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Abstract. A posteriori error estimates of semidiscrete mixed finite element methods for
quadratic optimal control problems involving linear parabolic equations are developed.
The state and co-state are discretised by Raviart-Thomas mixed finite element spaces of
order k, and the control is approximated by piecewise polynomials of order k (k > 0). We
derive our a posteriori error estimates for the state and the control approximations via a
mixed elliptic reconstruction method. These estimates seem to be unavailable elsewhere
in the literature, although they represent an important step towards developing reliable
adaptive mixed finite element approximation schemes for the control problem.
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1. Introduction

Optimal control problems (OCP) involving partial differential equations (PDE) arise in
various fields such as fluid dynamics, environmental modelling and engineering. Efficient
numerical methods are usually required to solve such OCP Finite element approxima-
tions have proven suitable in engineering design work [4, 18-20, 23, 26, 35, 37], and very
many authors have considered OCP governed by elliptic or parabolic state equations pre-
viously [1,17,22,25,27-30,32,36]. There has been a growing demand for reliable and
efficient space-time algorithms to solve both linear and nonlinear time-dependent PDE nu-
merically, and most of the algorithms are based on a posteriori error estimators in order
to provide appropriate tools for adaptive mesh refinements. The theory for the a posteri-
ori analysis of finite element methods for elliptic problems is well developed, but it is yet
to be as complete for time-dependent linear and nonlinear problems. For parabolic prob-
lems, there are schemes dealing with space-time adaptivity [14, 15, 38,39] or with time
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adaptivity alone [21], or with spatial adaptivity on keeping the temporal variable contin-
uous [3,4]. For space-time adaptivity, typically the finite element discretization depends
upon a space-time variational formulation and the error indicators include both space and
time errors. Makridakis & Nochetto [33] introduced an elliptic reconstruction operator
that plays a role in a posteriori estimates quite similar to the role played by an elliptic pro-
jection for recovering optimal a priori error estimates for parabolic problems [41]. This
elliptic construction method was developed for a completely discrete scheme based on the
backward Euler method [31], for maximum norm estimates [13], and for discontinuous
Galerkin methods for parabolic problems [16].

In many control problems, the objective functional contains the gradient of the state
variables. For example, in flow control problems the gradient representing the Darcy ve-
locity is an important variable, and in temperature control problems large temperature
gradients during cooling or heating are important as they may be quite destructive. The
accuracy of the gradient is therefore important in the numerical discretization of the cou-
pled state equations. Mixed finite element methods are appropriate for the state equations
in such cases, since both the scalar variable and its flux variable can be approximated to
the same accuracy — e.g. see Ref. [6]. Indeed, when the objective functional contains
the gradient of the state variable, mixed finite element methods can be used for the state
equation such that both the scalar variable and its flux variable can be approximated to the
same accuracy. Recently, we have worked on both a priori superconvergence and a pos-
teriori error estimates in the application of mixed finite element methods to linear elliptic
OCP [7,8,10].

In this article, we develop a posteriori error estimates of a semidiscrete mixed finite ele-
ment approximation for parabolic OCP. Combining the elliptic construction idea of Ref. [33]
with the parabolic OCBE we define a corresponding mixed elliptic construction for the state
and co-state variables, and then use this mixed elliptic construction to derive a posteriori
error estimates for both the state and the control approximation. The OCP of interest are
of the form

T
ug}ggu{% L (p —pall®+lly — yall* + IIuIIZ)dt} : 1.1)
¥e(x, ) +divp(x,t) = f(x, t) +u(x,t), xeN, ted, (1.2)
plx,t) =—A(x)Vy(x,t), xeN, ted, (1.3)
y(x,t)=0, xeon, ted, (1.4)
y(x,0) = yo(x), xen, (1.5)

where the bounded open set Q C R? is a convex polygon with boundary Q2 and J = [0, T].
Let K be a closed convex set in control space U = L2(0, T; L?(Q)), f, y4 € L?(0, T; L2(Q)),
pg € (L0, T; L3(Q)))? and y, € Hé (£2). We assume the coefficient matrix

A(x) = (a;j(x)),,, € WEP (€ R¥?)

is symmetric 2 x 2, that there are constants c;,c, > 0 for any vector X € R? such that
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c1lIX1I2, < X'AX < ¢ [IX||2,, and K is a set defined by

T
Kz{uEU:J fudxdtZO}. 1.6)
0o Ja

Here we also adopt the standard notation W™P(Q) for Sobolev spaces on 2 with a norm

” : ”m,p giVEI’l by
ol = > D%,y »
|a|<m
and a semi-norm |- |, , given by ||v||ﬁ1,p = Z|a|=m ||Dav||IL)p(Q). We set

Wy P (@) = {v e W™P(Q) : v]5q =0},

and for p = 2 write
H™Q)=W™X(Q),  HJQ) =W

and
e Al = 11 Nl 25 -1=1"1oz2 -

Furthermore, L°(0,T; W™P(£2)) denotes the Banach space of all L* integrable functions
from J into W™ () with norm

T
”V”LS(J;WTH,P(Q)) = (J ||v||;Vm,p(Q) dt)
0

for s € [1,00) and the standard modification for s = oo. Similarly, one can define the
spaces H'(J; W™P(£2)) and CK(J; W™P(£2)) — cf. Ref. [24] for more detail. In addition, C
denotes a general positive constant independent of h.

After the semidiscrete mixed finite element approximation for the parabolic OCP (1.1)-
(1.5) is presented in Section 2, we introduce some projection operators and mixed elliptic
constructions. Using these mixed elliptic reconstructions, we derive our a posteriori error
estimates for both the state and the control approximation in Section 3. Our conclusions
and comment on some possible future work appear in Section 4.

