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Abstract

This paper concerns the reconstruction of a penetrable obstacle embedded in a waveg-

uide using the scattered data due to point sources, which is formulated as an optimization

problem. We propose a fast reconstruction method based on a carefully designed finite

element scheme for the direct scattering problem. The method has several merits: 1) the

linear sampling method is used to quickly obtain a good initial guess; 2) finite Fourier

series are used to approximate the boundary of the obstacle, which is decoupled from the

boundary used by the finite element method; and 3) the mesh is fixed and hence the stiff-

ness matrix, mass matrix, and right hand side are assembled once and only minor changes

are made at each iteration. The effectiveness of the proposed method is demonstrated by

numerical examples.

Mathematics subject classification: 78A46, 65M32, 65M60.

Key words: Inverse scattering problem, Waveguides, Finite element method.

1. Introduction

There are only a few works in literature devoted to the reconstruction of obstacles embed-

ded in periodic structures. In [18], Xu et al. applied a method using generalized dual space

indicator for an obstacle in a shallow water waveguide. Dediu and McLaughlin [8] proposed an

eigensystem decomposition to recover weak inhomogeneities in a planar waveguide from far-field

data. In [4, 5], Bourgeois and Lunéville employed the linear sampling method to reconstruct

sound soft obstacles as well as cracks in a planar waveguide from near-field data. A factoriza-

tion method is used for the inverse scattering problems in a 3D planar waveguide by Arens et

al. [1]. For the reconstruction of Dirichlet and impedance obstacles, reverse time migration was

employed [6] by Chen and Huang. Recently, a direct sampling method and a multilevel method

were introduced in [12, 13] to reconstruct a penetrable inhomogeneous medium embedded in a

3D waveguide [14] and in the stratified ocean waveguide [15], respectively. Note that [4] con-

tains a uniqueness result that the scattered waves correspond to infinitely many incident fields

uniquely determine a sound-soft obstacle.

We note that, for a non-planar waveguide, the problem becomes much harder due to the

lack of efficient numerical methods for the direct scattering problems. In [17], based on the

recursive doubling procedure for periodic structures [9], Sun and Zheng employed the linear

sampling method to reconstruct sound soft obstacles using near field data. A similar treatment,

but using a different numerical technique for the scattering problem, can be found in [3].

In this paper, we propose an efficient finite element optimization method to reconstruct

a penetrable obstacle embedded in a planar waveguide. Consider the waveguide given by
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Ω = R× [0, H ], H > 0. The lower and upper boundaries are Σ− = R×{0} and Σ+ = R×{H},

which are assumed to be sound-hard. Let D be a star-shaped domain with Lipschitz continuous

boundary ∂D. Then there exists a point (z1, z2) and a periodic function r such that the

boundary ∂D can be represented as

∂D := {(z1, z2) + r(t)(cos t, sin t)| 0 6 t < 2π}.

The inverse problem is to determine the location and shape of D from the measured scattered

field due to incident waves by point sources. In particular, the point sources locate on Γi and

the scattered field is measured on Γm, where Γi and Γm are line segments (see Figure 1.1). For

example, Γi = Γm = Γ1 ∪ Γ2.
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Fig. 1.1. The physical configuration of the scattering problem.

We assume that r can be represented by a finite Fourier series. The inverse problem is

formulated as an optimization problem, which is solved by a quasi-Newton method. The initial

guess is obtained using the linear sampling method [17]. Since a lot of direct scattering problems

need to be solved numerically, we design an efficient finite element method using a fixed mesh

(see [19]). The stiffness matrix, mass matrix, and right-hand side only need to be assembled

once at the beginning of the numerical procedure. Only minor changes are necessary in the

subsequent iterations. Multiple frequency data are used to obtain a better reconstruction (see,

e.g., [2, 16, 19]).

The rest of paper is organized as follows. Section 2 introduces the direct scattering problem.

In Section 3, the inverse problem is formulated as an optimization problem, and the Fréchet

derivative of the target function is studied. In Section 4, we present the reconstruction method

in detail. Section 5 contains numerical results.

2. The Direct Problem

Let k = w/c be the wavenumber, where w is the frequency and c is the speed of sound. For

planar waveguides, there exist eigenvalues and eigenfunctions of Sturm-Liouville type (see [8])

given by

kn =
nπ

H
, θn(x2) =







√

1
H , n = 0,

√

2
H cos

(

nπ
H x2

)

, n > 1.

The incident field ui := G(·, y), generated by a point source located on Γi, is defined as (see [4])

G(x, y) =
∑

n∈N

eiβn|x1−y1|

2iβn
θn(x2)θn(y2),
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where βn =
√

k2 − k2n, Re βn > 0, Im βn > 0. The index of refraction n satisfies

n =

{

n1, in Ω \D,

n2, in D,

where n1 = 1, n2 6= n1, Re n2 > 0, Im n2 > 0.

