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Abstract. In this article, we propose and analyse a sparse grid collocation method to

solve an optimal control problem involving an elliptic partial differential equation with

random coefficients and forcing terms. The input data are assumed to be dependent on a

finite number of random variables. We prove that an optimal solution exists, and derive

an optimality system. A Galerkin approximation in physical space and a sparse grid

collocation in the probability space is used. Error estimates for a fully discrete solution

using an appropriate norm are provided, and we analyse the computational efficiency.

Computational evidence complements the present theory, to show the effectiveness of

our stochastic collocation method.
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1. Introduction

We seek a solution (u, f ) that minimises the cost functional

J (u, f ) = E

�

1

2

∫

D

|u− U |2 d x +
β

2

∫

D

| f |2 d x

�

(1.1)

and satisfies the stochastic elliptic problem involving a Dirichlet boundary condition:

−∇ · [a(x ,ω)∇u(x ,ω)] = f (x ,ω) in D×Ω,

u(x ,ω) = 0 on ∂ D×Ω,
(1.2)

where E denotes expected value, D the spatial domain and ∂ D its boundary, U a target

solution to the constraint, β a positive constant influencing the relative importance of the

two terms in Eq. (1.1), and f a stochastic control acting in the domain and depending

on a(x ,ω). The stochastic elliptic PDE generally models fluid flow in porous media; and

under the homogeneous Dirichlet boundary condition, for almost everyω ∈ Ωwe look for a
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solution u that is a stochastic function from D×Ω to R, where D ⊂ Rd is a convex bounded

polygonal domain, and a : D × Ω → R is a stochastic function. Here a has a bounded

continuous covariance function in the context of a Karhunen-Loève (KL) expansion, with

a uniformly bounded continuous first derivative, and ∇ means differentiation with respect

to x ∈ D only. This type of stochastic elliptic problem was previously investigated in the

articles [2,3,12,13,22] and references therein.

To analyse this stochastic optimal control problem, we first estimate the error of the

solution to the stochastic partial differential equation (SPDE), and then use the Brezzi-

Rappaz-Raviart (BRR) theory to produce an error estimate of the solution to the stochastic

optimal control problem. We then construct a computational algorithm for our stochas-

tic control problem and present some numerical examples with a given target solution

to the stochastic optimal control problem with a distributed control in the domain. In

order to solve the stochastic optimal control problem numerically, we adopt a stochastic

collocation method that has gained much attention recently in the computational com-

munity [4, 5]. Stochastic collocation can be based on either full or sparse tensor product

approximation spaces, and seems to be ideal for computing statistics from solutions of PDE

with random input data, since it essentially preserves the fast convergence of the spectral

Galerkin method in maintaining an ensemble based approach (just as Monte Carlo). On

the other hand, approximations based on tensor product grids suffer from the curse of

dimensionality, since the number of collocations in a tensor grid grows exponentially fast

in the number of input random variables. Thus even if the number of random variables is

only moderately large, one should consider sparse tensor product spaces as first proposed

by Smolyak [23]. Recently, total degree polynomial spaces and sparse tensor product

spaces were investigated [8, 14, 24, 25]; and there have been substantial developments in

stochastic collocation methods since [4,5,20,21], where effective collocation strategies for

problems involving a moderately large number of random variables have been devised.

The plan of this article is as follows. We represent a random field in Section 2, introduc-

ing the KL expansion and its truncated expansion. We also analyse our constraint equation

and stochastic elliptic PDE, transforming a stochastic problem to a high-dimensional de-

terministic problem and presenting a priori error estimates. In Section 3, we introduce

the discretisation method for probability space — viz. a sparse grid collocation method. In

Section 4, the optimality system of equations is derived, showing the existence of a unique

minimiser. We then establish our error estimate for the discrete approximate solutions to

the optimality system, and in Section 5 give two numerical examples of stochastic optimal

control problems constrained by the stochastic elliptic PDE under the Dirichlet boundary

condition. Our brief concluding remarks are made in the final Section 6.