1/s

2. Mixed Methods for Optimal Control Problems
The state spaces assumed for the OCP are L = L2(J; V) and Q = H'(J; W), where
V=H(div;) = {v e (L3 divo € 1)} and W =LX(Q),

and the Hilbert space V is equipped with the norm

Nl

2 : 2
19 llaivsey = (1012 + ldivoll2 g )
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Letting a = A™!, we recast (1.1)-(1.5) in the following weak form:

Find (p, y,u) € L x Q x K such that

T

ug}(igU{%L (||p—pd||2+IIy—yd||2+||u||2)dt}, 2.1)
(ap,v)—(y,divv) =0 YveV,teJ, (2.2)
(ye,w) + (divp,w) = (f +u,w) YweW,teJ, (2.3)
¥(x,0) = yo(x) Vxeq. (2.4)

The OCP (2.1)-(2.4) has a unique triplet solution (p, y,u) if and only if there is a co-state
(q,2) € L x Q such that (p, y,q,z,u) satisfies the following optimality conditions [23,29]:

(ap,v)—(y,divv) =0 YveV, teld, (2.5)
(ye, w)+ (divp,w) = (f +u,w) YweW,telJ, (2.6)
y(x,0) = yo(x) Vxen, 2.7)
(aq,v)—(z,divv) =—(p —pg4, v) YveV,ted, (2.8)
— (2, w) + (divg,w) = (y —y4,W) YweW,teJ, (2.9)
z(x, T)=0 Vxe, (2.10)
T
J (u+sz,i—u)dt >0 Viek, (2.11)
0

where (-, -) is the inner product in L2(2). Due to the special structure of the control con-
straint K, on using the same technique as in Ref. [9] we derive an important relationship
between the optimal control u and the optimal co-state z that is a key to our analysis.

Lemma 2.1. Let (y,p,2,q,u) be the solution of (2.5)-(2.11). Then u = max{0, %} —z, where

fOT szdxdt
[ [41dxdt

is the integral average of the function z on  x [0, T].

g =

Let 7, be regular triangulations of , h, the diameter of 7, and h = maxh,. Further, let
&, be the set of element sides of the triangulation &, with T;, = U&},. Let Vy x W, CV x W
denote the Raviart-Thomas space [12] associated with the triangulations &, of Q, P the
space of polynomials of total degree at most k > 0, V(1) = {v € Pf(r) + x - P(7)}, and
W(t) = Pi(7). We define

Vh = {’Uh ev: VT € %) vhl'r € V(T)} ’
Wy, = {Wh eW:VreT,wyl, € W(T)} >
Ky :=L*(J; Wy) NK .
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The mixed finite element discretisation of (2.1)-(2.4) is as follows.

Compute (py,, yp,up) € L2(J; Vy,) x HY(J; W) x Kj, such that

T
min {%Jo Upr—pall* + llyn — yall* + IIuhIIZ)dt} : (2.12)
(app, vpn) — (yp,divey) =0 V v, €V, ted, (2.13)
n,e>wn) + (divpp, wy) = (f +up,wp) ¥V wp €Wy, teld, (2.14)
ya(x,0) = yi(x) Vxeq, (2.15)

where yg(x) € W, is an approximation of y,. The OCP (2.12)-(2.15) again has a unique
triplet solution (py,, yy,u) if and only if there is a co-state (q,,2,) € L2(J; V) x HY(J; W,,)
such that (py, Y, qn, 2, Up) satisfies the optimality conditions

(app, vp) — (yp,divey) =0 Yoy eV, teld, (2.16)
(Yn,e>wp) + (divpy, wy) = (f +up, wy) YVwhoeW,, teld, 2.17)
Ya(x,0) = y5(x) Vxen, (2.18)
(aqp, vy) — (2, divey) = —(pp — P a> vn) Vo, eVy, ted, (2.19)
= CGnewn) +(divgy, wy)) = (v —Yaswn)  Vwp €Wy, t €J, (2.20)
2p(x, T)=0 Vxe, (2.21)
T
f (up +2p, 0, —uy)dt =0 Vi, €Ky . (2.22)
0

We now introduce some intermediate variables. Thus for any control function u; € Kj,
we first define the state solution (p (uy), y (uy), q(up), 2(uy)) such that

(ap(uh), v) — (y(uh), divv) =0 YveV,ted, (2.23)
(yt(uh), W) + (divp(uh), W) =(f +uy,w) YweWw,telJ, (2.24)
y(uy)(x,0) = yo(x) Vxeq, (2.25)
(aq(uh),'v)—(z(uh),div'v) =—(p(uh)—pd,'v) YVoveV,, teld, (2.26)
— (zt(uh), W) + (divq (up), W) = (y(uh) —yd,w) YweW,telJ, (2.27)
2(up)(x, T)=0 Vxeq, (2.28)

where the exact solutions y(uy) and z(uy,) satisfy the zero boundary condition. The errors
are defined as

ey =yw)—yn, ep =pPr)—Pn,

e, =z(up) — 2, eq =q(u)—qy-

Then from Egs. (2.5)-(2.6), (2.8)-(2.9), (2.23)-(2.24) and (2.26)-(2.27), the errors satisfy
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the equations