We define two line segments (see Figure 1.1)

Γ± =

{

(±s, x2), x2 ∈ (0, H), s > max
t∈[0,2π)

{|z1 + r(t) cos t|}

}

.

Hence Ω0 = (−s, s)× (0, H) is a rectangle containing D. Let T± be the Dirichlet-to-Neumann

maps on Γ± given by

T±v =
∑

n∈N

iβn(v, θn)Γ±
θn, where (·, ·)Γ±

is the inner product on L2(Γ±). (2.1)

Then the operators T± satisfy the following lemma, whose proof is straightforward and thus

omitted.

Lemma 2.1. Assume that w ∈ H1/2(Γ±). Then

(T±)
∗w = (T±)w.

Let u be the total field and ui be the incident field. The direct problem is to find the

scattered field us such that

△us + k2nus = k2(1− n)ui , in Ω0, (2.2a)

∂us

∂x2
= 0 , on Σ±, (2.2b)

∂us

∂x1
= −T−u

s , on Γ−, (2.2c)

∂us

∂x1
= T+u

s , on Γ+. (2.2d)

Note that us = u− ui, where u is the total field.

The variational formulation of (2.2) is to find us ∈ H1(Ω0) such that

−

∫

Ω0

∇us · ∇φ+ k2
∫

Ω0

nusφ+

∫

Γ−

T−u
sφds+

∫

Γ+

T+u
sφds = k2

∫

D

(1− n)uiφ (2.3)

for φ ∈ H1(Ω0). For simplicity, we omit dx in the volume integral throughout the paper. The

well-posedness of the direct scattering problem is shown in the following theorem. Its proof is

standard using the analytic Fredholm theory and thus omitted.

Theorem 2.1. There exists a countable subset K ⊂ R+ with at most one accumulation +∞

such that, for a fixed k ∈ R+ \K, the variational problem (2.3) is uniquely solvable in H1(Ω0)

and the scattered field us satisfies

‖us‖H1(Ω0) 6 C‖ui‖L2(Ω0),

where C is some constant independent of ui.
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Remark 2.1. In the rest of the paper, we assume that the wavenumber k /∈ K.

Let N be a fixed positive integer and C = (c0, c1, . . . , c2N ) ∈ R2N+1. Let the function r(t)

be defined as

r(t) =
2N
∑

l=0

clφl(t), t ∈ [0, 2π),

where φl’s are the trigonometric basis functions

φ0 = 1, φl = cos(lt), φl+N = sin(lt), l = 1, . . . , N. (2.4)

We define an operator

f : C −→ r(t)

and the space

XN :=
{

f(C), C ∈ R
2N+1

}

.

We assume that, for a given domain D, there exists (z1, z2) ∈ Ω0 such that

∂D ∈ {(z1, z2) + r(t) (cos t, sin t), r ∈ XN}.

Define the scattering operator S such that

S : XN −→ H1(Ω0),

r 7→ us|Γm .

To show that S is Fréchet differentiable (see [10, 11]), we need the following lemma, whose

proof is obvious.

Lemma 2.2. Assume that h(t) = h(t)(cos t, sin t), h(t) ∈ XN . Let η = ‖h(t)‖L∞[0,2π]. Fur-

thermore, for a fixed r(t), let D be the domain with ∂D = (z1, z2) + r(t)(cos t, sin t) and Dh be

the domain with ∂Dh = (z1, z2) + r(t)(cos t, sin t) + h. Let Dc = (D \Dh) ∪ (Dh \D). Then

|Dc| ≤ Cη, where |Dc| is the area of Dc, for some constant C independent of h(t).

Let ν be the unit outward normal to ∂D. The following lemma gives the Fréchet derivative

of S.

Lemma 2.3. The scattering operator S is Fréchet differentiable, and its Fréchet derivative,

denoted by FS, is given by

FS(r)h = v|Γm , where r, h ∈ XN .

Here v satisfies (2.2) and the following boundary conditions on ∂D

v|− − v|+ = 0,
∂v

∂ν

∣

∣

∣

−
−
∂v

∂ν

∣

∣

∣

+
= k2(n2 − 1)(h · ν)u, (2.5)

where u is the total field.
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Proof. Let uh be the total field for Dh and us,h be the corresponding scattered field. Denote

by w = uh − u = us,h − us. For any φ ∈ H1(Ω0), w satisfies the following variational form

−

∫

Ω0

∇w · ∇φ+ k2
∫

Ω0

(nhus,h − nus)φ +

∫

Γ−

T−wφds+

∫

Γ+

T+wφds

= k2
∫

Ω0

(n− nh)uiφ.

