
Advances in Applied Mathematics and Mechanics
Adv. Appl. Math. Mech., Vol. 10, No. 1, pp. 159-183

DOI: 10.4208/aamm.OA-2017-0020
February 2018

Nonlinear Dynamics of Clamped Initial Imperfect

Functionally Graded Material Circular Cylindrical

Shell Considering the Axisymmetric Mode

Yuxin Hao1,∗, Wei Li1, Wei Zhang2, Shuangbao Li3

and Minghui Yao2

1 College of Mechanical Engineering, Beijing Information Science and Technology
University, Beijing 100192, China
2 College of Mechanical Engineering, Beijing University of Technology, Beijing 100124,
China
3 College of Science, Civil Aviation University of China, Tianjin 300300, China

Received 26 January 2017; Accepted (in revised version) 18 May 2017

Abstract. This paper investigates the dynamic responses of clamped-clamped func-
tionally graded material circular cylindrical shell at both ends with small initial geo-
metric imperfection and subjected to complex loads. The small initial geometric imper-
fection of the cylindrical shell is characterized with the shape of hyperbolic function.
The effects of radial harmonic excitation combined with thermal loads are considered.
The classical theory and von-Karman type nonlinear geometric equation are applied to
obtain partial differential equation of the functionally gradient material circular cylin-
drical shell by the Hamilton’s principle. The partial differential dynamic equations
are truncated by the Galerkin technique, using the modal expansion with the inclu-
sion of axisymmetric and asymmetric modes. The effective material properties vary
in the radial direction following a power-law distribution accordance with the volume
fractions. The effects of volume fraction indexes, ratios of thickness-radius and length-
radius on the first three dimensionless natural frequencies of the perfect cylindrical
shell and its counterpart with imperfection are given. The effects of radial external
loads, initial geometric imperfections and volume fraction index on the nonlinear dy-
namic response of the clamped-clamped FGM circular cylindrical shell are discussed
by numerical calculation.
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1 Introduction

The functionally gradient material (FGM) circular cylindrical shell structures whose ma-
terial properties vary gradually and smoothly in thickness direction have been found to
be widely applied in space vehicles, nuclear plants and so on due to their capacity to
withstand high levels of thermal, mechanical and acoustic pressure. Under complicated
working conditions these shells may cause a complicated nonlinear dynamics [1].

Recently, the dynamics of FGM circular cylindrical shells have attracted increasing
research efforts. Firstly, the focus is put on the studies of natural frequencies of the FGM
circular cylindrical shell. Some works dealt with the effect of physical and geometric pa-
rameters and edge conditions on the value of natural frequencies for functionally graded
material circular cylindrical shell, see [2–5]. Assumed the axisymmetric conditions, As-
gari and Akhlaghi [6] presented natural frequencies of thick hollow limited length FGM
cylinders, according to 3D equations of elasticity.

Bhangale and Ganesan [7] analyzed the frequency behavior of vibrating non-
homogeneous FGM magneto-electro-elastic finite cylindrical shells with simply support-
ed boundary (SS). The influence of magnetic and piezoelectric on the frequency of struc-
tures is evaluated. The free vibration of functionally graded material cylindrical shells
was studied by Cao and Wang [8]. There are some holes in the FGM cylindrical shell-
s. The effects of holes shape, number and location on the frequencies were analyzed.
Sepiani et al. [9] researched the buckling and free vibration properties of cylindrical shell
with static and harmonic excitation along axial direction. The inner of the shell is the
FGM layer and the out surface of the circular cylindrical shell is isotropic elastic layer.
Both the first order shear deformation theory and the classical shell theory were used in
theoretical formulations.

Using the generalized thermo-elasticity theory and second-order shear deformation
shell theory, Bahtui and Eslami [10] researched the response of FGM circular cylindrical
shell which is subjected to thermal shock load. Considering the effect of thermal and
mechanical coupling combined with rotary inertia, Galerkin method and the Laplace
transform were used to formulate the problem. Ng et al. [11] studied the influences of
the volume fraction on the parametric response of FGM cylindrical shells under harmonic
axial excitation, especially the positions and range of stability.