2. Preliminaries

2.1. Function spaces and problem setting

For our stochastic elliptic problem, we use a complete probability space (Ω,F , P) where

Ω is a set of outcomes, F is a σ-algebra of events, and P : F → [0,1] is a probability
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measure. We use standard Sobolev space notation [1]. For instance, H1(D) is a Hilbert

space with norm ‖ · ‖H1(D); and H1
0(D) is the subspace of H1(D) when the function value is

zero on the boundary of D, with norm ‖u‖2
H1

0(D)
=
∫

D
|∇u|2 d x . Thus we define stochastic

Sobolev spaces

L2(Ω; H1
0(D)) = {v : D×Ω→ R | ‖v‖L2(Ω;H1

0(D))
<∞},

where

‖v‖2
L2(Ω;H1

0(D))
=

∫

Ω

‖v‖2
H1

0(D)
dP = E‖v‖2

H1
0(D)

.

Similarly, we can define L2(Ω; L2(D)), and for simplicity let L 2(D) = L2(Ω; L2(D)) and

H 1
0 (D) = L2(Ω; H1

0(D)). These stochastic Sobolev spaces are Hilbert spaces.

For the weak formulation of our stochastic elliptic PDE, we introduce

b[u, v] = E

∫

D

a∇u · ∇v d x (2.1)

and

[u, v] = E

∫

D

uv d x , (2.2)

where E denotes the expectation. Using (2.1) and (2.2), we can derive the weak formula-

tion corresponding to the strong formulation (1.2) — viz. seek u ∈H 1
0 (D) such that

b[u, v] = [ f , v] ∀v ∈H 1
0 (D) . (2.3)

In this article, in order to ensure the existence and uniqueness of the solution to our

stochastic elliptic problem (2.1), we assume that there are positive m and M such that

m ≤ a(x ,ω)≤ M a.e. (x ,ω) ∈ D×Ω . (2.4)

Then from the Lax-Milgram lemma [9], we have the following theorem.

Lemma 2.1. Let f ∈ L 2(D). Then there is a unique solution u ∈ H 1
0 (D) to the following

weak formulation: find u ∈H 1
0 (D) such that

b[u, v] = [ f , v] ∀ v ∈H 1
0 (D) (2.5)

which satisfies the estimate

||u||H 1
0 (D)
≤ CP

amin

�

E

∫

D

| f |2 d x

�
1

2

, (2.6)

where CP follows from the Poincaré inequality

||w||L2(D) ≤ CP ||∇w||L2(D) ∀ w ∈ H1
0(D) .
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2.2. Karhunen-Loève expansions

We now introduce a Karhunen-Loève (KL) expansion, a well known theoretical tool for

approximating stochastic functions [7, 14, 15, 19]. Thus if a(x ,ω) is a stochastic function

that has a continuous and bounded covariance function, it can be represented by

a(x ,ω) = Ea(x ,ω) +
∑

n≥1

p

λnφn(x)Xn(ω) , (2.7)

where EXn(ω) = 0, E(Xn(ω)Xm(ω)) = δnm and (λn ,φn(x)) are solutions to the eigen-

value problem
∫

D

C(x1, x2)φn(x1) d x1 = λnφn(x2) , (2.8)

where C(x1, x2) = E(a(x1,ω)a(x2,ω))−Ea(x1,ω)Ea(x2,ω). This is the KL expansion of

a(x ,ω).

When we use numerical methods to approximate the solutions of mathematical models,

we often use truncated expansions, and a random source in realistic mathematical models

can be expressed by finitely many random variables. Consequently, in numerical methods

we introduce truncations of the expansion (2.7) — i.e.

aN (x ,ω) = Ea(x ,ω) +

N
∑

n=1

p

λnφn(x)Xn(ω). (2.9)

However, the convergence of the truncated KL expansions is relevant to avoid modelling

errors in the consequent numerical computations, and we have the following convergence

theorem based on Mercer’s theorem — e.g. see [6].

