional (1D) numerical solution of 
TDSE using the split-operator method for the targets with two 
nuclei. For multiple-dimensional numerical solutions with different 
methods (e. g. B-spline). The readers can gain more details in 
relevant references and a recent review [54]. 

The 1D TDSE describing the interaction between targets and 
strong laser pulses in the dipole approximation and the length 
gauge can be given as (atomic units are used throughout) 
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with  ( )     √  (    ⁄ )    √  (    ⁄ ) ⁄⁄ , 
where Z1 and Z2 are the electric charges of two nuclei, and a is the 
soft-core parameter. R is the inter-nuclear distance. E(t) is the 
laser field. In Born-Oppenheimer approximation, it assumes that 
the molecular vibrational period is longer than the laser pulse 
duration. Thus the nuclei are considered to be frozen. After the 
initial state is obtained by propagation in imaginary time. The 
equation (1) can be numerically solved by the split-operator 
method [55]. 

 (      )         ⁄                (   )   (   )     (2) 

where T is the kinetic operator, and V is the interaction potential 
considering all the potential energy of systems. Then through the 

Ehrenfest's theorem [56], the dipole acceleration a(t) can be given 

as  ( )   ⟨ ( )| ⃑⃑  | ( )⟩. Finally, one can obtain the harmonic 

spectrum by Fourier-transforming the dipole acceleration 
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q is the harmonic order and ω0 is the circular frequency of laser 
field. 

2.2. Numerical solution of TDSE in non-Born-Oppenheimer 
approximation 

To show the effect of the nuclear motion in the process of 
HHG, the numerical calculation of TDSE in non-Born-Oppenheimer 
approximation is proposed [50]. In this part, we only introduce a 
numerical calculation for a typical HD molecule with two electrons 
and two nuclei. In this calculation, the interaction between the HD 
molecule and the laser field is treated within dipole approximation. 
Then the Hamiltonian reads 
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with the dipole operator  ̂   (     )    . For the 
interactions, it chooses the soft Coulomb potential [57] 
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z1 and z2 are the coordinates of two electrons. R is the inter-
nuclear distance, and Mn=M1+M2 is the total nuclear mass.    
  (    )⁄  and          ⁄  are respectively the reduced 
mass of nucleus and electron. E(t) is the laser field, and 
  (     )   ⁄  is the mass-asymmetry parameter. The time-
dependent wave function can be obtained by numerical solving 
TDSE using the Crank-Nicolson method [58]. Then the dipole 
moment can be got by 
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de(t) and dn(t) are the electronic dipole moment and the relative 
nuclear dipole moment, respectively. The corresponding dipole 
acceleration is given via Ehrenfest's theorem [56] 

        

)()()(||)(

)(||)(
1

)(a
21

tatat
R

H
t

t
z

H

z

H
tt

ne

n

e
























                   (7) 

where ae(t) and an(t) are the electronic dipole acceleration and 
the relative nuclear dipole acceleration. The harmonic spectrum 
can be easily got by Fourier-transforming the dipole acceleration. 

For the numerical calculation of TDSE for molecular ion, it is 
similar to that of HD molecule. The relative details can be found in 
Refs. [50, 53, 59]. 

3. The selection rules for HHG from atoms and 
molecules in Born-Oppenheimer approximation 
and non-Born-Oppenheimer approximation 

After the HHG being a hot topic, the selection rules as an 
important feature of HHG attract much attention. We will start 
from investigations of the selection rule for atomic HHG, including 
the early experimental results and the theoretical studies. Then 
we will review the selection rules of HHG from molecules 
possessing symmetry to asymmetric molecules in Born-

 (4) 
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Oppenheimer approximation and non-Born-Oppenheimer 
approximation. It aims to give a detailed knowledge of selection 
rules for MHOHG in recent researches in non-Born-Oppenheimer 
approximation.  

3.1. The selection rules for HHG from atoms 

In 1988, the suppression of even harmonics in the harmonic 
generation spectra (HGS) from Xe has been observed in 
experiment [41]. In the following, X. F. Li et al. presented an 
experimental measurement of HHG in a 15-Torr rare-gas medium 
exposed to a strong 1064-nm laser field [42]. They also noticed the 
vanish of even harmonics in HGS for different rare gases. Their 
experimental results are reproduced in figure 1, which shows that 
the HGS are composed of only odd harmonics for different rare 
gases. Aroused by the experimental studies, there were some 
theoretical works for HHG [50-62]. And the conclusion of the 
theoretical simulation is in good agreement with that of the 
experiments [42]. As one can see from the theoretical results in 
figure 2, there is only odd harmonics in the HGS for Xe. The 
corresponding explanation is based on the non-linear optics, 
which employs a perturbative analysis [44]. But, as well known, 
the perturbative theory is inapplicable to the strong fields. Thus it 
is urgent to find a non-perturbative theoretical interpretation. 