(aep,'v)—(ey,div'v) =r;(v) Yvev, (2.29)
(ey,e;w)+ (divep,w) =ry(w) Ywew, (2.30)
(aeq,'v)—(ez,divv) =—(ep,v)+r3(v) Yvev, (2.31)
— (e, W)+ (diveq,w) = (e, w) +14(w) Ywew, (2.32)
and the residuals {r;,ry, 13,14} are
r1(v) :=(apy, v) — (yp,dive), (2.33)
r,(W) := (yp,e, w) + (divpp, w) — (f +up,w), (2.34)
r3(v) :=(aqu, v) + (P, — P4, v) — (z,dive) , (2.35)
ry(w) :=—(zp,c, w) + (divgy, w) — (yp — ya, W) . (2.36)

We also introduce the mixed elliptic reconstructions y(t), Z(t) € Hé(ﬂ) and p(t), G(t) eV
of yp, 2, and py, q, for t € [0, T], respectively. For given y;, 2;, py and q, the mixed
elliptic reconstructions y(t), 2(t) € Hé(ﬂ) and p(t), G(t) € V are assumed to satisfy

(a(f)—ph),'v)—(jl—yh,divv)=r1('v) YVveV, (2.37)
(div(p —pp), w) = ry(w) Vwew, (2.38)
(a(q—qh),v)—(i—zh,divv)z—([)—ph,v)+r3(v) YVvev, (2.39)
(div(q —qp), w) = —yp,w) +r4w) YweWw. (2.40)

Since r(v,) = r3(v,) =0, V v, € Vi, ro(wy,) = 1r4(wy) =0, ¥V wy, € Wy, we note that yy
and pj, are standard mixed elliptic projections of ¥ and p, and 2, and q; are nonstandard
mixed elliptic projections of Z and §, respectively. Using the mixed elliptic reconstructions,
we now rewrite

ep=0B-—pP)—B-—rPWw)):=np—&p,

ey = —y)—G—-yw)):=n,—-8&,,

eq =(G—q)—(G—qup)):=ng —<&q,

e, =EF—2z)—(E—2()):=n,-¢,.

Let P, : W — W, be the orthogonal L2(£2)-projection into W}, [2] that satisfies

Pyw—w, ) =0, wew, y ewy, (2.41)
1Paw —wlloq < Wl gh", 0<t<k+1ifwewnwh(Q), (2.42)
IP,w—w|_, < Clw|,h™", 0<rt<k+1ifweH (Q). (2.43)
Next, we recall the Fortin projection [6,12] I, : V — V}, such that for any q € V
(div(IT,g —q),wy) =0, YqeV, w,eW,, (2.44)
llg —xqlloq < CR'lIqllg 1/g<r<k+1,YqevnWr(Q))y>, (2.45)

|[div(q —II,q)|| < Ch"||divq||,, 0<r<k+1, VdivqeH (). (2.46)



A Posteriori Error Estimates for Parabolic Control Problems 91
We have the commuting diagram property
divoIl, =P,odiv:V - W, and div(I —1I,)V L W, , (2.47)

where and hereafter I denotes the identity operator.

3. A Posteriori Error Estimates

In this section, we develop our a posteriori error estimates for the mixed finite element
approximation to the parabolic OCP Let (p, y,q,2,u) and (py, Yn, qx» 2n, Up) be the solutions
of (2.5)-(2.11) and (2.16)-(2.22), respectively. We decompose the errors as

p—pr=pP—p(w)+p(up) —pp = p +ep,
y=yn=y—ywp)+yw)—yp:=ry +ey,
q—qy,=9—qup) +qup)—qy:=rq +eq,

g—zn,=2—2(up) +2(up)—2 =1, +e,.

From Egs. (2.5)-(2.6), (2.8)-(2.9), (2.23)-(2.24) and (2.26)-(2.27) the error equations are

(arp,v)—(ry,divv)zo YveVv, 3.1
(ry e;w)+ (divrp,w) =u—uyw) Ywew, 3.2)
(arp,v)—(rz,divv) =—(rp,v) YveVv, (3.3)
—(ryew) + (divrq w)=(r,,w) Vwew. (3.4

Lemma 3.1. Let (p,y,q,2,u) and (Py, Yn,qn,2n,Ux) be the solutions of (2.5)-(2.11) and
(2.16)-(2.22), respectively. Then there is a constant C > 0 independent of h such that

“rP 222 + Iy llzeerragay) < Cllu—upllz2er2c) » (3.5)
Ty ellz2w;c2e) + Irp lleo;z2) < Cllu—unllzzg;r2@) » (3.6)
ldivrp Il 2,120 < Cllu—upllz2;r2@) > (3.7)
Irg llz20;z2e)) + Iz llLeo 2200y < Cllu—unllz2;r2@)) » (3.8)
I ellz2w;z2e)) + Irg e w2y < Cllu —upllew;r2@)) » (3.9)
ldivrg |l 222y < Cllu—upll2@;r2@)) - (3.10)

Proof. Part I. Choosing v = rp and w = r, as the test functions and adding the two

relations (3.1) and (3.2), we have

y

(arp’rp)+(ry,t,ry):(u_uh’ry)’ (311)

so using the e-Cauchy inequality we can find an estimate

(arp.rp)+ (ryeomy) < Clry I+l —uyl1?) - (3.12)
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Noting that

1d 9
(ryery) =5 liryll% (3.13)
on using the assumption on A we obtain
1d
Irp P+ 5=l I2 < C(lry 1P+ llu—ws?) (3.14)

Integrating (3.14) in time from O to t and noting that r,(0) = 0, on using Gronwall’s
Lemma [40] we get

