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Traffic Lights or Roundabout?

Analysis using the Modified Kinematic LWR Model
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Abstract. Traffic flow is treated as a continuum governed by the kinematic LWR model

and the Greenshield flux function. The model is modified to describe traffic flow on a

road with traffic lights or a roundabout. Parameters introduced determine the traffic

flow behaviour and queue formation, and numerical simulations based on the Godunov

method are carried out. The numerical procedure is shown to converge, and produces

results consistent with previous analytic results.
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1. Introduction

Many roads in urban areas suffer from heavy traffic, and even on modern highways

there can be “stop and go" traffic. In particular, traffic congestion often occurs in the ap-

proach to an intersection with traffic lights or a roundabout. Sometimes the congestion

might be reduced by applying some new traffic regulation — e.g. by making a section of

two-way road one-way, or by replacing traffic lights with a roundabout as discussed here.

Simulations can help to assess whether the consequent modified traffic behaviour results

in better traffic management. Traffic simulation packages have been developed since the

1960s [14], but research on traffic modelling and simulation is ongoing. Specific issues

for traffic flow engineering include the study of highway junctions where there is merg-

ing [9, 10, 13], and the effects of entrances and exits [1]. The efficiency of a roundabout

versus traffic lights at an intersection that we address is another.

Traffic may often be treated as a continuum in the macroscopic modelling of traffic flow.

The kinematic Lighthill-Whitham-Richards (LWR) model [7,8] is often adopted, where the

number of vehicles is assumed to be conserved and the flow is described in terms of traffic
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density and vehicular speed (flux). Driver behaviour is modelled by some specified pre-

scribed flux to density relationship, and various such flux functions have been used [6].

The Godunov finite difference method [11,12] with upwinding is an especially appro-

priate numerical approach when discontinuities are to be expected, and it is used here. An-

other procedure is the supply-demand method [3–5], which is also based on conservation

of the number of vehicles. The analysis of traffic flow simulation using cellular automata

for one-lane or multi-lane roundabouts has also been explored — e.g. see Refs. [2,16,17].

The rest of this article is organised as follows. In Section 2, the kinematic LWR model

and its discrete formulation are discussed. In Section 3, we propose a mathematical model

for traffic flow at an intersection with traffic lights or a roundabout, and numerical calcula-

tions are conducted to compare their relative performance. The length of the queue formed

behind the intersection is discussed in Section 4, and our conclusions and discussion are in

Section 5.

2. The Kinematic LWR model and its Discrete Formulation

We consider a road with heavy traffic moving in one direction. Let n vehicles per kilo-

metre denote the traffic density (the number of vehicles in a unit length of road), and f

vehicles per hour denote the flux (the number of vehicles passing in a unit length of time).

The flux and density are related by

f = n× v ,

where v is the mean velocity of the vehicles. In reality, the velocities depend on aspects such

as individual driver characteristics, traffic density and road condition. However, here we

adopt the commonly used Greenshield model, where the average velocity depends linearly

on traffic density as follows:

v(n) = Vm

�

1− n

Nm

�

, (2.1)

where Nm (vehicles/km) and Vm (km/hour) are the maximum traffic density and velocity,

respectively. This Greenshield velocity and flux are depicted in Fig. 1. In applications, the

parameter Vm depends on road conditions — e.g. Vm is much larger on highways than along

city or suburban roads. Although Eq. (2.1) is linear, it captures two important aspects of

traffic flow — viz. when the road is nearly empty n→ 0 so the mean velocity tends to its

maximum (v(n) → Vm), whereas if the road is nearly full n → Nm so the mean velocity

tends to zero (v(n) → 0) when vehicles can hardly move. The underlying conservation

principle that governs traffic dynamics is

nt + fx = 0 , with f (n) = nVm

�

1− n

Nm

�

. (2.2)

In this model, the maximum flux is given by the ordinate of the vertex parabola f (n), which

is fm = NmVm/4. Eq. (2.2) can be rewritten nt + f ′(n)nx = 0, where f ′(n) is the signal

speed. As indicated in Fig. 1 (right), the signal speed is positive when n(x , t) < Nm/2,
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Figure 1: Curves in the Greenshield model for both the velo
ity v(n) (left) and the �ux f (n) = nv(n)
(right).

which means information is moving to the right, whereas information is moving to the left

when n(x , t) > Nm/2 (i.e. when the traffic density exceeds half of the maximum density).