From the facts that u = us + ui and uh = us,h + ui, the following equation holds

−

∫

Ω0

∇w · ∇φ+ k2
∫

Ω0

nwφ+

∫

Γ−

T−wφds+

∫

Γ+

T+wφds = k2
∫

Ω0

(n− nh)uhφ.

Note that |nh − n| = |n2 − 1| 6= 0 only in Dc. From Lemma 2.2, we have that
∣

∣

∣

∣

k2
∫

Ω0

(n− nh)uhφ

∣

∣

∣

∣

6 C|Dc|‖u
h‖H1(Ω0)‖φ‖H1(Ω0) 6 Cη‖uh‖H1(Ω0)‖φ‖H1(Ω0).

From Theorem 2.1,

‖w‖H1(Ω0) 6 Cη‖uh‖H1(Ω0) 6 Cη‖ui‖L2(Ω0).

It is clear that v satisfies the following equations

−

∫

D

∇v · ∇φ+ k2
∫

D

nvφ+

∫

∂D

∂v

∂ν

∣

∣

∣

−
φds = 0,

−

∫

Ω0\D

∇v · ∇φ+ k2
∫

Ω0\D

nvφ−

∫

∂D

∂v

∂ν

∣

∣

∣

+
φ+

∫

Γ−

T−vφ+

∫

Γ+

T+vφ ds = 0,

in D and Ω0 \D, respectively. Using the boundary condition (2.5), v satisfies

−

∫

Ω0

∇v · ∇φ+ k2
∫

Ω0

nvφ+

∫

Γ−

T−vφ ds+

∫

Γ+

T+vφ ds

= k2
∫

∂D

(1− n2)(h · ν)uφds.

Then w − v satisfies

−

∫

Ω0

∇(w − v) · ∇φ+ k2
∫

Ω0

n(w − v)vφ +

∫

Γ−

T−(w − v)φ ds+

∫

Γ+

T+(w − v)φ ds

= k2
∫

Ω0

(n− nh)uhφ− k2
∫

∂D

(1− n2)(h · ν)uφ ds. (2.6)

The right hand side satisfies
∣

∣

∣

∣

k2
∫

Ω0

(n− nh)uhφ− k2
∫

∂D

(1 − n2)(h · ν)uφ ds

∣

∣

∣

∣

6 C

∣

∣

∣

∣

∫

Ω0

(n− nh)wφ

∣

∣

∣

∣

+ C

∣

∣

∣

∣

∫

Ω0

(n− nh)uφ−

∫

∂D

(1 − n2)(h · ν)uφ ds

∣

∣

∣

∣

.

Let

I =

∣

∣

∣

∣

∫

Ω0

(n− nh)wφ

∣

∣

∣

∣

, II =

∣

∣

∣

∣

∫

Ω0

(n− nh)uφ−

∫

∂D

(1− n2)(h · ν)uφds

∣

∣

∣

∣

.
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From Lemma 2.2, I satisfies

I 6 Cη‖w‖H1(Dc)‖φ‖H1(Dc) 6 Cη2‖ui‖L2(Ω0)‖φ‖H1(Dc).

For the second term, we have that

II =

∣

∣

∣

∣

∣

∫

D\Dh

(n2 − 1)uφ+

∫

Dh\D

(1− n2)uφ−

∫

∂D

(1− n2)(h · ν)uφds

∣

∣

∣

∣

∣

= |n2 − 1|

∣

∣

∣

∣

∣

∫

D\Dh

uφ−

∫

Dh\D

uφ+

∫

∂D

(h · ν)uφ ds

∣

∣

∣

∣

∣

.

We define

N(t) =

√

[

r′(t) cos t− r(t) sin t
]2

+
[

r′(t) sin t+ r(t) cos(t)
]2
.

Then

ds = N(t)dt, ν =
r′(t)(sin t,− cos t) + r(t)(cos t, sin t)

N(t)
,

(h · ν)ds = h(t)(cos t, sin t) · [r′(t)(sin t,− cos t) + r(t)(cos t, sin t)] dt = h(t)r(t)dt.

Thus we obtain
∫

∂D

(h · ν)uφ ds =

∫ 2π

0

(u · φ)(r(t), t)h(t)r(t)dt.

Since u, φ ∈ H1(Ω0), there exist functions θ1(ρ, t) and θ2(ρ, t) such that

u(ρ, t) = u(r(t), t) + (ρ− r(t))
∂

∂ρ
u(θ1(ρ, t), t),

φ(ρ, t) = φ(r(t), t) + (ρ− r(t))
∂

∂ρ
φ(θ2(ρ, t), t),

where ∂
∂ρu(θ1(ρ, t), t) and

∂
∂ρφ(θ2(ρ, t), t) are in L2(Ω0).