”rp ||L2(J :L2(Q)) + ”r_y”LoO(J :L2(Q)) = <Cllu— uh”LZ(J :12(Q)) ? (3.15)

and setting ¢t = 0 and v = rp(0) in Eq. (3.1) we consequently find that rp(0) = 0. Then
differentiating Eq. (3.1)with respect to t we also obtain

(arpyt, v)—(ry,dive) =0 Vv eV, (3.16)

so setting v = rp and w = r, as the test functions and adding the two relations (3.16)
and (3.2) we have

(@rp rp) +(ryery) = W=t Ty,0) - (3.17)
On using the e-Cauchy inequality, we get

1d

Sarlladrpl +liry 2 < Cllu—w, I, (3.18)

and integrating (3.18) with respect to time from O to t we obtain

7y ellz2;z2e)) + Irp llzeo;2y < Cllu—unllzze; 2@ (3.19)

on using the assumption on A and rp (0) =0. Setting w = divrp in Eq. (3.2), we find that

Idivrp [l 12¢;22¢0)) < C(HU—uh”LZ(J;LZ(Q)) + ||ry,t||L2(J;L2(Q)))' (3.20)

Combining (3.15) and (3.19) with (3.20), we obtain (3.5)-(3.7).
Part I Selecting v =rq and w =r, as the test functions and adding the two relations
(3.3) and (3.4), we obtain

1 1d
larg I =5 lIral* = (ry, 1) = (rp. ) (3.21)

so from the e-Cauchy inequality and the assumption on A we find that

1d
Irg P = 5=l l2 < € (lry 220y + Irp 2oy + 17 22y ). (3.22)
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Integrating (3.22) from t to T and noting that r,(T) = 0, on applying Gronwall’s Lemma
[40] we readily obtain the error estimate

g agsaaay + Irelfosacay < € (Irp Wagracan + I Wagzan) - 323
Differentiating Eq. (3.3) with respect to t, we get
(arq,e,v) = (g, divo) ==(rp ,v) YV EV, (3.24)
so on setting t = T in Eq. (3.3) and noting that r, ,(T) = 0 we have
(arg(T),v) =—(rp(T),v) Vv eV. (3.25)

Choosing v =rg (T) in Eq. (3.25), from the e-Cauchy inequality and the assumption on A

1
llatrg (T < Cllrp (DIl - (3.26)
Selecting v = —rq and w = —r, , as the test functions and adding the two relations (3.3)
and (3.4), we obtain
1d, 1
”rz”Z - EE ”a2 rq ”2 = (rp,tz T'q ) - (r_yJ rz7t) > (327)

and from Eq. (3.16) and the e-Cauchy inequality we know that

(rp,t-rq) =(arp ,Arq) = (ry,t, div(Arg ))
<|Iry,cll - lldiv(Arg )l
< Cliry - (Irq i + lidivrg 1)
< C(8) (lIry, 2+ lIrg|I2) + 8idivrg |12 (3.28)

On invoking (3.28) in Eq. (3.27) and using the e-Cauchy inequality we get

1d

1 1 .
W lazrgll> < C(llry, |1+ lIry > + lIrg I*) + glldlvrq 125 (3.29)

72,17 =

and integrating (3.29) with respect to time from t to T, given (3.26) we arrive at

T
1
J 72, clPds + llaZrg |1
t
T 1 (T
SCJ (||T‘y,t||2+||’”y||2+||Tq||2)dS+C||Tp(T)||2+gJ [ divrg [|*ds . (3.30)
t t

Choosing w = divrg as a test function in Eq. (3.4) and using the e-Cauchy inequality,

T

T
J ldivrq |I%ds < 4J (7l + 11, 112) ds (3.31)
t

t
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so on invoking (3.31) in (3.30) and using Gronwall’s Lemma [40] we arrive at
17, elli2szzy) + Irq oo szzgay < € (Iry lineszacay + rp (D) - (3.32)

Inserting (3.5) and (3.6) into (3.23), (3.31) and (3.32) respectively yields (3.8)-(3.10). O

We now proceed to derive the a posteriori error estimates for the control u.

Lemma 3.2. Let (y,p,2,q,u) and (¥4, Pn» 2n> 91, Un) be the solutions of optimality conditions
(2.5)-(2.11) and (2.16)-(2.22), respectively. Then

”u - uh”%Z(];LZ(Q)) < CT)% + C”Zh _Z(uh)”%Z(J;LZ(Q)) > (3.33)
where

2 2
m= llun +Zh||L2(J;L2(Q)) .

Proof. It follows from Eq. (2.11) that
T
”u_uhniz(J;Lz(Q)) ZJO (u_uh:u_uh)dt
T T
=J (u+z,u—uh)dt+f (up + 2z, up —u)dt
0 0
T T
+J (zh—z(uh),u—uh)dt+J (z(up) —2,u—uy)dt
0 0
T T
SJ (uh+zh,uh—u)dt+J (2, —2(up),u—uy)dt
0 0
T
+J E(u) —z,u—w)dt =1 +I, +15. (3.34)
0

We first estimate I, I, and I5. Thus

T
L ZJ (up, +zp,up —u)dt
0

< C(8)llup +zh||%2(J;L2(Q)) +6|lu— uhHEZ(J;LZ(Q))

< C(5)T)% + 5”u _uh”%Z(J;LZ(Q)) > (3-35)

where & > 0 is an arbitrarily small number and C(&) is dependent on 6 *, and clearly