Let us now discuss the Godunov method for Eq. (2.2). Consider the computational

domain [0, L] divided into Nx cells of homogeneous length ∆x in a staggered way, with

partition points x1/2 = 0 , x3/2 =∆x , · · · , x i+1/2 = i∆x , · · · , xNx+1/2 = Nx∆x = L . Within

the time interval∆t, the number of vehicles in the cell Ci = [x i− 1
2
, x i+ 1

2
] changes according

to the net flux from its left and right boundaries as follows:

n(x i, tn+1)∆x = n(x i, tn)∆x −∆t
�

f (x i− 1
2
, tn)− f (x i+ 1

2
, tn)
�

. (2.3)

This is the conservation principle for vehicles in cell Ci in discrete form, and the formulation

(2.3) is the Godunov method. At every time step, the traffic density at cell Ci is updated

using the net flux from both boundaries x i± 1
2
. The upwind approximation of the flux at

staggered points is discussed below.

Since the signal speed associated with the continuum model (2.2) is given by f ′(n), the

flux fi+ 1
2

needs to be evaluated at the left end ( fi) if information is propagating forward

(i.e. if f ′
i+ 1

2

> 0), and at the right end ( fi+1) if information is travelling upstream (i.e. if

f ′
i+ 1

2

< 0). In summary, with f ′
i+ 1

2

≈ 1
2( f
′

i
+ f ′

i+1
) the upwind approximation is

fi+ 1
2
≈
¨

fi , if 1
2( f
′

i
+ f ′

i+1
) > 0 ,

fi+1 , if 1
2( f
′

i
+ f ′

i+1
) < 0 .

(2.4)

In the next section, the scheme defined by Eqs. (2.3) and (2.4) is used to analyse the traffic

flow when there is a set of traffic lights or a roundabout.

3. Models for Traffic Lights and Roundabout

Before arriving at an intersection, the drivers often encounter a queue of vehicles. There

can be a lengthy wait in a long queue at a traffic light until it turns green, when at least some
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Figure 2: S
hemati
 of an interse
tion with a tra�
 lights (left) or a roundabout (right).

of the leading vehicles can pass the intersection. We now analyse the relative performance

of traffic lights and a roundabout — i.e. if traffic lights are replaced by a roundabout,

will more of the traffic proceed through the intersection in a given time? To model traffic

dynamics in a road segment with a set of traffic lights, we consider the kinematic LWR

(2.2) in a spatial domain with an intersection located at xcross — cf. Fig. 2. From an

analogy in hydrodynamics, the intersection can be regarded as an obstacle that will affect

traffic dynamics upstream and downstream. Our interest is then the upstream part of the

intersection, and in particular the length of the queue that has formed behind the traffic

lights or roundabout.

We adopt a simplified traffic light model by assuming that a light turns between red

and green — i.e. we neglect an intermediate yellow phase. The presence of the traffic light

changes the flux at xcross as no vehicle may legally pass through the intersection during a

red light (i.e. the flux is then zero), so that

v(n(xcross, t)) =

�

0 , for time t during a red light ,

v(n) , for time t during a green light ,
(3.1)

where v(n) is given in Eq. (2.1). If Tr , Tg denote the respective duration of a red and green

light, a traffic light parameter measuring the relative green light time is

α ≡ Tg

Tc ycl e

, where Tc ycl e = Tr + Tg . (3.2)

For most traffic lights at the intersection of two roadways, a typical range for this parameter

is 1/4< α < 1/3. The value α= 1/4 means that each of the four legs of the two roads has

an equal green light period, whereas when α = 1/3 two legs of the roads share the same

green light period. Incidentally, the parameter α in (3.2) is defined on the assumption that

any time lost during the initiation and termination of a green phase may be neglected.

