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Abstract. Generalised centrohermitian and skew-centrohermitian matrices arise in a
variety of applications in different fields. Based on the vibrating structure equation
MX + (D +G)x +Kx = f(t) where M, D, G,K are given matrices with appropriate sizes
and x is a column vector, we design a new vibrating structure mode. This mode can be
discretised as the left and right inverse eigenvalue problem of a certain structured ma-
trix. When the structured matrix is generalised centrohermitian, we discuss its left and
right inverse eigenvalue problem with a submatrix constraint, and then get necessary
and sufficient conditions such that the problem is solvable. A general representation of
the solutions is presented, and an analytical expression for the solution of the optimal
approximation problem in the Frobenius norm is obtained. Finally, the corresponding
algorithm to compute the unique optimal approximate solution is presented, and we
provide an illustrative numerical example.
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1. Introduction

Generalised centrohermitian and skew-centrohermitian matrices arise in a variety of
applications in fields such as information theory, linear system or estimate theory, signal
processing, the numerical solution of differential equations and Markov processes — e.g.
see Refs. [5,7,9-12,17,18,21]. Here we consider vibrating structures such as bridges,
highways, buildings and vehicles that are generally characterised by a linear second-order
differential system

Mi+(D+G)x+Kx=f(t),
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where x is a column vector and M, D, G and K are matrices of appropriate size representing
the mass (usually a diagonal matrix), damping, gyroscopic and stiffness, respectively. The
general solution to the corresponding homogeneous equation MX + (D +G)x +Kx =0, on
omitting the forcing function f(t), plays an important role in the stability of the vibratory
behaviour. In particular, we discuss the undamped non-gyroscopic model governed by

Mx+Kx=0,
"M +y"Kk =0,

where y is a column vector of the same size as x and superscript H denotes the conjugate
transpose (cf. below). The relevant solution form

{ x(t) =uelt,

y(&)=velt,
for this linear system immediately leads to the two quadratic eigenvalue problems

(MM +K)u=0,
viI(u?M +K)=0,

where (A,u) and (u, v) are their eigenpair solutions, respectively. Purely imaginary eigen-
values (A = iA;, u = iu,) define the natural frequency (A; or u;) of the system and the
corresponding natural mode u (v). Letting A =22, u= u%, A=M"iKM _%, 21=M 2u and
2y = M%v, we have

Az = Az, zy A=izy. 1.1

The natural frequencies of the system and its associated natural modes are obviously
determined by the stiffness matrix K or the mass matrix M. In practice, the stiffness matrix
K is more complicated than the mass matrix M, and they are usually estimated by mea-
surements or computed by some numerical methods (e.g. the finite element method). In
engineering, some of the natural frequencies and natural modes can usually be identified in
dynamic models, but there are often discrepancies between them and measured natural fre-
quencies (natural modes). It is therefore often important to modify an approximate model
such that the difference is minimised [13] — i.e. so the natural frequencies and natural
modes in a corrected model are exactly the same as the identified natural frequencies and
natural modes. In general, the stiffness or the mass matrix is corrected by vibration tests
via nonlinear optimal optimisation techniques [3, 4], but the existence and the uniqueness
of the solution and the solution is not always optimal. Here we present a method to correct
such an approximation model based on the left and right inverse eigenvalue problem (with
spectral and structural constraint), where we find a matrix A of order n containing the given
part of left and right eigenvalues and corresponding left and right eigenvectors. Prototypes
of this problem also arise in the perturbation analysis of matrix eigenvalues [19] and in
recursive processes [8], and has practical application in scientific computation and other
engineering fields.
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Throughout this article, %/ (n) denotes the set of n-by-n unitary matrices; and rank(A),
A" and AT denote the rank, conjugate transpose and Moore-Penrose generalised inverse of
any matrix A € C"™™, respectively. In addition, I,, 0 and i = +/—1 respectively signify the
identity matrix of order n, zero matrix or vector with appropriate size, and the familiar
imaginary unit; A(1 : 1,1 : j) denotes the i x j submatrix of a matrix A that lies in the rows
1,2,---,i and columns 1,2,---,j; and tr(A) denotes its trace of any matrix A € C™". The
inner product of matrices A,B € C"*™ is (A, B) = tr(B"'A); and the induced matrix norm is
the Frobenius norm — i.e. ||A|| = v/(4,A) = /tr(AHA), such that C™*™ is a Hilbert space.
We now define generalised centrohermitian and skew-centrohermitian matrices as follows.