T
I, = J (zn, —2(up), u—up)dt
0

< C(5)”Zh +z(uh)||%2(J;L2(Q)) + 5”” - uh”%Z(];LZ(Q)) > (3-36)
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so let us now turn to I;. Noting that
¥(x,0) = y(uy)(x,0) = yo(x) and z(x, T) = 2(uy)(x,T) =0,

from Egs. (2.5)-(2.6), (2.8)-(2.9), (2.23)-(2.24) and (2.26)-(2.27), we obtain
I :JT(u—uh,z(uh)—z)dt
0

= JOT (v = y@))e, 2(up) —2) + (div(p — p(up)), 2(up) —2)) dt

- LT (v =y, Glun) —2)) + (A (qw) —q),p —p(wy))) dt
+LT(p(uh)—p,p —p(w))dt

=- JO ' () —2)e y — y () + (v — ¥ (uy), div(g — q (uy)))) dt
+ JO T(p(uh)—p,p—p(uh))dt

T
=J ((pwp)—p,p —pW)) + (W) —y,y —y(wy)))dt
0
<0. (3.37)

Thus from (3.34)-(3.37) we have (3.33). O
Using Egs. (2.37)-(2.40) in Egs. (2.29)-(2.32), we then obtain the error equations

(a€p,v)—(&,,divo) =0 YVoveV, (3.38)
(&y,cw)+ (divip,w) =(ny,e,w) Ywew, (3.39)
(a€q,v)—(&;,divo) =—(p, v) YVoveV, (3.40)
— (& w) + (divEg, w) = (&, w) — (0, W) Ywew. (3.41)

Lemma 3.3. Let mixed elliptic reconstructions y, p, Z and q satisfy (2.37)-(2.40). Then the
following properties hold:

ap =—-Vj, o +p —pg =—VE. (3.42)

Proof. From Egs. (3.38) and (3.40), on integrating the second term on the left-hand
side by parts we have

(alp,v)=—(VE,,v) Vvev, (3.43)
(a€q,v)+(Ep,v)=—(VE,v) VwvevV, (3.44)
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and hence

Since the exact solutions y(uy) and z(uy) satisfy the zero boundary condition, we then
readily obtain (3.42). O

Lemma 3.4. Let & y and & p satisfy (3.38)-(3.39). Then the following estimates hold:

NEp lL2r;r2@y) + €y lLoosr2a)y < CIIE (O + ClIny, cll2g;m-1(a)) » (3.46)
€y, ellz2r2) +I€p llzeew;rziy < ClIEP (O + Cliny, cllz2w; 120 » (3.47)
ldvE 1l 12;1200)) < ClIEP (O + ClIny, cllz2;2c)) » (3.48)
1€ L2020y < Cllyo — Yol + Cliny N2 .c2c0y) - (3.49)

Proof. Choosing v =&p and w = &, as the test functions and adding the two relations
(3.38) and (3.39), we have

(agpagp)_‘_(gy,tagy)=(’r)y,t>§y) . (350)
We estimate the term on the right-hand side of Eq. (3.50) as

1(0y,6: €1 < Ny el IV E T (3.51)

and hence from (3.42) and Young’s inequality we find that

1 1, 1
(y,6, )l S Cliny cll—allazEpll < Climy 12, + gllowcjpll2 : (3.52)

On invoking (3.52) in Eq. (3.50) and integrating with respect to time from O to t, we arrive
at

I€p llz2w;2200)) + €y L0200y < CIIE, (O + Cllmy, el 2@ ;m-1(0)) > (3.53)

completing the estimate (3.46). To obtain (3.47), we differentiate Eq. (3.38) with respect
to t, to obtain

(agp,t, 1))— (gy,t3divv) =0 V veV. (354)

Choosing v = &p and w = £, as the test functions and adding the two relations (3.54)
and (3.39), on using the e-Cauchy inequality we obtain

1 1
EplP+ 11yl < Ellny,tllz + Elliy,tllz : (3.55)

On integrating (3.55) with respect to time from O to t and using the assumption on A, we
find

€y, cllz2@i2)) +1Ep llLeow;r2y < ClIEP (O + Cliny, cll2w;r20)) - (3.56)
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So on setting w = divrp in (3.39) we obtain
divEp L2120y < ClIEy ellLa;2cy) + Cliny,ellr2wiacy - (3.57)

On integrating Eq. (3.39) with respect to time from O to t and using the symbol

P(t) = f P(s)ds, (3.58)
0

we find that
(Ey, W)+ (divEp, w) = (yg = Yo, W) +(ny,w) Vwew. (3.59)

Setting w = 7, in Eq. (3.59) and v = £ p in Eq. (3.38) and then adding the resulting
equations, from the Cauchy-Schwarz and Young’s inequalities we obtain

d  1»
1812+ lladép 1 < 21y = yol +lin, 1) . (3.60)
Integrating with respect to time from O to t, we then arrive at

1€ 11220y < 2T |lyo —yQII + 210y |lL2s;12¢0) > (3.61)

and combining (3.53), (3.56) and (3.57) with (3.61) completes the proof. O
Lemma 3.5. Let &, and Eq satisfy (3.40)-(3.41). Then the following estimates hold:

||§q lL2;220)) + 1€zl Leo(r:L2e))

< ClE, I+ Cliny,ell 21 + CNELDI + Cling, el z2;5-1(0)) » (3.62)
€z, ell 2 r2a)) + 1 q Lo ;L2

< Clig, @I+ CliEP (O + Cllny, ellz2;z2e)y) + ClIEG (D + Cllng 220y, (3.63)
||diV§q ||L2(J;L2(Q))

< ClIE, O+ CliEp O + Cliny e r;r2cay) + ClIEG (DI + Cling el 120r;22(0)
+Cllyo—yll - (3.64)