Substituting the above results in II, we get that

II =

∣

∣

∣

∣

∣

−

∫ 2π

0

∫ r(t)+h(t)

r(t)

(u · φ)(ρ, t)ρdρdt+

∫ 2π

0

(u · φ)(r(t), t)h(t)r(t)dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

−

∫ 2π

0

∫ r(t)+h(t)

r(t)

[

u(r(t), t) + (ρ− r(t))
∂

∂ρ
u(θ1(ρ, t), t)

]

·

[

φ(r(t), t) + (ρ− r(t))
∂

∂ρ
φ(θ2(ρ, t), t)

]

ρdρdt+

∫ 2π

0

(u · φ)(r(t), t)h(t)r(t)dt

∣

∣

∣

∣

6

∣

∣

∣

∣

∣

−

∫ 2π

0

∫ r(t)+h(t)

r(t)

(u · φ)(r(t), t)ρdρdt +

∫ 2π

0

(u · φ)(r(t), t)h(t)r(t)dt

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Dc

(ρ− r(t))u(r(t), t)
∂

∂ρ
φ(θ2(ρ, t), t)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Dc

(ρ− r(t))φ(r(t), t)
∂

∂ρ
u(θ1(ρ, t), t)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Dc

(ρ− r(t))2
∂

∂ρ
u(θ1(ρ, t), t)

∂

∂ρ
φ(θ2(ρ, t), t)

∣

∣

∣

∣

.
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Using Lemma 2.2 and the fact that u, φ ∈ H1(Ω0), we obtain that

II 6

∣

∣

∣

∣

∫ 2π

0

1

2
(u · φ)(r(t), t)h2(t)dt

∣

∣

∣

∣

+ ‖u‖L∞(Dc)

∫

Dc

|ρ− r(t)|

∣

∣

∣

∣

∂

∂ρ
φ(θ2(ρ, t), t)

∣

∣

∣

∣

+‖φ‖L∞(Dc)

∫

Dc

|ρ− r(t)|

∣

∣

∣

∣

∂

∂ρ
u(θ1(ρ, t), t)

∣

∣

∣

∣

+‖ρ− r(t)‖2L∞(Dc)

∫

Dc

∣

∣

∣

∣

∂

∂ρ
u(θ1(ρ, t), t)

∣

∣

∣

∣

∣

∣

∣

∣

∂

∂ρ
φ(θ2(ρ, t), t)

∣

∣

∣

∣

6 πη2‖uφ‖L∞(Ω0) + ‖u‖L∞(Dc)‖ρ− r(t)‖L2(Dc)

∥

∥

∥

∥

∂

∂ρ
φ(θ2(ρ, t), t)

∥

∥

∥

∥

L2(Dc)

+‖φ‖L∞(Dc)‖ρ− r(t)‖L2(Dc)

∥

∥

∥

∥

∂

∂ρ
u(θ1(ρ, t), t)

∥

∥

∥

∥

L2(Dc)

+η2
∥

∥

∥

∥

∂

∂ρ
φ(θ2(ρ, t), t)

∥

∥

∥

∥

L2(Dc)

∥

∥

∥

∥

∂

∂ρ
u(θ1(ρ, t), t)

∥

∥

∥

∥

L2(Dc)

6 C
(

η2 + η3/2 + η3/2 + η2
)

‖u‖H1(Ω0)‖φ‖H1(Ω0)

6 Cη3/2‖ui‖L2(Ω0)‖φ‖H1(Ω0).

The right hand side of (2.6) satisfies

∣

∣

∣

∣

k2
∫

Ω0

(n− nh)uhφ− k2
∫

∂D

(1− n2)(h · ν)uφ

∣

∣

∣

∣

= Cη3/2‖φ‖H1(Ω0).

From Theorem 2.1, we have that

‖w − v‖H1(Ω0) = O(η3/2) = o(η).

Hence we obtain

‖w − v‖H1/2(Γm) 6 C‖w − v‖H1(Ω0) = o(η).

Consequently, FS(g)h = v|Γm and the proof is complete. �

Define the operator N on R2N+1 such that

N : R
2N+1 −→ H1/2(Γm)

C = (c0, c1, . . . , c2N ) 7→ S
[

f(c0, c1, . . . , c2N )
]

.

It is obvious that the partial derivatives of N satisfy

∂

∂cl
N(C) = FS

[

f(C)
] ∂

∂cl
f(C) = FS

[

f(C)
][

φl(cos t, sin t)
]

.