About the nonlinear dynamics, Mahmoudkhani et al. [12] used Donnell’s nonlinear
shallow shell theory and multiple scales methods to study the periodic solutions and
their stability of simply supported circular cylindrical shells with the primary resonance.
The sufficient and necessary conditions for the emergence of companion mode were dis-
cussed. Bichetal and Nguyen [13] investigated nonlinear amplitude frequency response
and nonlinear dynamic of FGM circular cylindrical shells by using Donnell shell theory.
Hao et al. [14] presented the nonlinear dynamics of SS functionally graded material cir-
cular cylindrical shell with 1:2 internal resonance between first two modes but without
considering the axisymmetric mode. On the condition that primary resonance and 1:2
internal resonance of the system between two modes, Du and Li [15] dealt with the non-
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linear vibrations of FGM cylindrical shells with simply supported boundaries. Shen [16]
studied nonlinear free vibrations of FGM cylindrical shells surrounded by Pasternak
foundation. Strozzi and Pellicano [17] focused on the nonlinear vibrations character of
FGM circular cylindrical shells by using the Sanders-Koiter theory. Sheng et al. [18, 19]
dealt with the nonlinear vibration control of laminated FGM cylindrical shells based on
the approach of constant gain negative velocity feedback. And also they studied nonlin-
ear vibration of functionally graded material circular cylindrical shell surrounded by an
elastic foundation in the case of the primary resonance.

In above studies, most of them focused on FGM cylindrical shells with the SS bound-
ary conditions. The research on the dynamics of clamped-clamped (CC) FGM cylindrical
shell at both ends are limited in number. Kadoli and Ganesan [20] analyzed linear free vi-
bration and thermal buckling for FGM cylindrical shells with CC boundary condition at
two ends and material properties are temperature dependent. In a uniform temperature
field, Zhang et al. [21] analyzed the nonlinear dynamics of functionally graded materi-
al circular cylindrical shell with CC boundary. The shell is subjected to the combined
external load. Alijani and Amabili [22] reviewed geometric nonlinear forced and free vi-
brations of shells that were made of traditional or advanced materials. It is presented that
most of the studies neglected the effect of axisymmetric modes in closed shells. So a more
careful investigation is required in order to illustrate the nonlinear dynamic behavior of
thin walled revolving structures.

It is known that small deviations in shape of the shells configuration because of fabri-
cation are inherent in most real structures. These geometric imperfections can affect the
dynamic behavior of the shells considerably, see Rafiee et al. [23]. When one considers
the effects of the combined external loads, the dynamics of the imperfect cylindrical shell
are usually nonlinearity and become very complex. Therefore it is important and nec-
essary to have a good knowledge about the dynamic response of cylindrical shell with
imperfection. In the literature available, many papers discussed the buckling behaviors
of imperfect FGM cylindrical shells, see [24–30]. And there is only little work dealing
with dynamics of the imperfect FGM cylindrical shells.

For the nonlinear continuous dynamics systems of FGM structures, they are infinite-
dimensional and it is necessary to discretize them into a finite dimension dynamic sys-
tem. There are some method usually used to discretize them such as multi-symplectic
method, modal expansion and so on. The generalized multi-symplectic method pro-
posed by Hu [31] is a specific finite difference method and the same authors [32–34]
applied the generalized multi-symplectic method to solve the vibration of the damping
beam. Also, they researched the chaotic motions of the embedded single-walled carbon
nanotube by considering the geometrical nonlinearity problems. On the other hand, the
solutions for the nonlinear continuous dynamics systems are assumed to be a finite lin-
ear combination of chosen function with undetermined coefficients. And the solutions
are approximated to the exact solution of the problem [35].