Theorem 2.1. The truncated KL expansion (2.9) of a stochastic function a(x ,ω) converges

uniformly to a(x ,ω):

sup
x∈D

E

�

(a(x ,ω)− aN (x ,ω))2
�

= sup
x∈D

∞
∑

n=N+1

λnφ
2
n(x)→ 0 as N →∞ . (2.10)

In certain cases, we may need to ensure certain qualitative properties for the coefficiens

aN , and possibly describe them as nonlinear functions of X . The following standard trans-

formation guarantees that the diffusivity coefficient is bounded away from zero a.s.:

log(aN − amin)(x ,ω) = b0(x)+

N
∑

n=1

p

λnφn(x)Xn(ω) (2.11)

— i.e. one performs a Karhunen-Loéve expansion for log(aN − amin), assuming that a >

amin a.s.. We will let Γn ≡ Xn(Ω) denote the image of Xn, Γ =
∏N

n=1 Γn, and assume that

the random variables [X1, X2, · · · , XN] have a joint probability density function ρ : Γ→ R+,

with ρ ∈ L∞(Γ).
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The solution u of the constraint equation (1.2), a stochastic elliptic boundary value

problem, can now be described by a finite number of random variables — i.e.

uN (x ,ω) = uN

�

x , X1(ω), · · · , XN (ω)
�

.

Under the above assumptions, we obtain the following high-dimensional deterministic

equivalent weak formulation of (2.5) with the finite-dimensional information as follows:

for given fN ∈ L 2
ρ (D), find uN ∈ H 1

0,ρ(D) such that

∫

Γ

ρ(aN∇uN ,∇v)L2(D) d y =

∫

Γ

ρ( fN , v)L2(D) d y ∀ v ∈H 1
0,ρ(D) . (2.12)

For the high-dimensional elliptic PDE, we recall the Sobolev spaces

L2
ρ(Γ; H1

0(D)) =
n

v : D× Γ→ R | ‖v‖L2
ρ(Γ;H1

0(D))
<∞
o

,

where

‖v‖2
L2
ρ(Γ;H1

0(D))
=

∫

Γ

ρ ‖v‖2
H1

0(D)
d y = E‖v‖2

H1
0(D)

.

Similarly, we can define L2
ρ(Γ; L2(D)). For simplicity, we set L 2

ρ(D) = L2
ρ(Γ; L2(D)) and

H 1
0,ρ(D) = L2

ρ(Γ; H1
0(D)) as before. The strong formulation of Eq. (2.12) is

−∇ · �aN (x , y)∇uN (x , y)
�

= f (x , y) ∀ (x , y) ∈ D× Γ,

uN (x , y) = 0 ∀ (x , y) ∈ ∂ D× Γ.
(2.13)

Since our assumption (2.4) on a(x ,ω) does not automatically imply the boundedness

of the truncated KL expansion (2.9), in order to have the existence and uniqueness of the

solution for our models with finite dimensional information, it is necessary that Ea(x ,ω)+
∑N

n=1

p

λnφn(x)Xn(ω) satisfy a similar condition (2.4) — i.e. we assume that there exist

m, M > 0 uniformly with respect to N such that

m ≤ Ea(x ,ω)+

N
∑

n=1

p

λnφn(x)Xn(ω)≤ M a.e. for (x ,ω) ∈ D×Ω , (2.14)

when we have well-posedness of (2.13) because aN is bounded. From the Lax-Milgram

lemma [9], we have the following theorem about the existence and uniqueness of the

solution uN .

Theorem 2.2. Let fN ∈ L 2
ρ(D). Then there is a unique solution to the following weak

formulation: find uN ∈H 1
0,ρ(D) such that

b[uN , v] = [ fN , v] ∀v ∈ H 1
0,ρ(D) . (2.15)

Moreover, uN satisfies the estimate

||uN ||H 1
0 (D)
≤ CP

m

�

E

∫

D

| fN |2 d x

�
1

2

. (2.16)
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Now, we can estimate the modeling error produced by a perturbation of stochastic coef-

ficients a and f of the problem (2.5) according to the following theorem — cf. Corollary 2.1

in Ref. [7] for a proof.