Definition 1.1. Given an involutory Hermitian matrix 2 € C***, and an n x n matrix
0 @ 0 0 #

K= for n = 2k (even) and K = 0O 1 O for n =2k + 1 (odd), then:
7 0 Z 0 0

1. A€ C™" is a generalised centrohermitian matrix if A= KAK, and the set of all n x n
generalised centrohermitian matrices is denoted by ¥¢™"(#); and

2. A€ C™" is a generalised skew-centrohermitian matrix if A = —KAK, and the set of
all n x n generalised skew-centrohermitian matrices is denoted by 4 6¢™*"(2).

If # is the cross-identity matrix of order k (i.e. with ones along the secondary diagonal
and zeros elsewhere), then 46 (%) and 4. %6 (%) in the real number field reduce to the
well-known sets of centrosymmetric and skew-centrosymmetric matrices, respectively.

Although inverse eigenvalue problems with one equality constraint involving centro-
symmetric and skew-centrosymmetric matrices have been solved [1,2,15,20, 24], the left
and right inverse eigenvalue problem for generalised centrohermitian matrices with a sub-
matrix constraint has not been analysed previously. Let X and Y be the identified natural
mode matrices and let A and A be the natural frequency matrices. In reference to the
system of linear matrix equations (1.1), we assume M = I, and A is generalised centro-
hermitian with an identified submatrix C, constraint. The corrected version of the model
can be mathematically formulated via the following two problems involving generalised
centrohermitian matrices.

Problem I Given partial eigeninformation X € C™™, Y € C™!, A = diag(A;, Ay, -+, A,)
€ C™ ™M A = diag(uq, Uy, -+, ;) € C*! and a matrix C, € C/*/, find A € Q satisfying

AX =XA, YHA=AYH AQ:f,1:f)=C,,
such that A maintains the eigeninformation, where € is the set 46™*"(2).

If there is no submatrix C, constraint, this problem corresponding to different classes of
structured matrices has been solved — e.g. Liang & Dai [14] considered generalised reflex-
ive and anti-reflexive matrices, Yin & Huang [23] considered (R, S)-symmetric and (R, S)-
skew symmetric matrices. If there is a submatrix constraint in the inverse eigenvalue prob-
lem with one equality constraint, Bai [1] solved the case of centrosymmetric matrices and
Yin et al. [22] discussed the case of (R, S)-symmetric matrices.
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The second is the corrected optimal approximation problem, as follows.

Problem II Given A” € C™", find A* € & such that
|4* —A%| = min||A* —A]|,
AeS

where & is the solution set of Problem I.

In Section 2, we introduce the properties of generalised centrohermitian matrices and
obtain the necessary and sufficient conditions such that Problem I is solvable. Furthermore,
we present the general representation of the solutions for Problem I. In Section 3, the
existence and uniqueness of the solution for Problem II is proven. Finally, we give the
algorithm to compute the unique optimal approximate solution, and present an illustrative
numerical example in Section 4. Our conclusions are summarised in Section 5.

2. Solvability Conditions for Problem I

We first state the following lemma without proof, given the generalised results in Ref. [24].
Lemma 2.1. Let A€ 96™"(#). Then

. M TP kexk
A_(gﬁ PP ), M, €C
forn=2k, or

N u AP
A=| v a V2 |, ¥ weck uvec! aec!*?
BAH Pu PNDP

for n =2k + 1. Furthermore, A€ 4¢™"(2) if and only if

M A 0 u
A=D2k( 0 Y )Dzk 2.1)
for n =2k, where
1 I, I .
D2k_ﬁ(@ P )e@/(n), (2.2)
or
N+ V2u 0
A=Dy i | V2V« 0 D} ., (2.3)
0 0 WN—-us7
for n =2k + 1, where
L[ 0k
Dojiq = % 0 V2 0 |eun). 2.4
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Now consider X,Z € C™™ and Y,W € C™!, and let D,, be defined by (2.2) or (2.4).