In this paper, a nonlinear dynamic analysis of a slightly initial imperfect FGM
clamped-clamped circular cylindrical shell at both ends which is subjected to radial loads
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is presented. The small initial geometric imperfection of the cylindrical shell is assumed
to have the same form of shape function with radial deflection. The material properties
are varied as a power-law accordance with the volume fractions along the radial direc-
tion. According to the classical shell theory and von-Karman geometric nonlinearity, the
nonlinear partial differential equation of FGM circular cylindrical shell with initial geo-
metric imperfection is deduced by the Hamilton’s principle. The partial differential gov-
erning equations are truncated by the Galerkin technique. The modal expansion which
includes the axisymmetric and asymmetric modes is used in this process since the ax-
isymmetric modes are important in nonlinear oscillations of shell, see [36,37]. The effects
of volume fraction indexes, length-radius and thickness-radius ratios on natural frequen-
cies of the cylindrical shell with imperfection and without imperfection are given. The
4th order Runge-Kutta algorithm is used to study the nonlinear dynamics of this system.

2 Formulation

An imperfect FGM circular cylindrical thin shell which the geometrical dimensions are
length L, thickness h and mid-surface radius R, respectively. The FGM circular cylindri-
cal shell is assumed to be made of a mixture of metal and ceramic. Both two end edges of
the cylindrical shell are clamped. The external force acting on the shell is along the radial
direction. A cylindrical coordinates system (x,θ,z) is located on the mid-plane, where x,
θ, and z denote respectively the axial direction, circumferential and radial directions of
the circular cylindrical shell. The deformations of mid-surface defined in the cylindrical
coordinates are u, v, w in the x, θ, and z directions showed in Fig. 1, respectively. Ac-
cording to the classical shell theory, the displacement field of the imperfect FGM circular
cylindrical thin shell can be given as

u(x,θ,z,t)=u0(x,θ,t)−z
∂w0

∂x
, (2.1a)

v(x,θ,z,t)=v0(x,θ,t)−z
∂w0

R∂θ
, (2.1b)

w(x,θ,z,t)=w0(x,θ,t)+w∗(x,θ), (2.1c)

where w∗. denotes a known small initial geometric imperfection and u0, v0 and w0 rep-
resent the displacements of a point in the middle plane of the FGM shell.

2.1 Material properties of FGM

Here the material properties of the cylindrical shell change from inner surface to outer
gradually according to a power law based on volume fractions. The effective tempera-
ture dependent material properties P, such as mass density ρ, Young’s modulus E, and
thermal expansion coefficient α are considered as

P(T)=P0

(

P−1T−1+1+P1T+P2T2+P3T3
)

, (2.2)
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Figure 1: The model of an FGM cylindrical shell and the coordinate system.

where P0, P−1, P1, P2 and P3 are the coefficients of temperature T, see [38].
The volume fraction of ceramic Vc can be written in a simple power law as

Vc(z)=

(

2z+h

2h

)n′

, (2.3)

where n′ defines volume fraction index.
And the volume fraction of metal Vm is related by

Vm=1−Vc, (2.4)

where the subscript m and c, respectively represent metal and ceramic. Thus material
properties of FGM shell are expressed as

P=PcVc+PmVm. (2.5)

It is supposed that temperature varies along the thickness and we define it by a linear
function as

T(z)=Tm+(Tc−Tm)η(z) , (2.6)

where η(z) is a polynomial series as follows, see [39]
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, (2.7)

with kcm = kc−km, and

C=1−
kcm

(n+1)km
+

k2
cm

(2n+1)k2
m

−
k3

cm

(3n+1)k3
m

+
k4

cm

(4n+1)k4
m

−
k5

cm

(5n+1)k5
m

, (2.8)

where kc and km are the thermal conductivity of ceramic and metal, respectively.
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The small initial geometric imperfection w∗ in radial direction is considered and can
be described as, see [40]

w∗=h1Φm(x)cos(nθ)+h2Φm(x), (2.9)

where

Φm(x)=cosh
λmx

L
−cos

λmx

L
−σm

(

sinh
λmx

L
−sin

λmx

L

)

, (2.10a)

σm =
coshλm−cosλm

sinhλm−sinλm
, coshλm ·cosλm =1, (2.10b)

where the constant coefficient h1 and h2 represent the amplitude of the geometrical im-
perfection.