3. The Inverse Problem

Let the point sources locate on Γi. Given the measured scattered field umeas on Γm, the

inverse problem we are interested in is to reconstruct the penetrable obstacle D assuming n2 is

a known constant. Recall that ∂D = {(z1, z2) + r(t)(cos t, sin t)} and r(t) is approximated by

the finite series r(t) =
∑2N

t=0 clφl(t). The inverse problem can be described as follows.



36 R.M. ZHANG AND J.G. SUN

Inverse Problem (IP): Find C0 = (c00, · · · , c
0
2N ) ∈ R2N+1 such that

N(C0) = umeas on Γm.

Define

F (C; γ) = ‖N(C)− umeas‖2L2(Γm) + γ‖C‖2l2,

where γ > 0 is the regularization parameter. The inverse problem can be formulated as follows.

Optimization Problem (OP): Find C0 ∈ R2N+1, such that

C0 = min
C∈R2N+1

F (C; γ).

To solve OP, we need the gradient of F (. . . ; γ), which is given in the following lemma.

Lemma 3.1. Let φl, l = 0, . . . , 2N, be the trigonometric basis functions defined in (2.4). It

holds that

∂

∂cl

(

‖N(C)− umeas‖2L2(Γm)

)

= 2Re
(

M [N(C)− umeas] · (cos t, sin t), φl

)

, (3.1)

where M = (FS[f(C)])∗ is the adjoint operator of FS[f(C)].

Proof. Straightforward calculation gives that

∂

∂cl

(

‖N(C)− umeas‖
2
L2(Γm)

)

=
∂

∂cl

(

N(C)− umeas,N(C)− umeas
)

L2(Γm)

= 2Re

(

N(C)− umeas,
∂

∂cl
N(C)

)

L2(Γm)

= 2Re
(

N(C)− umeas, FS[f(C)]
[

φl(cos t, sin t)
]

)

L2(Γm)

= 2Re
(

M [N(C)− umeas], φl(cos t, sin t)
)

L2(XN )

= 2Re
(

M [N(C)− umeas] · (cos t, sin t), φl

)

L2[0,2π]
. (3.2)

This completes the proof of the lemma. �

Recall that Γ1 = {−s0} × (0, H) and Γ2 = {s0} × (0, H). If both Γi and Γm are chosen to

be Γ1 = {−s0} × (0, H), one has the following lemma for the operator M .

Lemma 3.2. Let Ω0 = (−s0, s0)× (0, H). For all φ ∈ H−1/2(Γ1), the operator M is given by

M(φ) = −k2(n2 − 1)uw|∂D [(cos t, sin t) · ν] , (3.3)

where w satisfies the boundary value problem

△w + k2nw = 0, in Ω0, (3.4a)

∂w

∂x2
= 0, on Σ±, (3.4b)

T+w −
∂w

∂x1
= 0, on Γ2, (3.4c)

T−w +
∂w

∂x1
= φ, on Γ1. (3.4d)
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Proof. For all φ ∈ H−1/2(Γ1), the boundary value problem (3.4) has a unique solution

w ∈ H1(Ω0). Then for any h ∈ XN ,

(M∗φ, h)XN =
(

φ, FS[f(C)](h)
)

Γ1

= (φ, v)Γ1
+ (0, v)Γ2

=

(

T−w +
∂w

∂x1
, v

)

Γ1

+

(

T+w −
∂w

∂x1
, v

)

Γ2

=

(

T ∗
−w +

∂w

∂x1
, v

)

Γ1

+

(

T ∗
+w −

∂w

∂x1
, v

)

Γ2

= (w, T−v)Γ1
+

(

∂w

∂x1
, v

)

Γ1

+ (w, T+v)Γ2
−

(

∂w

∂x1
, v

)

Γ2

=

∫

Γ1

wT−v ds+

∫

Γ1

∂w

∂x1
v ds+

∫

Γ2

wT+v ds−

∫

Γ2

∂w

∂x1
v ds

= −

∫

Γ1

w
∂v

∂x1
ds+

∫

Γ1

∂w

∂x1
v ds+

∫

Γ2

w
∂v

∂x1
ds−

∫

Γ2

∂w

∂x1
v ds.

Applying the Green’s formula in D and Ω0 \D, we get

0 =

∫

D

(w△v − v△w) =

∫

∂D

(

∂v

∂ν

∣

∣

∣

−
w − v

∣

∣

∣

−

∂w

∂ν

)

ds

and

0 =

∫

Ω0\D

(w△v − v△w)

=

∫

Γ2

(

∂v

∂x1
w − v

∂w

∂x1

)

ds−

∫

Γ1

(

∂v

∂x1
w − v

∂w

∂x1

)

ds−

∫

∂D

(

∂v

∂ν

∣

∣

∣

+
w − v

∣

∣

∣

+

∂w

∂ν

)

ds.