Theorem 2.3. With the assumptions (2.4), (2.14) and f , fN ∈ L 2
ρ (D), we have

||u− uN ||H 1
0,ρ(D)
≤ CP

m

�

|| f − fN ||L 2
ρ(D)
+

1

m
||a− aN ||L∞ρ (Ω;L∞(D))|| f ||L 2

ρ(D)

�

. (2.17)

We let ζ(N) :=
CP

m
{|| f − fN ||L 2

ρ(D)
+ 1

m
||a−aN ||L∞ρ (Ω;L∞(D))|| f ||L 2

ρ(D)
}, and assume that ζ(N)

is a monotone decreasing function such that ζ(N)→ 0 as N →∞.

3. Finite-Dimensional Approximations of PDE

We seek to approximate the exact solution of (1.2) in a suitable finite-dimensional

subspace V h,p, based on a tensor product V h,p = Hh(D) ⊗ Pp(Γ). We introduce some

standard approximate subspaces — viz. Hh(D)⊂ H1
0(D) as a standard finite element space

of dimension Nh, which contains continuous piecewise polynomials defined on regular

triangulations Th that have a maximum mesh-spacing parameter h > 0. Moreover, we

suppose that Hh has the following approximation property: for a given function u ∈ H1
0(D),

min
v∈Hh(D)

||u− v||H1(D) ≤ chs||u||Hs+1(D) , (3.1)

where s is a positive integer determined by the smoothness of u and the degree of the

approximating finite element subspace, and c is independent of h. We also assume that

there exists a finite element operator πh : H1
0(D)→ Hh(D) with the optimally condition

||u−πhu||H1(D) ≤ Cπ min
v∈Hh(D)

||u− v||H1(D) ≤ Chs||u||Hs+1(D) ∀ u ∈ H1
0(D) , (3.2)

where the constant Cπ is independent of the mesh size h and C = cCπ. For Γ ⊂ RN ,

Pp(Γ) ⊂ L 2(Γ) is the span of tensor product polynomials with degree at most p =

(p1, . . . , pN )— i.e. Pp(Γ) =
⊗N

n=1Ppn
(Γn), with

Ppn
(Γn) = span(yk

n , k = 0, · · · , pn) , n= 1, · · · , N .

Stochastic collocation involves evaluation of approximations πhuN (yk) = uN
h
(yk) ∈

Hh(D) to the solution uN of (2.15) on a set of points yk ∈ Γ, when the fully discrete solution

uN
h,p
∈ C0(Γ; Hh(D)) is a global approximation constructed from linear combinations of the

point values. The approximation is thus given by

uN
h,p(y, x) =
∑

k∈K
uN

h (yk, x)l
p

k
(y) ,
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where the function l
p

k
can be Lagrange polynomials. This formulation can be used to

approximate the mean value or variance of u as

E[u]≈ E[uN
h ]≡
∑

k

uN
h (yk, ·)
∫

ΓN

l
p

k
(y)ρ(y)d y

and

Var[u]≈ Var[uN
h ]≡
∑

k

�

uN
h (yk, ·)
�2

∫

ΓN

l
p

k
(y)ρ(y)d y −
�

ūN
h

�2
.

3.1. Sparse collocation techniques

Sparse collocation methods have been investigated by many authors — cf. [4,5,20,21]

and references therein. In multi-dimensional interpolation, one feasible methodology is

to construct interpolants and nodal points by tensor products of one-dimensional inter-

plant and nodal points, including Gauss and Chebyshev points that have been favoured

since they both have low interpolation errors for polynomial approximation. An obvious

disadvantage of this approach is that the number of points required increases combina-

torially as the number of stochastic dimensions increased. The Smolyak algorithm pro-

vides one way to construct interpolation functions based on a minimal number of points

in multi-dimensional space, where univariate interpolation formulas are extended to the

multivariate case by using tensor products in a special way. This provides an interpolation

strategy that potentially produces order of magnitude reductions in the number of support

nodes required, and a linear combination of tensor products may be chosen such that the

interpolation property is conserved for higher dimensions.