2.2 Basic equations

Based on von-Karman strain-displacement relation and Eq. (2.1), one can be obtained the
strain components as follows







εx

εθ

γθz







=











ε
(0)
x

ε
(0)
θ

γ
(0)
xθ











+z











ε
(1)
x

ε
(1)
θ

γ
(1)
xθ











, (2.11)

where
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The constitutive relations including thermal effects are given as
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where

Q11=Q22=
E

1−ν2
, Q12=

νE

1−ν2
, Q66=

E

2(1+ν)
. (2.14)

The nonlinear dynamic equations for the imperfect FGM circular cylindrical shell under
radial dynamic load can be determined by employing the Hamilton’s principle

Nxx,x+
1

R
Nxθ,θ = I0ü0− I1ẅ0,x, (2.15a)

Nxθ,x+
1

R
Nθθ,θ = I0v̈0−

1

R
I1ẅ0,θ, (2.15b)

Mxx,xx+
2

R
Mxθ,xθ+

1

R2
Mθθ,θθ+N(w0)−

1

R
Nθθ

+F−µẇ0= I0ẅ0− I2
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1
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)

+ I1

(
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1

R
v̈0,θ

)

, (2.15c)

where F is transverse external excitation inertias, I0, I1 and I2 of the cylindrical shell can
be obtained by

Ii=
∫ h

2

− h
2

ziρdz, (i=0,1,2), (2.16)

and
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∂
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All kinds of the stiffness of the FGM cylindrical shell are given by

(

Aij,Bij,Dij

)

=
∫ h

2

− h
2
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(
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)

dz, (i, j=1,2,6). (2.18)

The force and moment resultants including the thermal loads are defined by following
integral forms
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Substituting Eqs. (2.16)-(2.19a) into Eq. (2.15a), the nonlinear dynamic models of slightly
initial imperfect FGM cylindrical shell can be expanded in form of displacements as
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. (2.20c)

Assuming the FGM circular cylindrical shell is clamped-clamped at two ends, which are
prescribed in the following form

x=0, x= L : u0=w0=v0=0,
∂w0

∂x
=0. (2.21)

2.3 Solution expansion

To analyze this nonlinear continuous dynamics system of FGM circular cylindrical shell
with small initial geometric imperfection, it is necessary to discretize them into a finite di-
mension dynamic system by using the modal expansion. For a circular cylindrical shell,
the effects of axisymmetric modes should be considered [41–44]. Generally it is difficult
for us to take all the series terms when the nonlinear dynamics of the system are analyzed.
The approach used commonly is taking a few terms in nonlinear motion governing equa-
tions based on the series form that the external excitation is expanded [35]. The research
results have shown that the vibration mode which is related to external excitation and
the corresponding axisymmetric mode with twice as much as the number of half waves
in the axial direction should be retained [15].

The expansions of u0, v0 and w0, which satisfy clamped-clamped boundary conditions
are given as follows, see [35]

u0=
M

∑
m=1

N

∑
n=1

Umn(t)
dΦm(x)

dx
cos(nθ)+

M

∑
m=1

2Um0(t)
dΦm(x)

dx
, (2.22a)
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v0=
M

∑
m=1

N

∑
n=1

Vmn(t)Φm(x)sin(nθ), (2.22b)

w0=
M

∑
m=1

N

∑
n=1

Wmn (t)Φm(x)cos(nθ)+
M

∑
m=1

2Wm0(t)Φm(x), (2.22c)

where Umn(t), Vmn(t) and Wmn(t) are time functions, m is the number of axial half waves
and n denotes circumferential waves in above equations, see Amabili [45]. The terms

M

∑
m=1

2Um0(t)
dΦm(x)

dx
and

M

∑
m=1

2Wm0(t)Φm(x)

represent axisymmetric mode.
The transverse external excitation can be described as

F=
M

∑
m=1

N

∑
n=1

fmn (t)Φm(x)cos(nθ)+
M

∑
m=1

2 fm0(t)Φm(x), (2.23)

where fmn and fm0 are the force amplitude in accordance with the modes of lateral de-
flection.