Set
X Z
Hy _ 1 Hy _ 1
D”X_(Xz)’ D"Z_(ZZ)’

(2.5)
Y, W
Hy _ 1 Hyw7 — 1
DnY—(YZ), DnW—(Wz),

where X;,Z; € (CLHTHJX’",XZ,ZZ e ckm vy, w, € cl* 1 and Y,, W, € CK<!; and let the
respective singular value decompositions (SVDs) of X;,X5,Y; and Y, be

Xle(Zol g)vH, lep(% g)QH,
T, 0 L, 0 (2.6)

_ 2 H _ 2 o H

XZ—R( o 0)5 , YZ—L( 0 O)M ,

where

U=, ), P=p e (152 R=@iR), L= (L, L) € 2(K);

V=(11), S=(S,5)e%m);  Q=(Q1,Qp), M= (M, M) € %();
U ect'tr p ecl'T s R eckt, L, eck,

r =rank(X;), s=rank(Y;), t=rank(X,), p=rank(Y;),

I, =diag(&;,8,---,&,), §>0,1<i<r,

Iy =diag(n1,m2,---,m), 1; >0, 1<i<t,

I, =diag(o,,04,:+,05), 0;>0,1<i<s,

I, =diag(6,,04,-+,6,), 60;>0,1<i<p.

We immediately obtain the following Lemma, which contributes to solving Problem I later.

Lemma 2.2. Given X,Z € C™™, Y,W € C™ and D, as defined in (2.2) or (2.4). Let
D,II'IX, D,II'IY, DTI:IZ, D,II'IW be as given in (2.5), and the SVDs of X, X5, Y, and Y, be the same
as (2.6). Then ¢(A) := ||AX — Z||? + ||YHA— WH||2 = min is solvable in 9 6¢™™(#), and its
general solution can be expressed as

_ An O H
A—Dn( . Azz)Dn’ @.7)

where

H H H —1~Hy7H
A —p( BFEIZVE A DQWIU) T QIWEUs ) pn o ¢ o x50
11 PZHZlV12I1 El ) 1 5
(2.8)

U (LH2,8, %, + LMAWHR,) T'MHEWHR (e

L8z,8, %1 E,
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and

1
<1>=(—z 2) . 1<i<s, 1<j<r
O+ o

1
\P:(512+n2) , 1<i<p, 1<j<t.
J pxt

Proof. We separately consider n even or odd, as follows.

When n = 2k, for any matrix A€ 4 6¢™"(#) we obtain from (2.1) and (2.5):

@A) =[|(A + )X, — Z |1 + Y] (A + 5¢)— W]
(M — )Xy — Zo|1? + |V (. — ) — W

47

(2.10)

Because ¢ (A) is a convex, continuous and differentiable function with respect to .4 and

A, if p(A) = min then

a;_/(;) = (M + VXX + (M — VX XT+ VY (M A+ )+ Yo Y (M — )
5 — 21X\ = Z,X5 — W =Y, W, =0,

A
;—(/ = (M + VXX — (M — HVX XY + VY (M A+ )= Yy Y, (M — )

—Z\ X 4 Z X - W] + L W,T =0,
and we obtain the following equivalent form:
(M + )X X + Y (M + )= Z2,X] + W),
{ (M — FOVX XY + Yo Yy (M — H) = ZoX5 + VoW,

From (2.6), the first equality in (2.11) is equivalent to

2 2
PH(//Z+%")U( L;l g )+( F& g )PH(//lJr%’)U

¥, 0 I, 0
__pH 1 1 Hy7H
=p zlv( o 0)+( o O)Q WU,

hence
PR + #)U, 22 + T2P (it + 0)U, = PP Zi vz + TQHW U,
Pl M + AU, 22 =Py 2,V 5,
2P (A + #)U, =T1QY W)U, .

so that

P (M + 7)U, = &% (P{'Z,V1 5 + QYWY
P} + #)U, = PZ vimt,
PR + #)U, =T QMW U, ,

(2.11)

(2.12)
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where @ is given by (2.10).
Similarly, from the second equality in (2.11) we obtain

Lt — )R, =V (L1 2,8, %, + LMIWHR,),

L — )R, = LV 2,8, 5,7, (2.13)
H _ r—1xa7H17H

L — )R, =T, ' MIWR, ,

where ¥ is given by (2.10). From (2.12), we obtain A;; = .# + ¢ in (2.8), and similarly
from (2.13) we obtain A,, = 4 — 7 in (2.9), hence we get (2.7).