We introduce an index i ∈ N+, i ≥ 1, and let {y i
1, · · · , y i

mi
} ⊂ [−1,1] be a sequence of

abscissas for Lagrange interpolation on [−1,1] for each value of i. For each direction yn,

we introduce a sequence of one-dimensional Lagrange interpolation operators of increas-

ing order — viz. U i : C0(Γn; H1
0(D))→ Vmi

given by

U i(u)(y) =

mi
∑

j=1

u(y i
j)l

i
j(y) , ∀ u ∈ C0

�

Γn; H1
0(D)
�

, (3.3)

where

l i
j(y) =

mi
∏

(k=1

k 6= j)

(y − y i
k
)

(y i
j
− y i

k
)
∈ Pmi−1(Γn)

are the Lagrange polynomials of degree m− 1 and

Vmi
(Γn; H1

0(D)) =

¨

v ∈ C0
�

Γn; H1
0(D)
�

: v(y, x) =

mi
∑

k=1

ṽk(x)lk(y), {ṽk}mi

k=1
∈ H1

0

«

.

(3.4)
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Formula (3.4) reproduces exactly all polynomials of degree less than mi . Further, in the

multivariate case N > 1, for each u ∈ C0(Γ; H1
0(D)) and the multi-index i = (i1, · · · , iN ) ∈

N
N
+ we define the full tensor product interpolation formulas

I N
i u(y) =
�

U i1 ⊗ · · · ⊗U iN
�

(u)(y) =

mi1
∑

j1=1

· · ·
miN
∑

jN=1

u
�

y i1

j1
, · · · , y iN

jN

��

l i1

j1
⊗ · · · ⊗ l iN

jN

�

.

(3.5)

Clearly, the product involved above needs
∏N

n=1 min
function evaluations. These formulas

will also be used as the building blocks for the Smolyak method, described next.

To analyse the convergence of various collocation methods, we note a regularity as-

sumption on the data of the problem and consequent regularity results for the exact solu-

tion uN . Thus we denote Γ∗n =
∏N

j=1, j 6=n Γ j, let y∗n be an arbitrary element of Γ∗n, and make

the following assumption concerning the solution to Eq. (2.12).

Assumption 3.1 (regularity). For each yn ∈ Γn, there exists τn > 0 such that the function

uN (x , yn, y∗n) as a function of yn,uN : Γn → C0(Γ∗n; H1
0(D)) admits an analytic extension

u(z, y∗n , x), z ∈ C in the region of the complex plane

Σ(Γn;τn)≡
�

z ∈ C, dist(z,Γn)
	

. (3.6)

Moreover, ∀ z ∈ Σ(Γn;τn)

||uN (z)||C0(Γ∗n;H1
0(D))
≤ λ , (3.7)

with λ a constant independent of n.

It has been proven in Ref. [4] that problem (2.12) satisfies the analyticity results stated

in Assumption 3.1. For instance, if we take a(x ,ω) as the truncated expansion (2.11), then

a suitable analyticity region Σ(Γn;τn) is given by

τn =
1

4
p

λn||φn||L∞(D)
. (3.8)

Note that since
p

λn||φn||L∞(D) → 0 for a sufficiently regular covariance function, the

analyticity region increases as n increases.

3.2. Smolyak approximation

Here we follow closely the work in Ref. [20] to describe the Smolyak isotropic formulas

A (w, N). These formulas are just linear combinations of product formulas (3.5), with the

following key properties where only products with a relatively small number of points are

used. With U 0 = 0, for i ∈ N+ we define

∆i :=U i −U i−1; (3.9)
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and given an integer w ∈ N+, hereafter called the level, we define the sets

X (w, N) :=

(

i ∈ NN
+, i≥ 1 :

N
∑

n=1

(in − 1) ≤ w

)

(3.10)

X̃ (w, N) :=

(

i ∈ NN
+, i≥ 1 :