Proof. Selecting v = g and w = &, as the test functions and adding the two relations
(3.40) and (3.41), we obtain

d
lagq I =5 IEIP = (£, €0~ (1.0 £~ (EpoEq)- (3.65)

We estimate the term on the right-hand side of Eq. (3.65) as

(02,0, €I < Mz [ IVE (3.66)
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so using (3.42) with Young’s inequality we find that

1 1
(M2,0,E2) < Cling ellallagq +Ep I < Cllng (112, + CllEP 1> + §||‘12§q I>.  (3.67)

Then using (3.65)-(3.67) and the e-Cauchy inequality, we obtain

1 1d
a2 g% = 5 l1ENP < € (I, + 18, gy + 1€p oy + 1€: ey - (3:68)

Integrating (3.68) from t to T and applying the assumption on A and Gronwall’s Lemma [40],
we readily obtain the error estimate

||§q L2:220)) + 1€z Loo L2
< ClEp 22y + Cliny, llz2g;a10)) + Clng,elli2@ ;1)) + CIEA(T)I - (3.69)
From Egs. (3.38) and (3.40),
(agq 5 'U) - (gza diV'U)
=—(&p,v) =—(afp,Av) = —(&,, div(Av)) . (3.70)
On differentiating Eq. (3.70) with respect to t, we get

(agq,t, v) — (&, dive) = —(gy,t,div(Av)) YveV. 3.71)

Selecting v = —¢& q and w = —&, , as the test functions and adding the two relations (3.40)
and (3.41), we obtain

1d
1> =

I8P = 5 lla? 6 = (&0, divlAZQ)) + (s 82,0) = (£, (3.72)

Now from the e-Cauchy inequality we know that

(&0, divAZq)) < C(IIEy, II” + IEq ) + %ndivgq I (3.73)

and on invoking (3.73) in Eq. (3.72) and using the e-Cauchy inequality, we get

IE, (I — ||a25q &
1 1, ..
< C(Iliy,tll2 + IIle,tII2 +1E 1P+ 11Eq1?) + glliz,tll2 +glldivEg [ (3.74)
Choosing w = div€q as a test function in Eq. (3.41) and using the e-Cauchy inequality, we

find that

T

T
J [diveg|[*ds < 4J (&> +1ELI +lIms eI ds . (3.75)
t

t
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Integrating (3.74) with respect to time from ¢t to T and invoking (3.75), we arrive at

T
1
J 1€2.el7ds + llazgq I
t

T
< CJ (NEyelP +1my, e P +1ELI* +11Eq I1P) ds + CllEq (T - (3.76)
t
From the assumption on A and Gronwall’s Lemma [40] we then obtain
€z, ellz2rr2) + 11€q lLeo;z2))
< CI1Ey ling;zay + Iy, ellawsnzy + 1Eq (TIP) (3.77)
so (3.69), (3.75) and (3.77) together with Lemma 3.4 completes the proof. O

We now briefly consider the use of mixed elliptic reconstructions combined with parabolic
duality arguments to derive the estimates for [|€ , || 12¢s;12(a)), 1€y lLoo ;220> 1€p 2205220y
€2l z2r;L2))s 1€21ILoo;r2)) and [€q 222y

Here we only prove the estimates for || || oo(s;12(q)) and [|€; L eo(s;12(q)), for which we
need the following well known stability results for the following dual equations (cf. Ref. [14]
for details):

¢, —div(AV¢) =0,

$lan=0,

¢(x,t*) = ¢po(x),
and

-, —div(AVYy) =0,

Ylaa =0,

P(x, t%) =o(x),

xeENte[t,T],

te[thT], (3.78)
xen,

xeN te[0,t*],

t€[0,t*], (3.79)
xenN.

Lemma 3.6 ( [14]). Let ¢ and v be the solutions of (3.78) and (3.79), respectively. Let Q
be a convex domain. Then

f [9Cx, 1P dx < CligollTogy V€T,
Q

T
i
J Vo Pdxde < llgolZg
t

* Jo

T
:
J |t — e 1ID?p Pdx dt < lbollaqey
t

* Jo

T
.
f |t — e llgelPdxde < [l pollZsq -
t

= Ja
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and

J [ (e, OPdx < Cllyol2ygy YV £€[0,67],
Q

t
:
JO | 1vwPdxde < ol

Q

t*
.
f ¢ — (1D Pdx de < [ollsqq -
0o Ja

£
r
2 2

Ja
where |D2?¢| = max{|82¢/8xi8xj|, 1<1i,j <2}, and |D*| is defined similarly.

Lemma 3.7. Let &, §p, &, and §q satisfy the error equations (3.38)-(3.41). Then the
estimates (3.46) and (3.62) hold. Moreover, for T € (0,t*) and p € (t*, T) we have

&, ()] <¢ (1 . (ln(%)))omax In, (Ol + Clle, O]

+ C||7)y,z||L2(t*—¢,t*;H—1(Q)) > (3.80)
1
T —t"\\2
lE(tM <C (1 + (ln(p p )) ) Jmax IO+ CllEp llL2(ex, 7:12(0)
+ ClIEy lea(es, 751200)) + ClIMz el n2(er ps10)) - (3.81)

Proof. Let v is the solution of (3.78) with yy(x) = &, (x,t*). Then it follows from
Egs. (3.38) and (3.39) that