H V2
When n = 2k + 1, from (2.3) we may set A;; = ( Ji//%_VH \/;u ) and Ay, = N — 52,

and the proof is similar to that for the case n = 2k. So the proof is complete. O

In the above lemma, from (2.6) we also know that

@A) =[1A11X, — Z1 |1 + 1Y Ay — WP + |AgoX s — Zo|1 + 11V, Agy — W, |2
=||P]'A; U T — P{Z V1|12 + |0 PUAL UL — QWU |
+ |IPAL UL S, —P521V1||2 + |1 Py 'A U,y —QIleHUznz
+ IPRZ, Vo2 + IQUWHU I + |1L7 Z,S, |1 + | MEWER|?
+ [|ILYA%R By — L' 2581 |” + I LT'AgoRy — My W, R, |
+ |ILYAyR Ty — L 2,8, 12 + I, LH ARy — M WSR2,

where
A11=.//t+%, Azzz.ﬁ—% forfl=2k,
N +# 2u
Allz( /o o ), Agpp =N = forn=2k+1.
Hence ¢(A) = 0 if and only if
H -1 _ p—1nHyH H -1 _ p—1i7HpH
Pz, vzt =17tQwly, , 187,8, 551 =T, MIWHR,
21V2 =0 s and Zzsz =0 s
Hy/H _ v —
Qiw/ =0, Miwy =0.

From (2.6), the above conditions are equivalent to

Yz, =wiXx,, Y]z, =W, Xy,
Zy=7,X,X;, and Zy=Z,X) X, , (2.14)
Wy = WYY, Wy =WoY, Yy,
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whence
H —1 —1~Hy\/H
A= ( PHz vzt TlQtwlu, )UH
PHz =t E;
=Z,X] + (V) AW | — X1 X]) + PE US where By € CU5 XU,
and
H —1 —1a7Hy7H
Ay, = LYZ381%," 'MWy Ry ) by
LYZ,8, %57 E,

=Z,X5 + (YAWE(L, — X,X1) + L,E,RY where E, € CP)(k=0)

By substituting A;; and A,, into (2.7), we get the general expression for the solution of
w(A)=0:

B P,E, U, 0 -
A—A0+Dn( 0 LyERY pH, (2.15)
where
e —D (Z1XI+(Yi*‘)HWF(IL%J—X1XI) 0 ) ;
0 = o ' 0 .
! 0 ZoXy + (Y)W (L —X0X)) ) "

Then letting
(If,0)D, =(T1,T2), I ec/ ', T, € ¢/,

The generalised singular value decomposition (GSVD) of the matrix pair (P)'T{', L} T,")
described in Ref. [16] is

PTR =Upe,M and LT =U 2/ M, (2.16)

where M € Cf*/ is a nonsingular matrix, Up € 02/([%1] —s), U, € %(k—p), and

I, © 0 0 00 0 0
Sp=| 0 Ap 0 0 , ;= 01 0 0 ,
0 0 0 0 0 0 I,y g 0

L g gL—g f—g L ¢ g8—L—-g f—¢g

with g = rank(T; P,, T, L,), l; = rank(T; Py, ToLy)—rank(T,L,), g; = rank(T; Py)+rank(TyL,)—
rank(Tl'PZJ T2L2), and AP = diag(ah Ao, ) agl )) FL = diag(ﬂl: ﬂZJ ) ﬂgl) with 1> a =
2y >0and 0<fy << Py <L AZHT] =1y

Similarly, the GSVD of the matrix pair (U;H T1H,RI;I TZH) is given by

U,'T}' = UylIyN and R, T, = URIIzN , (2.17)
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where N € C/*f is a nonsingular matrix, Uy € 02/([%1] —r), Up€ %(k—t), and

I, 0 0 0 0 0 0 0

I = 0 Ay 0 0 , =1 0 Iy 0 0 )
0 o0 0 0 0 0 In_i,—g, 0
ly g h—Ily—g, f—h l, g h—l,—g, f—h

with h = rank(T, Uy, ToR,), I, = rank(T; Uy, ToR,)—rank(TyR,), g5 = rank(T; U, )+rank(TyR5)—
rank(T, Uy, ToR,), Ay = diag(wq, s, ..., w,,), Tg = diag(vy, vy,...,v,,) with 1 > wq =

2wy, >0and 0< vy <o < v, <1, and AL +T7 =1,
Furthermore, we compatibly partition the nonsingular matrices
M_l = ( Ml) MZ) M3 M4 )
L & g—h-& f—¢
N_lz( Nl, NZ, N3 N4 )

2.18
l & h—lb—g f—h ( )

with the block column partitioning of X and Il respectively.