 

Figure 1: (a) Harmonic spectrum obtained using Xe gas. The laser intensity was about 
3×1013W/cm2 and the Xe pressure was approximately 10 Torr. The harmonic spectra 
obtained from (b) Ar, (c) Xe and (d) Kr by a laser field with the peak intensity of 
3×1013W/cm2 and the wavelength of 1064nm. The gaseous pressure was 15 Torr. (a) 
is taken from [41], (b), (c) and (d) are taken from [42]. 

Then in 1993, Ben-tal et al. proposed an alternative proof 
which does not use perturbation theory and therefore holds for 
the strong fields [45]. The proof can be reproduced in the 
following: The probability to gain nth harmonic from a system is 
given 

  
( )
   |   (    )| ̂ 

      |  (    )  |
               (8) 

where   (    )   is given by   (    )     (    )  (    ) . The 
  (    ) is the single Floquet state. ε is named quasi-energy. The 
double bracket notation stands for the integral over space and 

time.  ̂ and ω0 are the dipole moment operator and the laser 
circular frequency, respectively. For atomic system with a LP laser 
field, the Hamiltonian H(t) is invariant under the second dynamics 
symmetry (DS) operator 
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This indicates that the allowed harmonics are odd orders (n is odd). 
And the theoretical explanation holds for HGS of any symmetric 
atomic system. Actually, one also noticed that the systemic 
symmetry depended on both the symmetry of the atoms and laser 
fields. In 1995, S. Long et al. found that the allowed harmonic 
orders were only relied on the symmetry of laser pulses for atomic 
targets, because the atoms are spherical symmetry [63]. 

 

Figure 2: The harmonic spectrum for Xe by a 1064-nm laser pulse with with the peak 
intensity of 3×10

13
W/cm

2
, obtained from the theoretical calculation. Reprinted figure 

from [62]. 

3.2. The selection rules for HHG of molecules with 
rotational symmetries in Born-Oppenheimer 
approximation. 

Molecules have more degrees of freedom than atoms which is the 
reason that the HGS exhibit rich properties, thus the selection 
rules of MHOHG are more complex. In 1998, O. E. Alon et al. 
discussed the application of the dynamical symmetry of crystals to 
generate high harmonics [46]. In their theory, for symmetric 
targets in CP laser field, the Hamiltonian keeps invariant under a 
N-fold transformation,   

         )/2,N/2(P̂ 0N  Ntt   ,            (12) 

where t is the time and    is the azimuth angle. Therefore the 

nonzero term of   
( )

equation (8) meets: 

                     1]
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It is fulled only with n=kN±1, where k is an integer. They presented 
the HGS of accurate numerical calculations for N=100, which was 
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reprinted in figure 3. As expected, the generation of harmonics 
were the 99th, 101th, 199th, 201th, ... Orders. Their work extends 
the selection rules of atomic HHG to the systems with N-fold 
rotational symmetry. In other words, for a molecule possessing N-
fold rotational symmetry, the allowed harmonics in CP laser field 
are n=kN±1 (N is a positive integer and k=0,1,2,...) [46]. For the 
molecules with inversion symmetry (N=2), they obey the same 
selection rules as atoms in LP laser pulses. 

 

Figure 3: The harmonic spectrum for models of N=100, which is placed equidistantly 
on a circle in a CP laser field with the intensity of 1.8×1013W/cm2. Reprinted figure 
from [46]. 