Using the above two equations and boundary conditions (2.5), we have

(

φ, FS[f(C)](h)
)

Γ1

=

∫

∂D

(

∂v

∂ν

∣

∣

∣

+
w − v

∣

∣

∣

+

∂w

∂ν

)

ds−

∫

∂D

(

∂v

∂ν

∣

∣

∣

−
w − v

∣

∣

∣

−

∂w

∂ν

)

ds

=

∫

∂D

([

∂v

∂ν

∣

∣

∣

+
−
∂v

∂ν

∣

∣

∣

−

]

w − [v|+ − v|−]
∂w

∂ν

)

ds

= −

∫

∂D

k2(n2 − 1)(h · ν)uw ds, (3.5)

i.e.,

(M(φ), h)XN
= −

∫

∂D

k2(n2 − 1) [h(cos t, sin t) · ν]uw ds. (3.6)

Hence one has the desired result (3.3). �

Consequently, the following theorem holds for the gradient of F .

Theorem 3.1. Denote by w the solution of the boundary value problem (3.4). Let

ql = −2Re
(

k2(n2 − 1)uw
[

(cos t, sin t) · ν
]

, φl

)

, (3.7)

where l = 0, 1, . . . , 2N . Then

∇F (. . . ; γ) = (q0, q1, . . . , q2N ) + 2γ(c0, c1, . . . , c2N ). (3.8)

Similar results hold for other choices of Γi and Γm.



38 R.M. ZHANG AND J.G. SUN

4. Numerical Algorithm

4.1. Finite element method for the direct problem

To solve the optimization problem by iterative methods, a well-designed direct solver can

improve the efficiency significantly. In this section, we describe a finite element method for the

scattering problem using a fixed structured mesh.

Let Nx and Ny be two positive integers. We divide the intervals [−s, s] and [0, H ] uniformly

−s = x0 < x1 < · · · < xNx = s, 0 = y0 < y1 < · · · < yNy = H.

Nx and Ny are chosen such that hx ≈ hy, where

hx =
2s

Nx
and hy =

H

Ny
.

Let Rjl = [xj−1, xj ] × [yl−1, yl], j = 1, . . . , Nx, l = 1, . . . , Ny. Rjl is then divided into two

triangles T 1
jl and T

2
jl by the line segment connecting (xj−1, yl−1) and (xj , yl) (see Figure 4.1).

Denote Th the obtained triangular mesh for Ω0. Let

DN = ∪
{(

T 1
jl ∪ T

2
jl

)

: j, l such that (x∗j , y
∗
l ) ∈ D

}

,

where (x∗j , y
∗
l ) is the center of Rjl. In the finite element computation, we use DN instead of D.

This is plausible provided the mesh size is small enough.

x
1

y
0

y
1

x
0

T
11
2

T
11
1

Fig. 4.1. Triangular mesh Th. The shaded region is the approximation DN of D.

Let {ψ1, ψ2, . . . , ψN} be the linear Lagrange basis for Th and

us =

N
∑

j=1

ujψj .

Let u = (u1, u2, . . . , uN)T and A,B, f be given by

Ajl = −

∫

Ω

∇ψl · ∇ψj +

∫

Γ−

T−ψlψj ds+

∫

Γ+

T+ψlψj ds, (4.1)

Bjl = k2
∫

Ω

nψlψj , (4.2)

fj = k2(1− n2)

∫

DN

uiψj , (4.3)
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respectively. The discrete problem for the scattered field satisfies

(A+B)u = f .

When DN is updated to Dh
N , A stays the same. Let T be a triangle in Th. From (4.2) and

(4.3), we have

Bjl = k2n1

∑

T⊂Ω0\DN

∫

T

ψlψj + k2n2

∑

T⊂DN

∫

T

ψlψj , (4.4)

fj = k2
∑

T⊂DN

∫

T

(1− n2)u
iψj . (4.5)

For Dh
N , we have

Bh
jl = k2n1

∑

T⊂Ω0\Dh
N

∫

T

ψlψj + k2n2

∑

T⊂Dh
N

∫

T

ψlψj , (4.6)

fhj = k2
∑

T⊂Dh
N

∫

T

(1− n2)u
iψj . (4.7)

Defining K+ = DN \Dh
N and K− = Dh

N \DN , we have that

Bjl −Bh
jl = k2(1− n2)

[

∑

T∈K−

∫

T

ψlψj −
∑

T∈K+

∫

T

ψlψj

]

, (4.8)

fj − fhj = k2(1− n2)

[

∑

T∈K−

∫

T

uiψj −
∑

T∈K+

∫

T

uiψj

]

. (4.9)

From DN to Dh
N , one only needs to change a small fraction of the entries of B and f .