We may now proceed to solving Problem I over the matrices in 46™*"(2?) as follows.

Theorem 2.1. Consider X € C™™ Y € C™, A = diag(A1, A5, ,A,) € C™ A =
diag(uy, U, - .., uy) € C*L, €y € ¢ and D, as described in (2.2) or (2.4); and letD,II'IX, D?Y
be as given in (2.5) and the SVDs of X, X,, Y; and Y, be the same as in (2.6). Set

(I;,00D, = (T}, Ty), Ty eC/ ') T, e/, (2.19)
and
C = Co— Ty [ X1 AX] + (M AV (1w | — X, X]) | T
— Ty [XoAX] + (L ARV (1 — X, x D) ] TH. (2.20)

Assume the respective GSVDs of the matrix pairs (Py' Ty, L} T,") and (U5 T;',R5 T,") are given
by (2.16) and (2.17); and denote

M HCN™ = (Cij)anq with C;j=MICN;, i,j=1,2,3,4, (2.21)

where Mi and N; are given by (2.18) for all i,j = 1,2,3,4. Then Problem I is solvable in
4€™"(2) if and only if

YIxX A =AYX, Y XoA =AY, Xy,
XA =X AXTX, XoA = X,AX0X,, (2.22)
Al =y, Ay, v,AN = v,AlY] Y,

and

C13=0, C3=0, (CJ, C}

mo Co C3)=0, (C41,Cy3,Cy3,Caq) =0 (2.23)
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hold. Moreover, its general solution can be expressed as

_ PyE, U} 0 H
A—A0+Dn( o b Legt ) (2.24)
with
D (XlAXI+(Y1AHY1T)H(IL%J—X1XI) 0 ) u
0 on 0 X,AX] + (AR, H(I, —X,x0) )7
(2.25)
Cn CioAy X13
Ey=Up| Ap'Car Ap'(Cop—TiYoIR)Ay' Xa3 |UY (2.26)
X31 X3 X33
and

Yll Y12 Y13
E,=U,| Yy Y221 I 'Cy |UE, (2.27)
Y3 Csoly Cs3

where X3, Xo3, X371, X39, X33, Y11, Y12, Y13, Yoy, Yoy and Y5, are arbitrary block matrices
with appropriate sizes.

Proof. Problem I is solvable if and only if there exists a matrix A € ¢ 6¢™*"(2?) such that
the system of matrix equations

AX = XA, vyHA=AYH (2.28)

is consistent and
(Ir,0)A(I;,0)" = Cy. (2.29)

Firstly, set Z = XA and W = Y AH, from (2.14) and (2.15) we know that (2.28) is consistent
if and only if the conditions in (2.22) hold. Furthermore, its general solution is given by
(2.24). Then from (2.19), (2.20), (2.24) and (2.25), we have that Eq. (2.29) is equivalent
to find the matrices E; € L'z =55 =) ang E, € Ck=P*(k=0) gych that

T\ P,E Uy T + ToLyEoRG Ty = C (2.30)

is consistent. From (2.16), (2.17), (2.21) and [6, Theorem 3.1] it follows that Eq. (2.30)
is consistent if and only if the conditions in (2.23) are satisfied. In this case, its general
solution pair (E;, E;) can be given by (2.26) and (2.27). Problem I is therefore solvable
if and only if the conditions in (2.22) and (2.23) hold, and then substituting (2.26) and
(2.27) into (2.24) yields the general solution of Problem I. O
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3. The Unique Optimal Approximate Solution of Problem II

If the solution set & of Problem I is nonempty, then Problem II has a unique solution
as follows.

Lemma 3.1. For any matrix A € C™", there exist unique matrices A, € 4€™"(%) and
Ay € 4SS €™ (P) such that

A=A]_ +A2, <A1,A2> == 0,
where

1 1
Ay =(A+KAK), A;=_(A—KAK).

Because this result is similar to that of Ref. [24], we omit its proof of this lemma.
Given Theorem 2.1, we have the following theorem for the generalised centrohermitian
solution of Problem II.