Very recently, X. Liu et al. demonstrated the selection rules 
based on the associated rotational symmetry (ARS) of the target-
laser system [47]. Firstly, they studied the selection rules for 
planar-molecular HHG in different laser fields. They defined that if 
a molecule possessed M-fold rotational symmetry, it denoted as 
CM. Similar to targets, the L-fold symmetries of laser fields are 
expressed as CL. Their results are shown in figure 4. The Lissajous 
figures of the CP, LP, (1:2and 1:3) counter-rotating bicircular (CRB) 
laser fields are shown in the top row of the Figs. 4, respectively. 
The HGS of BCl3 and C6H6 molecules by CP, LP, 1:2CRB and 
1:3CRB laser fields are exhibited in figures (a)-(h). In Figs.(a) and 
(e), the selection rules are respective 3k±1 and 6k±1, which 
correspond to the truth that the BCl3 and C6H6 molecules possess   

C3 and C6 symmetry. It indicates that the allowed harmonics 
driven by CP laser fields are only relied on the symmetries of the 
molecules (n=kN±1), which agrees well with the conclusion in Ref. 
[46]. 

In fact, the allowed harmonics are determined by the greatest 
common divisor (GCD) of ARS for the molecules and laser fields, 
which is demonstrated by F. Mauger et al. [64]. In this theory, the 

DS operator  ̂ ̃should be substituted by the operator ̂ ̃, where 

 ̃ is the GCD of the ARS for the molecules and laser fields. In 

conclusion, the selection rules are   ̃   when the full time-

dependent Hamiltonian is invariant under a combined  ̃ -fold 
transformation. Then in figure 4(b), the BCl3 and LP laser field 
have C3 (M=3) and C2 (L=2) symmetry, respectively. Because the 
GCD of M and L is 1, the allowed harmonics are k±1. In figure 4(g), 
C6H6 and 1:2CRB laser field possess C6 (M=6) and C3 (L=3) 
symmetry. The GCD of M and L is 3. Corresponding, the selection 
rules of HGS are 3k±1. The results of figures 4 (c), (d), (f) and (h) 
are also explained based on the GCD rule of symmetries in the 
paper [47]. Here, we do not repeat again. 

The above results show that the selection rules for planar 
molecules are dependent on the ARS of the molecules and laser 
fields: If the molecules and laser fields possess M-fold and L-fold 
symmetries, the allowed harmonics should be Nk±1 orders, in 
which N is the GCD of M and L.  

Next, they further investigated the selection rules for 
stereoscopic molecules. They discovered that the effective 
symmetry of the stereoscopic molecule should rely on the 
rotational symmetry of its projection on the polarization plane, 
rather than that of the target itself. They showed the HGS for 
different oriented SF6, in which the laser pulses were along the z-
axis.The results are shown in figure 5. For SF6 orientated as Fig. 
5(a), the projection on the polarization plane (x-y) is a regular 
hexagon with C6 symmetry. Thus the GCDs of ARS in 1:2(C3), 
1:3(C4), 1:5(C6) CRB laser fields are C3, C2, and C6, and the 
selection rules should be 3k±1, 2k±1, and 6k±1, which agrees with 
the results in Figs. 5(b)-5(d). For SF6 orientated as Fig. 5(e), the 
projection on the polarization x-y plane forms a square with C4 
symmetry. The corresponding GCDs of ARS are 1, 4, and 2. 
Therefore, the harmonics obey k±1, 4k±1, and 2k±1 selection rules. 
The HGS are shown in Figs. 5(f)-5(h). 

 

Figure 4: The harmonic spectra from (a)-(d) BCl3 and (e)-(h) C6H6 driven by LP, CP, 1:2CRB, 1:3CRB laser fields. The top row shows the Lissajous figures of laser fields. Reprinted 
figure from [47]. 
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In addition, they also found that the symmetry of a laser field 
could not be intuitively judged only by the geometric structure 
(that is to say, the selection rules also depended on the dynamical 
directivity of the laser fields). They displayed that when 
considered the dynamical directivity of laser fields, the orthogonal 
two-color (OTC) laser fields with frequency ratios 1:2 and 1:3 
respectively had C1 and C2 symmetries instead of both C2 
symmetry. In order to confirm the above conclusion, the authors 
calculated the HGS from CO and N2 driven by 1:2 and 1:3OTC laser 
pulses, as shown in Fig. 6. One can see that the allowed harmonic 

orders are both k±1 in figures 6(a) and 6(b). This is because that 
the CO possesses C1 symmetry, which leads to the ARS always 
being C1 regardless of fields. For figure 6(c), the allowed harmonics 
are k±1, because the ARS of N2 (C2 symmetry) and 1:2OTC field (C1 
symmetry) is C1. For figure 6(d), the allowed harmonics are 2k±1, 
because the symmetries of N2 and 1:3OTC field are both C2 (the 
ARS is C2). As for their previous calculations using LP, CP and CRB 
laser fields, the symmetries do not change when dynamical 
directivity of the laser pulses are taken into account. 