4.2. Initial guess

The linear sampling method is used to obtain an initial guess. In the following, we briefly

sketch the method and refer the readers to [7] for more details.

We first choose a sampling domain S such that D ⊂ S. For the inverse problem in this

paper, it is natural to take S to be Ω0. Then we divide the intervals [−s, s] and [0, H ] uniformly

−s = X0 < X1 < · · · < XMx = s,

0 = Y0 < Y1 < · · · < YMy = H.

The sampling points are given by zjl = (Xj , Yl), j = 0, 1, . . . ,Mx, l = 0, 1, . . . ,My. Let u
s(z, z0)

denote the scattered field corresponding to the incident point source G(·, z0). Let yp, j =

1, . . . ,m, be m point sources on Γi and xp, p = 1, . . . ,m, be m measurement locations on Γm.

At each sampling point zjl, we solve the following ill-posed linear integral equation system

∫

Γi

us(xq, yp)gjl(yp)dyp = G(xq , zjl), q = 1, . . . ,m.

Let h(zjl) = ‖gjl‖L2(Γi).
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We choose a contour line of h and use a circle that approximates the contour as the initial

guess. Suppose there are N0 points on the contour, i.e., (zj1, z
j
2), j = 1, . . . , N0. The center and

radius of the circle are given by

z0l =
1

N0

N0
∑

j=1

zjl , l = 1, 2,

r0 =
1

N0

N0
∑

j=1

√

(zj1 − z01)
2 + (zj2 − z02)

2,

respectively.

4.3. Reconstruction algorithm

Let the incident field be given by

uijl := Gkj (·, zl)

with kj , j = 1, . . . ,K, and zl, l = 1, . . . , Z. The reconstruction procedure is summarized as

follows.

Reconstruction Algorithm:

1. Initialization: for the wavenumber k1, choose a center (z01 , z
0
2) and radius r0 using the

linear sampling method.

Set c0 = r0, cj = 0, j = 1, 2, . . . , 2N, and set the initial guess C0 = (r0, 0, . . . , 0).

2. Iteration:

for j0 = 1 : K

for l0 = 1 : Z

Set l = 1.

(a) If l = 1, obtain the numerical approximation of ∇F (C0; γ) from Theo-

rem 3.1. If l > 2, ∇F (Cl−1; γ) is obtained in the (l − 1)-th step.

(b) Set a search direction ξl = −Hl−1∇F (Cl−1; γ), where ∇F (Cl−1; γ) is

obtained in the l-th step, Hl−1 = I is obtained in the (l − 1)-th step,

Hl−1 = I if l = 1.

(c) For αs
l = 2s, s ∈ {−5,−4, . . . , 5}, define hsl = αs

l ξl. Find the largest

number s0 ∈ {−5,−4, . . . , 5} and define hl = hs0l such that the Wolfe’s

condition is satisfied:

F (Cl−1 + hl; γ) 6 F (Cl−1; γ) + ηhl · ∇F (Cl−1; γ).

(d) The new coefficients in the l-th step are given by Cl = Cl−1 + hl.

(e) Compute ∇F (Cl; γ) from (3.8). Set ζ = ∇F (Cl; γ) − ∇F (fC−1; γ) and

use the BFGS method to update the new approximate inverse Hessian

matrix Hl.
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(f) Check that if the following four conditions are satisfied: (1) the maximum
number of iterations (20 in our algorithm) is reached; (2) F (Cl; γ) < 106;

(3) |F (Cl−1; γ)− F (Cl; γ)| < 10−8; (4) ‖hl‖L2[0,L] < 10−7.

i. Stop if any of the four conditions is satisfied;

ii. Go to (a) if none of the four conditions is satisfied.

Set C0 = Cl.

5. Numerical Examples

In this section, we present some numerical examples to show the effectiveness of the proposed

method. The point sources are located on Γi and data are measured on Γm. We consider the

inverse problem when Γi = Γm = Γ1 ∪ Γ2.

We use multiple frequency data with wavenumbers 1, 7, 13, 19, 25, 31, 37. The measured

data is simulated by the finite element method on a fine unstructured triangular mesh. We add

some noise to the computed scattered filed us to obtain the measured data. Let ǫ be a normally

distributed random number in [−0.05, 0.05] and set

umeas = us|Γm(1 + ǫ).