Theorem 3.1. Consider A* € C™™ X € C™™ Y € C™!, A = diag(Ay, Ay, -+, Apy) € C™™M,
A = diag(uy, pg, -+ ,u) € C*! and D, as described in (2.2) or (2.4); and let DY'X, DHY be
as given in (2.5) and the SVDs of X1, X,, Y; and Y, be the same as in (2.6). Set

A =X AX] + (YlAHYDH (IL%J _X1X1T) ’

AS, =XoAX) + (%ARY) ) (I —XoX)) (3.1)
and . .
+ +
H1=Dn(1:n,1:Ln2 J), H2=Dn(1:n,[nTJ+1:n). (3.2)
Partition the matrices
XT1 Xikz Xiks L
Up Py (HY'AiH, —A] DUUy = | X5 X5 X33 81 ,
X5 X3 X33 55 l=s—h—g&
l, & [%1]_’”_12_82 (3.3)
B o Y1::1 Y1:2 Y1::3 k—p—g+1
U Ly (Hy A Hy — A5))RyUg = Y5 Y5 Y53 &1 )
& Y3 Y33 g—L—&
k—t—h+1, g h—Il,—g (3.4)

where A; = (A* +KA*K)/2. If the solution set & of Problem I over the matrices in 4 €™"(®)
is nonempty, then Problem II has a unique solution

A% + P, E*UH 0
* 11 251%2 H
A Dn( 0 A9, + LESR! )Dn (3.5)
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with
Cn CraAy' X%,
Eik == Up A;l Cz]_ A;l(CZZ - FLYZZFR)AE]' X;B l]LI_II (36)
X5 X3 X33
and
Y1*1 l11*2 %1*3 -
E; == UL Yz*l Y22 FL_ C23 UR N (37)
Yy Calx!  Css
where

?22 =0 (A}Z)YZ*ZA%] + FL C22FR - APFLXEZFRAU) N

1
e = (9) = (—) c R&1%8&2
Y aizco]z.+[3i2vjz.

Proof. Assuming the solution set & of Problem I is nonempty, it is apparent that &
is a closed convex set and forms an affine subspace, therefore Problem II has a unique
solution [8, pp. 209]. Now for any given matrix A* € C™", from Lemma 3.1 there exist
unique matrices A; = %(A#+KA#K) €EYE(P)and A, = %(A#—KA#K) EYSEC(P)
such that A* = A; + A, and (A;,A,) = 0. Then for any matrix A € & C 96€™"(P) given
by (2.24), we have

|A% —A|I> = [|A; + Ay —All* = ||A; —A|I* + [|A5]1%.
From the unitary invariance of the Frobenius norm and Egs. (3.1) and (3.2), we have

|A—A4||*> =||D}'AD,, — D'A; D, ||?
=HYA Hy|? + | HYA HL |1 + A, + P,E Uy — HY'A Hy |
+ 1A%, + LyEo,RY —HYA H, ||
=(|HYA;H,|* + || HY'A  Hy |1 + || E; — Py (HY'A Hy — AY,)Us |12
+|HYA H, — A%, — PP (HYA H, — A% U, UMY 2
+||Ey — LZH(H§‘A1H2 _A(z)z)Rznz
+ |HYA Hy — AS, — Ly LY (HYA Hy — A%, )R,RY| 12

The problem min, o, ||A* —A||? is therefore equivalent to the problem
|Ey — Py} (HY'AHy — AU, 1> + ||y — LY (Hy Ay Hy — A2, )R, ||* = min

for any (E{,E,) € C(LHTHJ_S)X(LHTHJ_” x Ck=p)x(k—t) given by (2.26) and (2.27). From the
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unitary invariance of the Frobenius norm and Egs. (3.3) and (3.4),

|E; — Py (HY'A Hy —AS DU, |I? + || Ey — LY (Hy Ay Hy — AY, )R,
=|U}'E, Uy — Uy Py (Hy'A Hy —AS DU Uy |1? + ||U; EyUg — U LY (H A Hy — AS, )Ry Ul

_ 2
C;11 11 » CraAy! _sz_l X13— X713
Co1 — X* AL (Cop — T YoolR)A — X35, Xo3—X3,
X31 X3 X33 = X3, X33—X33
* * 2
—Yy Y —Y Y13 Yy
+ Y YR Y Yh Gy