 

Figure 5: The top views of two different oriented SF6 molecules from the z-axis are shown in (a) and (e). The harmonic spectra from SF6 orientated as in Fig. 5(a) by (b)1:2, (c)1:3, 
and (d)1:5 CRB laser fields, and the laser pulses are along the z-axis. (f)-(h) same as (b)-(d), but for SF6 orientated as in Fig. 5(e). Reprinted figure from [47]. 

Their work shows that the ARS contributes to the selection 
rules for MHOHG: For the stereoscopic molecules, the ARS 
dominates by the symmetry of the projection of the molecule 
rather than by the symmetry of the molecule itself. For the laser 
field, the ARS could be judged by the symmetries of the Lissajous 
figure and its dynamical directivity. And the ARS of molecules and 
laser fields obeys the GCD rule. For the molecules and laser fields 
with M-fold and L-fold symmetries, the selection rules are Nk±1, in 
which the GCD of M and L is N. This theory can also apply to atoms 
(the symmetry of    ).  

3.3. The selection rules for HHG from asymmetric molecules 
in non-Born-Oppenheimer approximation. 

In fact, Ben-Tal et al. had already pointed out that even harmonics 
might appear when the systemic symmetry was broken by 
modifying the laser field and potential in the end of their paper [45]. 
But, the truth tells us that there is a more complex physics process 
for asymmetric molecules in non-Born-Oppenheimer approximation. 

In 2001, M. Lein et al. first investigated the harmonic 
generation from HD and H2 molecules beyond Born-Oppenheimer 
approximation [50]. They found that for H2, the HGS only exhibit 
odd orders (Fig. 7(b)), while for HD, the even harmonics were also 
observed (Fig. 7(a)). They attributed it to the influence of non-Born-
Oppenheimer approximation. In the non-Born-Oppenheimer 
approximation, the asymmetry parameter   of H2 is equal to 0, thus 
it obeys the same selection rules as molecules with inversion 
symmetry (2k±1). Whereas, for HD, due to    , the symmetry of 
HD molecule is broken and the even harmonics thus can appear in 
principle.  

A few years later, in a theoretical work about attosecond 
pulses from an asymmetric molecule [51], both the odd and even 
harmonics were observed from the asymmetric molecule in Born-
Oppenheimer approximation. The theoretical calculation is shown 
in Fig. 8. One can find that for an asymmetric molecule, the HGS are 
composed of odd and even harmonic orders, but for an atom only 
odd harmonics in figure 8. Their theoretical explanation shows that 
when asymmetric molecules interact with laser pulses, the 
ionization is asymmetry, which leads to the generation of even 
harmonics.  

 

Figure 6: The harmonic spectra from CO obtained by (a)1:2 and (b) 1:3OTC laser pulses. 
(c) and (d) same as (a) and (b) but for N2. The Lissajous figures of laser fields are shown 
on the top row. Reprinted figure from [47].  
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Figure 7: The harmonic spectra obtained from (a) HD and (b) H2 molecules in non-Born-
Oppenheimer approximation. The laser pulse is 770nm with a peak intensity of 
1014W/cm2. Taken from [50]. 

 

Figure 8: Spectra of harmonics from the atom (blue line) and the asymmetric molecule 
(red line) driven by a 800nm laser pulse. The peak intensity of the laser pulse is 
5×1014W/cm2. Taken from [51]. 

The above two works seem to indicate a fact that if the 
symmetry of molecules is broken, the even harmonics should be 
produced regardless of in Born-Oppenheimer approximation or 
non-Born-Oppenheimer approximation. Unluckily, in 2016, Du et al. 
restudied the HHG from HD molecule in non-Born-Oppenheimer 
approximation [52]. An unexpected result occurs, which is that HD 
only produces odd harmonics, as shown in Fig. 9(a). Their further 
analysis reveals that though the nuclear dipole moment can 
contribute to the generation of even harmonics, there are still only 
odd harmonics in the HGS of HD, because the nuclear acceleration 
is three orders of magnitude lower than the electronic acceleration 
The result is reproduced in Fig. 10. It is clear that the nuclear dipole 
acceleration can make contribution to the generation of even 
harmonics (Fig. 10(a)), but the acceleration of electron is about 
three orders of magnitude larger than that of nuclei (Fig. 10(b)). 
One also finds that the contribution of nuclear acceleration to the 
HGS can be ignored in Fig. 9(a), in which the HGS calculated with 

  ( )     ( )  are same as that calculated with   ( ). 