Following the results of [46,47], the inertia terms of u0 and v0 in Eq. (2.20) can be omit-
ted. Based on Galerkin integration procedure [48], a set of nonlinear motion governing
equations in the form of radial displacements with two basic vibration modes and one
axisymmetric mode relevant to them are obtained as

Ẅm+µmẆm+
3

∑
i=1

CmiWi+
3

∑
i=1

3

∑
j=1

3

∑
l=1

ζmijWiWjWl+ξ=λm f cos(Ωt), m=1,2,3, (2.24)

where Ẅ and Ẇ represent the second-order and first-order differentiation with respect
to time t, respectively. Wm denotes the amplitude of every mode, µm represents the effect
of damping. The coefficients Cmi are the linear stiffness terms caused by structure, ζmij

are the nonlinear stiffness coefficients associated with quadratic and cubic terms, ξ is
the constant matrix caused by the geometric imperfections of the cylindrical shell. The
coefficients λm in the right hand are obtained by the Galerkin method. With the aid of
computerized symbolic manipulation technique the linear and nonlinear stiffness terms
are obtained.

3 Numerical results

A numerical analysis is performed by considering the fourth order Runge-Kutta method
on an imperfect FGM cylindrical shell. The validation of numerical calculation programs
used in present was demonstrated in our previous works done by Yang and Hao [49] s-
ince these two dynamic systems have the similar expressions. For example, the quadratic
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Table 1: The temperature-dependent coefficients of SUS304/SI3N4.

Material P0 P−1 P1 P2 P3

Modulus of elasticity (in Pa)

SUS304 210.04×109 0 3.079×10−4 −6.534×10−7 0

SI3N4 348.43×109 0 −3.070×10−4 2.160×10−7 −8.946×10−11

Mass density (in kg/m3)
SUS304 8166 0 0 0 0
SI3N4 2370 0 0 0 0

Thermal expansion (in 1/K)

SUS304 12.330×10−6 0 8.086×10−4 0 0

SI3N4 5.8723×10−6 0 9.095×10−4 0 0
Poisson’s ratio

SUS304 0.3262 0 −2.002×10−4 3.794×10−7 0
SI3N4 0.24 0 0 0 0

Table 2: Convergence study of nonlinear dynamics for the FGM cylindrical shell with initial imperfection, the
amplitudes of the cylindrical shell at (x=3L/4,θ=0) with modes (1, 1), (3, 1) and (5, 1), respectively.

f /104N/m2 (N,M) Amplitude (10−3m) f /104N/m2 Amplitude (10−3m)

1 (1,1) 2.766 1.6 2.912
(3,1) 2.640 2.901
(5,1) 2.638 2.897

1.2 (1,1) 2.805 1.8 3.303
(3,1) 2.727 2.988
(5,1) 2.724 2.983

1.4 (1,1) 2.874 2.0 3.105
(3,1) 2.814 3.075
(5,1) 2.811 3.069

nonlinear terms, cubic nonlinear terms and external excitations are found in both of them.
The difference between them is that they have different value of the coefficients and dif-
ferent degrees of freedom only. It is assumed that the FGM cylindrical shell is made of
steel (SUS 304) and silicon nitride (Si3N4). The material parameters of the functionally
graded material circular cylindrical shell are listed in Table 1, see [2]. In the following
sections that the geometric of the FGM cylindrical shell are h/R=0.002 and L/R=2. Fur-
ther, radial excitation is range from the 0 to 100Kpa and the temperature is fixed at outside
surface temperature Tc=400K and internal surface temperature Tm =300K. The terms of
damps take the value of µ1=µ2=µ3=697 and the radial frequency is Ω1=Ω2=Ω3=398Hz,
the imperfection h1 =h2=0.1h and h=0.001m here.