*

Y3, — Y31 Cyl' =Y,  Cay— Y3*3

Consequently, ||JA* —A||? = min, YA € & if and only if

X13=X];, Xo3=X5,, X31=X3,, X33=X3,, X33=X3,,
Y=Y, Y=Y, Y=V, Yu=VY, Y=Y, (3.8)

and
@ (Yo5) := | (Cop — T Yoo IR)Ay — X5, |I” + ([ Yoy — Y |I* = min, VYy, € CE82. (3.9)
On using matrix differential calculus,

3 p(Ys5)

v =2 [AS2T2Ypo T2AL% + Yoo + A T (X5, — Ay Con AGIRAL — Y5, ]
22

and setting J ¢(Yy,)/8 Y5y = 0, the solution of (3.9) is

Yoo = 0% (A2Y5,A2 + T, Conly — ApTy X5, TrAy ) (3.10)

where

1
e = (9) = (—) c R81%&2
N aiw? + pEv?

Substituting (3.8) and (3.10) into (2.26) and (2.27), we get (3.6) and (3.7) respectively.
Finally, substituting (3.6) and (3.7) into (2.24) yields the unique optimal approximate so-
lution A* as described in (3.5). O

4. Numerical Algorithm and Experiment

Based on Theorem 3.1, we establish the following algorithm for computing the optimal
approximate generalised centrohermitian solution of Problem II.

Algorithm 4.1.

Input: X eC™™ Yy e C™, AeC™™ A eC¥, c,e /™, # e Ck*k and A* € C™.
Output: A* € C™".

Begin
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1.

10.

11.
12.

13.

14.

15.

End

Judge n =2k orn =2k + 1.

0 0 #
.DecideKz(; f)oer 0 1 O

P2 0 0
. Determine D,, by (2.2) or (2.4).

Calculate X, X,, Y7 and Y, by (2.5).

. Compute the SVDs of X, X,, Y; and Y, by (2.6).

Determine T, T, and C by (2.19) and (2.20), respectively.

Construct the GSVDs of the matrix pairs (P} T;", L)' T,") and (U,'T}',R5 T,") by (2.16)
and (2.17), respectively.

Partition the matrix M TCN ™! = (C;;)4x4 by (2.21).
If all the conditions in (2.22) and (2.23) hold, then continue. Otherwise, we stop.
Compute A(l)l, A(z’2 by (3.1) and H;, H, by (3.2).

Calculate A; = 3(A* + KA*K).

Partition the matrices U II;IP;I(H i{AlH 1 —A({l)Uz Uy and UFL;I(H ?Ale —A(Z)Z)Rz Ug as
given in (3.3) and (3.4), respectively.

Compute Y,, by (3.10).
Calculate EJ and EJ as described in (3.6) and (3.7), respectively.

Compute the solution A* of Problem II by (3.5).

We now present a numerical example to verify Algorithm 4.1, using MATLAB R2013a
with a machine precision 1071°.

Example 4.1. Let X, Y, A, A, Co, &, A” be given as follows:

[ 0.2500+0.2500i  0.0426 —0.0000i \
0.2500+0.2500i  0.1423 + 0.0000i
0.2500+0.2500i  0.3239 + 0.0000i
0.2500+0.2500i  0.6108 + 0.0000i
0.3536—0.0000i —0.0301+0.43191 |’
0.3536+0.0000i —0.1006+ 0.2290i
—0.3536+0.0000i  0.2290—0.1006i
\ —0.3536—0.0000i  0.4319—0.0301i )
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[ 0.3536+0.0000i  0.0426+0.0000i  0.1041 + 0.0000i \
0.3536+0.0000i  0.1423—0.0000i —0.2455 + 0.0000i
0.3536—0.0000i  0.3239+0.0000i —0.3869—0.0000i
0.3536+0.0000i  0.6108+0.0000i  0.5284+ 0.0000i

Y=1 0.2500—0.2500i —0.0301+0.4319i 0.0736—0.3736i |
0.2500—0.2500i —0.1006+ 0.2290i —0.1736+ 0.2736i
—0.2500+0.2500i  0.2290—0.1006i  0.2736—0.1736i

\| —0.2500+ 0.2500i  0.4319—0.0301i —0.3736+0.0736i /
34.0000 0 0

A=( 34'0008 26.3043 ) A= 0 26.3047 o |,
0 0 —8.9443

9.3794+0.17561 0.4480—0.2361i 1.9763+0.0378i 7.1963 + 0.0227i
3.1800+0.0359i 6.2847—0.0483i 6.4951+0.0077i 6.0402 + 0.0046i