Vehicles approaching roundabouts usually slow down, as drivers reduce speed due to

their circular roadways and merging traffic from other legs. Observations in the USA [15]

suggest this reduction is proportional to the square root of the roundabout radius, but here

we simply assume that the reduced velocity is βv(n) where β < 1. Thus the averaged

velocity in a road segment with a roundabout is modelled by

v(n(x , t)) =

�

βv(n) , when x = xcross ,

v(n) , otherwise ,
(3.3)
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Figure 3: Left: Tra�
 through the tra�
 light where α = 1/3 is periodi
ally stopped, and the queue

is only partly 
leared in ea
h green light phase during a time of t ≈ 14 units. Right: Tra�
 through

the roundabout where β = 1/3 pro
eeds with a redu
ed �ow, and the queue is 
leared after the time of

t ≈ 14 units.

with v(n) given in Eq. (2.1). This reduced velocity implies a reduction in the traffic flux,

although if the roundabout has a large diameter drivers barely need to reduce speed such

that β is close to one.

We contemplated two particular situations in examining the relative performance of

a traffic light and roundabout. The kinematic LWR model (2.2) with parameters Nm and

Vm can be normalised to one, and we considered a computational domain [0,3] with an

intersection located at xcross = 2. As the initial condition, we assumed that a unit length of

road behind the intersection is fully occupied — i.e.

n(x , 0) =

�

Nm , when 0< x < 1 ,

0 , for 1< x .

Given that no vehicle may enter from the left, we have the boundary condition n(0, t) = 0,

but our right boundary condition allows open entry. For α = 1/3, we take the normalised

time Tc ycl e = 1 with red and green light periods 2
3 Tc ycl e and 1

3 Tc ycl e, respectively. We used

∆t = ∆x = 0.01 for this computation, and Fig. 3 shows the resulting traffic densities (in

contour plots) passing through the traffic light and roundabout.

At earlier times, Figs. 3 (left) and (right) both show expected rarefaction waves emerg-

ing from x = 1, the location of the discontinuous initial density. As time passes, the vehicles

move forward to the intersection xcross = 2. There is clearly “stop and go" traffic for the

traffic light at xcross in Fig. 3 (left), whereas for the roundabout the traffic is constrained

but moves continuously in Fig. 3 (right). The time needed for all of the initial traffic to pass

the intersection xcross (the clearance time) is an important criterion that can be formulated

as follows. Without either obstacle, the maximum flux is fm = VmNm/4 and the vehicles can

pass xcross within 1/ fm = 4/VmNm = 4 time units. The traffic light and roundabout reduce

the flux by the respective factors α and β , so that the initial queue passes the intersection

xcross in 1/(α fm) = 1/(β fm) time units.

We also undertook computation for other green light proportions (different α) and
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Table 1: Cal
ulated values of tclear for a tra�
 light with parameter α and a roundabout with parameter

β when fm = VmNm/4= 1/4, and the errors as per
entages.

Traffic light Roundabout

α
�

�tcl ear − 1
α fm

�

� error (%) β
�

�tcl ear − 1
β fm

�

� error (%)

1/2 0.25 3.12 1/2 0.37 4.63

1/3 0.57 4.75 1/3 0.20 1.67

1/4 0.73 4.56 1/4 0.24 1.50

different radii roundabouts (different β), to evaluate their corresponding clearance times

tcl ear . Since there is initially no traffic on x > 1, the time tcl ear can be regarded as the in-

terval when the traffic density at x = 3 is nonzero — cf. Fig. 3. There tcl ear = 14.3−2.87=

11.43 for the traffic light, and tcl ear = 14.18− 2.38= 11.8 for the roundabout. The clear-

ance times tcl ear for the other α and β are summarised in Table 1, where we see that the

clearance times for the traffic light and roundabout are comparable and agree with ana-

lytical predictions. We conclude that operating an intersection with either a traffic light or

a roundabout is comparable if the parameters α and β are the same, so In our discussion

below an intersection is simply treated as an obstacle with reduced flux β fm.