N
∑

n=1

(in − 1) = w

)

(3.11)

Y (w, N) :=

(

i ∈ NN
+, i≥ 1 : w− N + 1 ≤

N
∑

n=1

(in− 1) ≤ w

)

(3.12)

and set |i|= i1 + · · ·+ iN for i ∈ NN
+. Then the isotropic Smolyak formula is given by

A (w, N) =
∑

i∈X (w,N)

(∆i1 ⊗ · · · ⊗∆iN ) , (3.13)

or equivalently

A (w, N) =
∑

i∈Y (w,N)

(−1)w+N−|i|
�

N − 1

w+ N − |i|
�

·
�

U i1 ⊗ · · · ⊗U iN
�

. (3.14)

Then in order to compute A (w, N)(u), one only needs to know function values on the

"sparse grid"

H (w, N) =
⋃

i∈Y (w,N)

�

v i1 × · · · × v iN
�

⊂ [−1,1]N , (3.15)

where v i = {y i
1, · · · , y i

mi
} ⊂ [−1,1] denotes the set of abscissas used by U i. If the sets are

nested — i.e., v i ⊂ v i+1, thenH (w, N)⊂H (w+ 1, N) and

H (w, N) =
⋃

i∈X̃ (w,N)

�

v i1 × · · · × v iN
�

. (3.16)

The Smolyak formula is actually interpolatory whenever nested points are used — cf. Ref. 8,

Proposition 6 on the page 277.

On comparing (3.16) and (3.15), we observe that the Smolyak approximation that

employs nested points requires fewer function evaluations than the corresponding formula

with non-nested points. We introduce two particular sets of abscissas below, respectively

nested and non nested.

3.3. Choice of interpolation abscissas

Clenshaw-Curtis abscissas. We first use Clenshaw-Curtis abscissas in the construction

of the Smolyak formula, which are the extrema of Chebyshev polynomials, and for any

choice of mi > 1 are given by

y i
j =− cos

π( j− 1)

mi − 1
, j = 1, · · · , mi . (3.17)
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Figure 1: Full tensor produt using Clenshaw-Curtis absissas (left), Clenshaw-Curtis absissas withlevel 5 (middle), and Gauss-Legendre absissas with level 5 (right).
In addition, one sets y i

j
= 0 if mi = 1 and lets the number of abscissas mi in each level

grow according to the formula

m1 = 1 and mi = 2i−1+ 1 f or i > 1 . (3.18)

With this particular choice, one obtains nested sets of abscissas v i ⊂ v i+1, and thereby

H (w, N) ⊂H (w+ 1, N). It is important to choose m1 = 1 if we are interested in the op-

timal approximation in relatively large N , because in all other cases the number of points

used byA (w, N) increases too rapidly with N .

Gaussian abscissas. We also use Gaussian abscissas — i.e. the zeros of the orthogonal poly-

nomials with respect to some positive weight. Although Gaussian abscissas are in general

not nested, we choose the same number mi of abscissas as in (3.18) in the Clenshaw-

Curtis case. The natural choice of the weight should be the probability density function

ρ of the random variables Yi(ω), i = 1, · · · , N , but in the general multivariate case, the

density ρ does not factorize (i.e. ρ(y1, · · · , yN ) 6=
∏N

n=1ρn(yn)) if the random variables Yi

are not independent. We therefore first introduce an auxiliary probability density function

ρ̂ : Γ→ R+ that can be viewed as the joint probability of N independent random variable

— i.e. it factorises as

ρ̂(y1, · · · , yN ) =

N
∏

n=1

ρ̂n(yn) ∀y ∈ Γ (3.19)

and is such that


ρ/ρ̂




L∞(Γ) < ∞. For eaxh dimension n = 1, · · · , N , we let the mn

Gaussian abscissas be the roots of the mn degree polynomial that is ρ̂−orthogonal to all

polynomials of degree mn − 1 on the interval [−1,1]. The auxiliary density ρ̂ should be

chosen as close as possible to the true density ρ, so that the quotient ρ/ρ̂ is not too large

(such a quotient will appear in the final error estimate).
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3.4. Convergence analysis

The convergence analysis for the isotropic Smolyak method follows from Refs. [5,20].