For the initial guess by the linear sampling method, we use 8 incident point sources on

Γj , j = 1, 2. In the subsequent iterations, we use 2 point sources located on Γ1 or Γ2:

(0.25,−s0), (0.75,−s0) on Γ1,

(0.25, s0), (0.75, s0) on Γ2.

We set

Nx = Ny = 200, Mx =My = 40, N = 8.

The regularization parameter is chosen as γ = 10−4 by trial and error.

5.1. Near-field data

Let s0 = 0.4. At k = 1, we choose a contour at the level

2

3
min
j,l

{hzjl}+
1

3
max
j,l

{hzjl}

using the linear sampling method. A circle, which approximates the contour, is taken as the

initial guess.

Example 5.1. n2 = 0.5. The target D is an ellipse given by

40

9
x2 + 100(y − 0.5)2 = 1.

The reconstruction is shown in Figure 5.1.

In Figure 5.1, the left picture shows the initial guess. The dashed line is the initial guess

obtained using the linear sampling method. The right picture shows the reconstruction.
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Fig. 5.1. Example 5.1. Left: The solid line is the contour by the linear sampling method. The dashed

line is the initial guess. The star is the center of the circle. Right: The dashed line is the reconstructed

boundary.

Example 5.2. n2 = 2. The target is a kite with boundary given by

(0.075 cos t+ 0.04875 cos2t− 0.05, 0.1 sin t+ 0.5).

The reconstruction is shown in Figure 5.2.
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Fig. 5.2. Example 5.2. Left: The solid line is the contour obtained by the linear sampling method.

The dashed line is the initial guess. The star is the center of the circle. Right: The dashed line is the

reconstructed boundary.

In Example 5.2, the kite is nonconvex and the reconstruction is less satisfactory than convex

obstacles (see Figure 5.2). Nonetheless, the numerical method gives a good reconstruction.

Example 5.3. n2 = 0.5. The obstacle is a rectangle with vertices (−0.05, 0.35), (0.15, 0.35),

(0.15, 0.55), and (−0.05, 0.55). The reconstruction is shown in Figure 5.3.

Example 5.4. n2 = 2. The obstacle is a triangle with vertices (−0.1, 0.35), (0.1, 0.35), and

(0, 0.55). The reconstruction is shown in Figure 5.4.

For Example 5.3 and Example 5.4, the boundary of the target is not smooth. The algorithm

gives a good reconstruction except the corners, which is expected since we use finite Fourier

series to approximate the targets.

The number of the propagating modes plays an important role. If we use larger wavenum-

bers, more details of the shape could be reconstructed. In Figure 5.5, we show the results using

different ending wavenumbers kK .
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Fig. 5.3. Example 5.3. Left: The solid line is the contour obtained by the linear sampling method.

The dashed line is the initial guess. The star is the center of the circle. Right: The dashed line is the

reconstructed boundary.
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Fig. 5.4. Example 5.4. Left: The solid line is the contour obtained by the linear sampling method.

The dashed line is the initial guess. The star is the center of the circle. Right: The dashed line is the

reconstructed boundary.
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Fig. 5.5. Reconstruction using near-field data with different ending wavenumbers. (a): kK = 13; (b):

kK = 25; (c): kK = 37.

5.2. Far-field data

For far-field data, we set s0 = 100. To guarantee propagation modes, k1 = 7. We first

compute the scattered data on the line segments {±0.4}× [0, H ]. Then the data is extended to

Γ1 and Γ2 using the analytic extension |x1| → +∞, i.e., there exist coefficients a
(1)
n , a

(2)
n ∈ C
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such that

us(x1, x2) =
∑

n∈N

a(1)n eiβnx1θn(x2), when x1 > max
t∈[0,2π)

{z1 + r(t) cos t},

us(x1, x2) =
∑

n∈N

a(1)n e−iβnx1θn(x2), when x1 < min
t∈[0,2π)

{z1 + r(t) cos t}.

In Figure 5.6, we present the reconstructions using the far-field data for Examples 5.1-5.4.
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Fig. 5.6. Reconstruction using far-field data. First row: Example 5.1. Second row: Example 5.2. Third

row: Example 5.3. Fourth row: Example 5.4.
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6. Conclusion

We studied the inverse problem to reconstruct a penetrable obstacle embedded in a planar

waveguide from the scattered data. We design a finite element optimization method, which is

shown to be effective and efficient. The current paper assumes the index of the refraction of

the obstacle is a known constant. We plan to consider the case when the index of refraction is

an unknown function.

An advantage of the proposed method is the separation of the boundary given by the Fourier

series and the actual boundary used by the finite element method. Given the noise level, an

elaborate procedure to decide the size of the fixed mesh would improve the performance of the

proposed algorithm significantly, which is under consideration.
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