Firstly, the mode convergence is studied. The radial amplitudes of the initial imper-
fect cylindrical shell at (x=3L/4, θ=0) with modes (1,1), (3,1) and (5,1) are calculated
in Table 2, respectively. It can be seen that the amplitude obtained with the modes (N=3,
M = 1) and (N = 5, M = 1) are nearly the same and a further increase in the number
of components does not influence the results greatly. On the other hand, the value of
the constant coefficients h1, h2 is only one-tenth of the thickness. From the viewpoint of
convergence and qualitative analysis the first two modes can be used here.
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3.1 Natural frequency

Eq. (2.24) can be used to study the natural frequency of FGM circular cylindrical shell
with initial imperfection. Neglecting the terms of damps, nonlinear stiffness and the
forcing excitation, one can get a classical linear free-vibration equation system

{ẅ}+[M]−1[K]{w}=[0]. (3.1)

Assuming the general solution of Eq. (3.1) is as

{w}=[X]eωt, (3.2)

where ω is natural frequency of this shell structure. And the natural frequency can be
obtained by solving the characteristic frequency equation.

Table 3 lists the first three dimensionless linear natural frequencies ω̄ =
ωR

√

P0(1−ν2)/E0 of circular cylindrical shell with and without imperfection for dif-
ferent volume fraction indexes, length-radius and thickness-radius ratios, respectively. It
can be seen that increasing the volume fraction of the Si3N4 can make the shell more stiff
and then decrease the natural frequency both for the perfect and imperfection circular
cylindrical shell.

Additionally, an increase in value of h/R or decline in value of L/R can make the
structure obtain higher bending stiffness and a higher vibration frequency. It is also
shown that imperfection causes the enlarging of the natural frequency of this system
compared to the circular cylindrical shell without imperfection.

Table 3: The dimensionless linear frequencies (Ω=wR
√

P0(1−ν2)/E0) of cylindrical shell with and without
imperfection for different volume fraction indexes, thickness-radius ratios and length-radius ratios.

With imperfection Without imperfection
First order Second order Third order First order Second order Third order

Ceramic volume fraction n (L/R=2,h/R=0.002)
n′=0.5 0.420583 1.200113 1.636196 0.415004 1.197866 1.634469
n′=1.0 0.356944 1.045875 1.430839 0.356319 1.045402 1.430448
n′=5.0 0.270211 0.827747 1.139796 0.269795 0.827365 1.139454

thickness-radius ratios (n=0.5,L/R=2)
h/R=0.002 0.416332 1.198667 1.635095 0.415004 1.197856 1.634440
h/R=0.003 0.416991 1.198939 1.635303 0.415171 1.197858 1.634453
h/R=0.004 0.420583 1.200113 1.636196 0.415428 1.197866 1.634469
length-radius ratios (n=0.5,h/R=0.002)

L/R=1.5 0.616908 1.347223 1.636196 0.615579 1.346340 1.635026
L/R=2 0.420583 1.200113 1.635298 0.415004 1.197866 1.634469

L/R=2.5 0.271499 1.056452 1.634032 0.271073 1.056079 1.633272

3.2 Nonlinear forced vibration

The influence of radial excitation on nonlinear dynamics of the imperfect geometrically
FGM cylindrical shell with different volume fraction indexes and geometry parameters
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is studied. Numerical results are obtained by using the 4th order Runge-Kutta algorithm.
The bifurcation diagram, phase plane diagram and Poincare map are shown to analysis
the nonlinear vibration of the geometric imperfect functionally graded material cylindri-
cal shell. In bifurcation diagrams, the magnitude of radial excitation changes from 0 to
100kPa.

3.2.1 Effect of volume fraction indexes

Nonlinear forced vibration of an initial imperfect FGM circular cylindrical shell are car-
ried out for different volume fraction indexes n′=0.5, n′=1.0, and n′=5.0. Fig. 2 depicts
bifurcation diagrams of the radial excitation versus normal displacements when the ra-
dial excitation varies from 0 to 1×105N/m2. The horizontal axis is the parameter f and
the vertical axis is the value of W1, W2 and W3. The volume fraction index of the imper-
fect FGM circular cylindrical shell is n′=0.5. From Fig. 2, it is seen that there is a trivial
period motion for the cylindrical shell starts at f <4.1×104. With the increasing of f , the
trivial period motion loses its stability at f = 4.1×104 and the system enters a complex
instability state of motion. For 4.1×104