1€y (EWMF 2y = (85 (£, 9())
=f ((€y,0 ) = (&, div(AVY))) d i + (&,(0),%(0))
0

=J ((y,e,9) = (divEp, ) dt +(&,(0),4(0)) —J ((&y, div(AVy))) dt
0 0

=J (0., )dt +(£,(0),4(0)) . (3.82)
0

From Eq. (3.82) and the stability result in Lemma 3.6, we directly obtain the estimate
18, (g < Cly oo cegos ayy + CE, O, (3.83)

which conforms to our estimate (3.46). For T € (0, t*), let us rewrite the first term on the
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right-hand side of Eq. (3.82) as

t*
f (My,e,p)dt
0
t*

=(ny(t*—T),l,b(t*—T))—(ny(o),ll)(o))—f (T)y,ll’t)dt-i-J My, ¥)dt . (3.84)
0 t

*—T

For the third term on the right-hand side of Eq. (3.84), we note that

Jo_ (ny,wt)dts(m(;)f0r£1r1;g;||ny(r)||U0 (r*—t)nwt(t)uz) . 689

and the estimate of the last term on the right-hand side of Eq. (3.84) is

t*
J My, ¥)dt < Clny elli2e—r om0 IV 200,64:22(02)) 5 (3.86)
t

*—T

so together with the stability estimates in Lemma 3.6 we obtain (3.80).
Similarly, let ¢ be the solution of (3.79) with ¢y(x) = &,(x, t*). Then it follows from
Egs. (3.40) and (3.41) that

182(eN12, = (E:(), ¢(¢9)
T
=J (&2 @) — (&, div(AV))) d i + (E.(T), ¢(T))

*

T T
=J ((€y, )= (020, $) — (divEqg, §)) dt+(€z(T)’¢(T))_f (agq +&p,AVe)dt

*

T T
=J ((t?y,¢)—(nz,t,¢))dt+(€z(T),¢(T))—J Ep,AV)dt, (3.87)
so from Lemma 3.6 we get
T
182 (122 < CJ (NEYIZ+NE I +Img,eli?) dE+ ClELT)IP . (3.88)

Similar to the above consideration of Eq. (3.84), for p € (t*, T) we rewrite the second term
on the right-hand side of Eq. (3.87) —i.e.

T
_J (nz,tz ¢)dt

P T
= (1,(p), ¢(p)) — (n.(T), $(T)) —f (N0, P)dt +J (ng, ¢,)dt. (3.89)
t* P
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For the last term on the right-hand side of Eq. (3.89), we note that

’ T—t*)\? ’ . :
~L(nz,mdtS(m(p__ﬁ))tggggngm(t)nU;(t-—t)nmonz) . (3.90)

so from (3.87), (3.89) and (3.90) together with Lemma 3.6 we obtain (3.81). O

From Egs. (2.37)-(2.40), we obtain the error equations

(anp,vy)—(n,,dive,) =0 Yo eVy, (3.91)
(divnp,wp,) =0 Yw,eW,, (3.92)
(ang,v) —(n,, divoy) =—(np,v) Vo €V, (3.93)
(divng,wr) = (ny, wy) Yw,eW,. (3.94)

To prove the main theorem, we need to establish relevant a posteriori estimates of 7,
Ny,e» Mp> divip, N, Nz,¢, Ng and divng for the mixed elliptic reconstructions (2.37)-(2.40)
as follows.

Lemma 3.8. For Raviart-Thomas elements, there exists a positive constant C which depends
only on the coefficient matrix A, the domain £, the shape regularity of the elements and poly-
nomial degree k such that for =0, 1

Iy, < ¢ (IR e+ min [ @y — Vi)
<cC |h1+l(yh,t+V'Ph_f—uh)||2+wri}ei‘;1vh||h1+l(aph—vhwh)||2) , (395)

. 2
Iyl < € (W51 + i, [+ Cape = Vo))

|/\

< C(”hHl(J’ht"‘v pr—f— uh)t” +m1n ”hHl(aPht_thh)” ) (3.96)
(MmF

th(aph t)H +||hcurlh(aph)|| )

InplI?,

IA

c(‘
+ A + Vi — F—uw)|[*) (3.97)

.12, < € (hey 1P+

hiJ(aph-t)Hor +||hcurlh(aph)||
>th

2
hJ(apy, 't)Hor * ||hc“”lh(“ph’f)“2)
>th

sc(‘

1 2 2
hi‘](aph,t 't)Hor + ||hcurlh(aph,t)||
>Lh

2
+ A + Y pa—f =) - (3.98)
ldivnp I* < Cllyne +V-pr—f —upll?, (3.99)
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. 2
.12, < ¢ min [ @+ 2= pa = i[>+ IR 5yl 4l I, + linp
2
< o I =7 aut =yl + g 2 + i P
+ min ||h1+l(aqh +ph—pd—Vhwh)||2), (3.100)

whrEW)

h1+l

. I 2
10012, < ¢ min 5 Caqnc+pic = pac = Tim)| -+ Iy P+l 2
h h

+||np,t||2)
2
= C(||h1+l(zh,t_v'qh+yh_J’d)t|| +1ny 2, + Inp 2
. 2
+ min |/ (aqy,, +Pppe —Pae— Vawn)|| ), (3.101)
WhGWh 2 4 H

2
Ingll* < C(”hr2”2+”hcurlh(aqh +pr =P +IIny I,

|

1 2
hio(agy +pa=p) 0, +lnpl?)
>Lh

2 1 2
< C( |RGzhe — V- @+ ya—ya)||” + Iy 112, + ‘ h2J((aqy +Ph—Pd)'t)H0F
>th

2
+lInp 2+ |[hcurly(agy + pr—pa)|”) (3.102)
ldivngl® < Clizn,e =V - g4 + yp — yall* + Clin, |17, (3.103)

where J(v - t) denotes the jump of v - t across an element edge E for all v € V with t denoting
the tangential unit vector along the edge E € T},