4. Queue Length and the Shock Line

We focus on the traffic dynamics behind an intersection, to determine the length of

the queue that forms behind it for comparison with the queue length determined from the

corresponding analytical shock line.

Let us assume the initial traffic density is nA corresponding to a flux f (nA), as indicated

by the point A in Fig. 4. An obstacle at xcross with the reduced flux β fm is associated with

two traffic densities — i.e. low and high densities. High density is more appropriate, since

the obstacle obstructs the flow. On the flux curve, the obstructed condition is depicted as

point B in Fig. 4, and the quantitative effect on the initial traffic with density nA is described

by the line segment AB. The gradient of the segment AB is precisely the shock speed from

the Rankine-Hugoniot formula

mAB =
[ f (n)]BA

[n]BA
.

We can directly obtain the queue length behind the obstacle from the shock line, on noting

the analytical solution

n(x , t) =

�

nA , for (x − xcross)/t < mAB ,

nB , for (x − xcross)/t > mAB .
(4.1)

The reduced flux for β = 0.5 is NmVm/8, which corresponds to the high density flux

nB =

�

1

2
+

1

4

p
2

�

Nm ≈ 0.8536Nm
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Figure 4: (Left) The �ux diagram to determine the sho
k line. (Right) Contour plot of the 
omputed

tra�
 density on the upstream side of an interse
tion.

Table 2: The L1
error and the 
onvergen
e rate τ of the numeri
al s
heme.

Nx L1 error τ

40 0.026058 /

80 0.013052 0.997422

120 0.008717 0.995600

160 0.006549 0.993810

such that

mAB = Vm (1− (nA+ nB)/Nm) = −0.1869Vm ,

on assuming an initial traffic density nA = Nm/3. The shock line plotted on the x t−plane

in Fig. 4 (left) separates two different traffic densities (a high density nB and a low density

nA), and directly determines the queue length as a function of time.

We solved the model (2.2) on a computational domain [0, xcross] with a roundabout

located at xcross = 2, and initial traffic density n(x , 0) = 1
3 Nm with normalised parameters

Vm = 1, Nm = 1. The spatial domain was divided into Nx = 40 cells with ∆x = 0.05 and

we took ∆t = 0.05, yielding the result shown in Fig. 4. The contour plot clearly shows

two traffic densities nA =
1
3 Nm and nB = 0.8536Nm, separated by a line with gradient that

conforms to the analytical shock line mAB = −0.1869Vm.

Finally, we compared our numerical results with the analytical solution (4.1). The error

between the numerical and analytical solutions was measured at time T = 10.5 using the

L1−norm. Computations for several spatial grid cells Nx were performed, keeping the

Courant number Vm∆t/∆x equal to one, and the resulting errors are presented in Table 2.

The numerical results show good convergence as the number of cells Nx increases, and the

convergence rate τ = log(error2/error1)/ log(Nx 1/Nx 2), confirms order one accuracy for

the method — cf. the right column in Table 2.
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5. Conclusions and discussion

The kinematic LWR model has been modified to account for traffic lights or round-

abouts. The Godunov scheme successfully simulates “stop and go" traffic due to a traffic

light and reduced traffic due to a roundabout. With the same parameters, their performance

is comparable, as several numerical computations demonstrated. Moreover, the growth of

the traffic queue in our simulation conformed with the gradient of the analytical shock line.

At an intersection connecting four legs, a typical parameter value for the traffic light

is less than 1/3 and very likely around 1/4, while vehicle speed due to a roundabout is

often roughly halved. Our work tends to explain why a traffic light can cause more traffic

congestion than a roundabout, which seems the better option given the queues that form

behind an intersection. However, decision-makers should also consider other aspects such

as traffic volumes and the site of the intersection.
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