< f <7.8×104, the FGM cylindrical shell exhibits

Figure 2: The bifurcation diagram of W1 versus f is given in case of n′=0.5, h/R=0.002, L/R=2.
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Figure 3: The period motion of the FGM cylindrical shell with the radial excitation f =3×104N/m2. (a)-(c) are

the phase plane diagrams on plane of the three modes respectively; (d) the Poincare map on plane (W1,Ẇ1).
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Fig.4
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Figure 4: The chaotic motion of the FGM cylindrical shell with the radial excitation f =6.5×104N/m2.

Fig.5
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Figure 5: The period motion of the FGM cylindrical shell with the radial excitation f =9×104N/m2.

chaos motion. In this chaos region there are some small period windows. The Poincare
map and phase portrait are given in Figs. 3-5 to illustrate the period, chaotic and period
motion of the cylindrical shell at f =3×104, f =6.5×104 and f =9×104, respectively.

A bifurcation diagram is plotted when the volume fraction index for the ceramic is
n′=1.0 in Fig. 6. As can be seen in this figure, when the radial excitation f is less than 5.3×
104 the period motion exists for the shell. A jumping behavior to another period motion
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Figure 6: The bifurcation diagram of W1 versus f is given in case of n′=1.0, h/R=0.002, L/R=2.
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Figure 7: The period motion of the FGM cylindrical shell with the radial excitation f =3×104N/m2.

occurs at f = 8.1×104. After the critical point, as the radial excitation is increased up
to a chaotic region with two tiny periodic windows appears by transcritical bifurcation.
Figs. 7-9 show the motion of shell at radial excitation of f = 3×104, f = 6.5×104 and
f =9×104, respectively.

Fig. 10 is the bifurcation diagrams of the imperfect FGM cylindrical shell with n′=5.0.
As observed in Fig. 10, there is a trivial period motion in the beginning until radial ex-
citation is increased up to 8.1×104, where a jumping behavior is detected. The system
jump to a multi-period motion and then at f =8.5×104 the multi-period motion becomes
the chaos. But just after a very small increase in excitation a short period motion is ob-
served and then the system enters a chaotic region. Figs. 9-11 present the motion of shell
at radial excitation of f =3×104, f =8.1×104 and f =9×104, respectively. It can be shown
from Figs. 11-13 that the amplitude of the chaotic motion is larger than one of the periodic
motion.

Comparison of Figs. 2, 6 and 10 reveals that generally they have the similar dynamic
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Fig.8
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Figure 8: The chaotic motion of the FGM cylindrical shell with the radial excitation f =6.5×104N/m2.
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Figure 9: The period motion of the FGM cylindrical shell with the radial excitation f =9×104N/m2.

behaviors but the periodic and chaotic regions are different. Chaos occur need larger ex-
citation when the value of volume fraction indexes increases. When the forcing excitation
magnitude is approximately f =4.1×104, f =5.3×104, and f =8.7×104, the FGM circular
cylindrical shell tends to undergo the changes from periodic to chaotic motions for the
case that n′ is as 0.5, 1.0 and 5.0, respectively.

3.2.2 Effect of initial geometric imperfection

Influences of the initial geometric imperfections on nonlinear dynamical responses of
FGM circular cylindrical shell are researched. First of all, in Eq. (2.9) if h1 and h2 are all
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Figure 10: The bifurcation diagram of W1 versus f is given in case of n′=5.0, h/R=0.002, L/R=2.
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Figure 11: The period motion of the FGM cylindrical shell with the radial excitation f =3×104N/m2.

zero this circular cylindrical shell is perfect. The bifurcation diagram shown in Fig. 14 is
plotted for the same data used in Fig. 2. It is seen that for the perfect circular cylindrical
shell only periodic motion over the range of f ∈(0,1×105) is detected. The Poincare map
and phase portrait are given in Fig. 15 to illustrate the period motion of the system when
the excitation is as f = 4×104. The bifurcation diagram shown in Fig. 16 is plotted for
h1 = 0 and h2 = 0.1h. It means that the shell presents the imperfection of axisymmetric
hyperbolic functions as

w∗=h2

(

cosh
λmx

L
−cos

λmx

L
−σm

(

sinh
λmx

L
−sin

λmx

L

))

.