 

Figure 9: (a) The harmonic spectrum calculated with (black solid line)  ( )     ( ) 
and (red dotted line)   ( ) for HD molecule. (b) The harmonic spectrum for H2 
molecule. Reprinted figure from [52]. 

 

Figure 10: (a) The harmonic spectrum for HD molecule calculated with the nuclear 
dipole acceleration an(t). (b) The corresponding acceleration of (black dotted line) 
electron and (red solid line) nuclei. The nuclear acceleration is amplified by 
  (      ⁄ ) times. Reprinted figure from [52]. 

The next year, Yue et al. did a research on the HHG for 
asymmetry molecules of HD

+
 and HeH

2+
 in non-Born-Oppenheimer 

approximation. They found that HD
+
 produced only odd harmonic 

(Fig. 11(b)), but HeH
2+

 produced both odd and even harmonic (Fig. 
11(c)). This finding confirms the conclusion that the electronic 
acceleration dominates the HHG in Ref. [52]. However, it cannot 
explain that the different odd-even property of the HGS for HD

+
 and 

HeH
2+

. Then through comparing the Coulomb potential of H2
+
, HD

+
 

and HeH
2+

, they found that the potential well of H2
+
 and HD

+ 
is 

symmetry, though the potential well of HD
+ 

has a few translation 
due to the mass-asymmetry. While for HeH

2+
, the mass and 

electron are both asymmetric, hence the potential well is 
dramatically broken. We can get the above messages from figure. 
12. Thus a concept of the broken degree of systems is invoked to 
explicate the difference of the odd-even property in the HGS 
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between HD
+
 and HeH

2+
. Specifically, for HD

+
 the systemic 

symmetry is broken in a tiny degree, which owes to the effect of 
nuclear acceleration. But this effect can be ignored. Hence, only 
odd harmonics appear in the HGS. For HeH

2+
, both odd and even 

harmonics are obtained due to the acute broken degree of the 
system. 

 

Figure 11: The harmonic spectra from (a) H2
+, (b) HD+ and (c) HeH2+ by a 770nm laser 

pulse with the intensity of 4×1014W/cm2. The insets are the enlarged area of the HGS 
from 40 to 50. The left (right) column is the 1D (3D) simulations. Reprinted figure from 
[53]. 

 

Figure 12: Coulomb potential for (black solid line) H2
+, (red dashed line) HD+ and (blue 

dashed-dotted line) HeH2+. Reprinted figure from [53]. 

4. Conclusions 

The harmonic spectra obtained from the interaction between 
strong laser pulses and targets can be applied to creating coherent 
light sources and ultra-fast detection. In order to well understand 
the progresses of HHG, one needs to grasp some important 
features of HHG, in which one of these characters is the generation 
of odd-even order harmonics. The recent studies reveal that the 
selection rules of HHG for different targets are quite intricate in 
non-Born-Oppenheimer approximation.   

For rotational-symmetric targets, the ARS of targets and laser 
pulses dominates the HHG. And the ARS follows the GCD rules. In 
detail, when the targets and laser pulses possess M-fold (the 

effective symmetry, which is the projection-symmetry on the 
polarization plane) and L-fold rotational symmetries, the selection 
rules of HHG ought to be Nk±1, where N is the GCD of M and L.  

For asymmetry targets in non-Born-Oppenheimer 
approximation, the allowed harmonic orders in the HGS are relied 
on the electronic dipole acceleration, since the electronic dipole 
acceleration is three orders of magnitude larger than that of nuclei, 
though the nuclear dipole acceleration can contribute to generating 
even harmonics. Moreover, both odd and even harmonics may be 
produced when the symmetry of systems is broken. However, the 
obvious even harmonics can be obtained only if the systemic 
symmetry is broken to a certain degree.  

However, it is still an open question how to define the broken 
degree of the systemic symmetry, which needs us to further 
investigate. In addition, when targets interact with the CRB laser 
pulse, the influence of the ionization symmetry to selection rules of 
HHG will be a significant topic to be addressed in the future. 
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