C0=| 44402-0.1118i 5.6697+0.1503i 6.0151—0.0241i 10.8750—0.0144i |’
2.0004—0.0998i 9.5976+0.1341i 12.5135—0.0215i 10.3885—0.0129i
10 0 —i
1 01 —i 0
=5 1o i -1 o0
i 00 -1
and

A* =10-hilb(8) + 110 -magic(8),
where hilb(8) and magic(8) are the Hilbert matrix and magic matrix of order 8, respectively.
Using Algorithm 4.1, we obtain the matrix
—1.5393+4+0.1763i 1.8913+0.0862i —2.6859—0.2384i 3.0807 —0.0240i
3.9297—-0.3114i —2.85194+0.0072i 1.6479+0.2452i —1.9146+ 0.0589i

—1.9738+0.1816i 2.3760—0.0460i 0.3990—0.09691 —0.3396—0.0387i
0.3302—0.0465i —0.6044—0.0474i 1.1005+0.0900i —1.3121+ 0.0038i

C =

Then we compute the GSVDs of the matrix pairs (P,'T}', LY'T,") and (U}'T;",RyT,") by
(2.16) and (2.17), respectively. It follows that

1
AP:FL:AU:FR:(E)'

Now, we can verify that the conditions in (2.22) and (2.23) hold. Continue to use
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Algorithm 4.1, we obtain the matrix

( 9.3794+0.1756i 0.4480—0.2361i 1.9763+0.0378i  7.1963 + 0.0227i
3.1800+0.0359i  6.2847—0.0483i  6.4951+0.0077i  6.0402 + 0.0046i
4.4402—0.1118i  5.6697+0.1503i  6.0151—0.0241i 10.8750—0.0144i
2.0004—0.0998i 9.5976+0.1341i 12.5135—0.0215i 10.3885—0.0129i
8.0302—0.3288i —3.3354—4.9113i  1.3308—0.9703i  4.5810+ 6.5641i

—2.9047—4.3882i 8.9511+1.7445i 1.6072—2.0692i 0.8317—0.2367i

—5.4060—2.1618i 1.5942+8.8708i 0.1918+0.2670i —1.3299+ 1.5093i

—0.0752+8.0514i —4.4639—3.5523i —2.2036+1.6431i  7.0962 + 4.4645i

A*

8.3068 +4.39591 —4.0605+1.26331 —1.7107 +2.8272i —4.6495—7.7747i \
—3.0798+1.6794i 10.0414+1.0122i —0.8620—7.7804i —0.6616+ 1.9867i
5.2359+0.4118i —2.3394+0.97891 —0.8986+0.9993i —1.1548 —4.5583i
0.1437—6.8407i 4.8437+1.6954i —1.4785—4.5315i 6.8195—0.2602i
9.8227+2.6792i  6.5289—3.93951 —5.8943 +5.9468i —4.5041 + 0.5430i
6.9693+0.8107i 6.2212+0.3765i —6.0945—0.2138i —5.2150+ 3.9011i
—5.2654—3.7940i —6.0703+0.0558i 6.0786—0.44891  7.0857—0.7893i
—4.6925—0.4661i —5.6796—6.1187i 6.4326+3.6818i  9.9452—2.5166i }

and ||A* —A*|| = 59.0511. Then we have
|A* — KA*K|| = 1.6245¢ — 14

and
JA*X — X A|| = 3.4822¢ — 14, lYHA* — AYH|| = 2.4008¢ — 14,

indicating that A* € ¥9%%*8(#) is the solution of the system of the matrix equations
AX = XA, YHA = AYH. Consequently, A* is the unique optimal approximate solution
of Problem II.

Conclusions

In this paper, we discuss an undamped non-gyroscopic model which can be discretized
as the left and right inverse eigenvalue problem of a certain structured matrix. When the
structured matrix A in Eq. (1.1) is generalised centrohermitian and has a constrained sub-
matrix C, we design Algorithm 4.1 to correct the model by using algebraic method. Mean-
while, Example 4.1 verifies that Algorithm 4.1 can be effective and feasible to obtain the
unique optimal approximate solution of Problem II. When Y = 0 and & is the cross-identity
matrix of order k in Problem I, our results extend previous results in the real number field
of Bai [1]. In addition, by using the SVD and GSVD we can similarly solve Problems I and
IT for the case of generalised skew-centrohermitian matrices.
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