From Fig. 16, it is seen that there is a trivial amplitude period motion for the cylindrical
shell until the excitation is at 3.5×104. With the increasing of excitation f , the trivial
period motion loses its stability at f=3.5×104 and the system enters a complex instability
state of motion. For 3.5×104

< f<4×104, the FGM cylindrical shell exhibits chaos motion.
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Fig.12
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Figure 12: The multi-period motion of the FGM cylindrical shell with the radial excitation f =8.1×104N/m2.

Fig.13

1W

1W

)(d
3W

3W

)(c

1W

1W

)(a
2W

2W

)(b

Figure 13: The chaotic motion of the FGM cylindrical shell with the radial excitation f =9×104N/m2.

Then it enters a multi-period motion range from f = 4×104 to 5.1×104. But for the case
of f ≥ 5.1×104, the system enters a chaos motion again. The Poincare map and phase
portrait are given Figs. 17-20 to illustrate the period, chaotic and period motion of the
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Figure 14: The bifurcation diagram of W1 versus f is given when the shell is perfect, and other parameters are
n′=0.5, h/R=0.002, L/R=2, respectively.

Fig.15
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Figure 15: The period motion of the FGM cylindrical shell with the radial excitation f =4×104N/m2.

Figure 16: The bifurcation diagram of W1 versus f is given when the coefficients take the value of h1 =0 and
h2 =0.1h in Eq. (2.9), and other parameters are n′=0.5, h/R=0.002, L/R=2, respectively.
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Fig.17
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Figure 17: The period motion of the FGM cylindrical shell with the radial excitation f =1×104N/m2.

Fig.17

Fig.18
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Figure 18: The chaotic motion of the FGM cylindrical shell with the radial excitation f =4×104N/m2.

cylindrical shell at f =1×104, f =4×104, and f =6×104, respectively.

4 Conclusions

The dynamic responses of clamped-clamped FGM cylindrical shell at two edges with
small initial geometric imperfection under complex loads are studied. The effects of ra-
dial harmonic excitation combined with thermal loads are considered. The small initial
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Fig.19
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Figure 19: The multi-period motion of the FGM cylindrical shell with the radial excitation f =4.5×104N/m2.

Fig.20
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Figure 20: The chaotic motion of the FGM cylindrical shell with the radial excitation f =6×104N/m2.

geometric imperfection of the cylindrical shell is characterized with the similar shape as
radial mode. The effective material properties vary in the radial direction following a
power law in terms of the volume fractions. According to the classical shell theory and
von Karman type geometric nonlinear relation, the nonlinear partial differential equation
is deduced by the Hamiltons principle. The nonlinear dynamic equations are truncated
by the Galerkin technique, using the modal expansion with the inclusion of axisymmet-
ric and asymmetric modes. The effects of volume fraction indexes, length-radius and
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thickness-radius ratios on natural frequencies of the cylindrical shell with imperfection
and without imperfection are given.

It can be seen that increasing the volume fraction of silicon nitride can decrease the
natural frequency of either for the perfect circular cylindrical shell or the imperfection
circular cylindrical shell. Increasing the value of h/R (and an equivalent decline in value
of L/R) may result in higher shell bending stiffness and a higher vibration frequency. It is
also shown that imperfection causes the enlarging of the natural frequency of this system
compared to the perfect circular cylindrical shell.

Numerical results are presented by bifurcation diagrams, phase plane diagrams and
Poincare maps. It is shown that under the certain conditions the shell has the similar
dynamic behaviors but the periodic and chaotic regions are different for different volume
fractions. With the increasing of ceramics, much more excitation is needed for chaotic
motions of the system. It also shows that nonlinear forced vibration is sensitive to the
shape of imperfections.
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