Proof. Based on the tools developed in Refs. [10, 11], it is straightforward to derive a
posteriort error estimates for 7, np, divnp, 1;, ng and divng. Consequently, we only
need discuss results for the negative norm estimates 7, and 7,, and we appeal to Aubin-

Nitsche duality arguments. Thus we consider ® € Hé(Q) N H*(Q) as the solution of the
elliptic problem:

—V - -(AV®)=V¥, inQ (3.104)
that satisfies the elliptic regularity result
]2+ < ClI]; - (3.105)

From Eq. (3.93) and the definition of IT;, on integrating by parts and invoking the property
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(3.42) we obtain
(1., %) = (n,,—V - (AV®))
=(£,-V-(AV®)) + (2, V - (AV®))
= (21, V- [I,(AV®)) + (AVZ, V&)
= — (4 +Ap —Ap4,V®) + (2, V - I[,(AVS))
= —(ng,V®)—(Anp,Ve) + (24, V - 1,(AV®)) — (aq}, + pj — P4, AV®) .

From Eq. (3.94), on integrating by parts and invoking
(Viwp, (I —T1,)(AV®)) =0, (3.106)
we arrive at

(0, V) =(Vng,®—Pp®) + (ny, P,®)—(Anp, VP)

—(aqy+pp—pg— Viwp, (I — T, (AV®)))

= (2, =V 4y + Yh —Ya,2 = Pr®) + (1, 2) = (Anp, V)
—(aqp +pyr—Pa— Vawy, (I — T,(AVS)))

< (1 = V- i+ v — ya)|| @111t + iy s 1l
+lAnp IVl +||h* (agqy + P — pa — Viws) || 1AVl 1)

< C(|h e =V @+ yi— 2| + iyl + limp |
+[|n** (aqy, +Ph—Pd—VhWh)||)||<I’||z+z- (3.107)

Using the elliptic regularity (3.105) in (3.107), we obtain

(Tlr\zﬁl\lllf) <(IR* @ne = V- @n+ ya—ya)|| + Iny lls + lInp
+ min 2! (aqy +pr—Pa—Viwn)|| ) (3.108)

and hence on taking the supremum over ¥ we obtain the estimate (3.100). Following

the analysis given above, the estimates for |0, (||, [In,[l—; and ||n, ([|; are also readily
derived. Finally, from Lemma 5.1 of [11] we arrive at Np> Mp.t> divnp, ng and divng to
complete the proof. O

Remark 3.1. For a negative norm estimate (i.e. when [=1), we need to use mixed finite
element spaces of index k > 1, but otherwise we can bound ||7, ||—; < ClIn,||.

Collecting Lemmas 3.1-3.5, let us now summarise our main results as follows.
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Theorem 3.1. Let (p,y,q,z,u) and (Py, Yn,qp,2n, Un) be the solution of (2.5)-(2.11) and
(2.16)-(2.22), respectively. Then the following a posteriori estimates hold for [ = 0,1 and
te[0,T]:
= unlZa oy < C(112 4 1y O + I (DI + 11 12y

150 = YA + 10212y g1y + 10512120y ) -
1y = Yo sz + 1P = Pillagsroyy < Ol = ualZag sy + Iy (O

+ ”np ||L2(J :12(0)) + ”'r)y”Loo(J :L2(€2)) + ||J’o _yg||2

1y 2 oy 1Mo osa)

10y = Yoy oy 1P = PrllPeas oy < C 1My 2oy  11p Peos 2y
Nl =yl 20 + AV Y0 + PR(OVI?)

Idiv(p — Pl 2y < CUIu—walZa oy + 1dvnp 122 120y
1y, 12y + 1 (O + 1AV g + pA(O)II2) ,

2 = 2401200 g2y + 10— @220y < CU = 1122 oy + 112 o2
1, Wty + 1y o sz + 1M I 2y + 1o = Y2
e 2 1y + Iy O + (D)
1z = 2oy 120y + 18 = Qoo gy < U= il 2 + 150 — Yo IIP
1,12y 1D o2y + 1z + 110y (DI
+1nq I o 2120y * 14PH(T) = AP 4(T) + @, (TP
+lIng (TP +1Inp ()7 + 1AV, + p4(0)I1?),
1div(q = @n)lZ2s.p200y) < C (It = unlZagy 2y + 1My W supaqyy + 1o — YEI2
1, Wty + 1 Mo 2y + 1V 12252y
+14p4(T) = Ap(T) + q(TII? +IIng (T)II”
+ I, (I + lInp (O + 14V o + p4(O)II?)

where 1, is defined in Lemma 3.2 and the estimates for 1, 1., Np, dVNp, Nz, Nz, Ng and
divng are given in Lemma 3.8.

4. Conclusion and Future Work

We have derived a posteriori error estimates for semidiscrete mixed finite element solu-
tions of quadratic optimal control problems (OCP) governed by parabolic equations. Our
a posteriori error estimates for the linear parabolic OCP that we have obtained via mixed
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finite element methods seem to be new. In future, we intend to explore a posteriori anal-
ysis for a completely discrete mixed approximation based on the backward Euler method,
and design relevant adaptive mixed finite element algorithms. Furthermore, we will also
consider a posteriori error estimates of mixed finite element methods for hyperbolic OCP
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