A general approach is to bound both the discretisation error and the number of collocation

points η= η(w, N) in terms of the level w.

Collocation methods can be used to approximate the solution uN ∈ C0(ΓN ; H1
0(D))

using finitely many function values, each computed by finite elements. Recalling that under

Assumption 3.1 the {uN} admits an analytic extension, we let the fully discrete numerical

approximation be A (w, N)πhuN . Our aim is to give a priori estimates for the total error

e = u−A (w, N)πhuN ,

where the operatorA (w, N) is described by Eq. (3.13) and πh is the finite element projec-

tion operator. We investigate the error

||u−A (w, N)πhuN || ≤ ||u− uN ||+ ||uN −πhuN ||+ ||πhuN −A (w, N)πhuN || , (3.20)

evaluated in the norm L
q
ρ(Ω; H1

0(D)) with either q = 2 or q =∞.

To complete the convergence analysis, we introduce some lemmas from Ref. [5]. To do

so, we introduce a weight σ(y) =
∏N

n=1σn(yn)≤ 1 where

σn(yn) =

¨

1 , if Γn is bounded ,

e−αn|yn| for some αn > 0 , if Γn is unbounded ,
(3.21)

and the functional space

C0
σ(Γ; V )≡
�

v : Γ→ V, v continuous in y ,max
y∈Γ
||σ(y)v(y)||V < +∞

�

,

where V is a Banach space of functions defined in D.

Lemma 3.1. If f ∈ C0
σ(Γ; L2(D)) and a ∈ C0

l oc
(Γ; L∞(D)), uniformly bounded away from

zero, then the solution to problem (2.5) satisfies u ∈ C0
σ(Γ; H1

0(D)).

Lemma 3.2. Under the assumption that for every y = (yn, y∗n) ∈ Γ there exists γn < +∞
such that

�

�

�

�

�

�

�

�

�

�

∂ k
yn

a(y)

a(y)

�

�

�

�

�

�

�

�

�

�

L∞(D)

≤ γk
n k! and

||∂ k
yn

f (y)||L2(D)

1+ || f (y)||L2(D)

≤ γk
n k! , (3.22)

the solution u(yn, y∗n , x) as a function of yn, u : Γn → C0
σ∗n
(Γ∗n; H1

0(D)) admits an analytic

extension u(z, y∗n , x), z ∈ C, in the region of the complex plane

Σ(Γn;τn)≡
�

z ∈ C , dist(z,Γn)≤ τn

	

(3.23)

with 0< τn < 1/(2γn). Moreover, for all z ∈ Σ(Γn;τn)

||σn(Re z)u(z)||C0

σ∗n
(Γ∗n;H1

0(D))
≤ CP eαnτn

m(1− 2τnγn)

�

2|| f ||C0
σ(Γ;H1

0 (D))
+ 1
�

, (3.24)

with the constant CP as in inequality (2.6).
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We also have a convergence theorem from Ref. [5], which focuses on the sparse stochas-

tic collocation discretisation error.

Theorem 3.2. For a function u ∈ C0(Γ; W (D)) satisfying the assumptions of Lemma 3.2, the

isotropic Smolyak formula based on ρ̂-Gaussian abscissas satisfies

||u−A (w, N)u||L2
ρ(Γ;V ) ≤
p

||ρ/ρ̂||L∞(Γ)C(rmin, N)η−µ,

µ :=
rmin e log(2)

ζ+ log(N)
,

(3.25)

with ζ := 1+ (1+ log2(1.5)) log(2)≈ 2.1.

The constant C(rmin, N) is defined in formula (3.31) on page 2331 of Ref. [20], and tends

to zero as rmin→∞.

Similar results for the isotropic Smolyak formula based on Clenshaw-Curtis abscissas

can also be found in Ref. [20].

4. Stochastic Distributed Control Problems

4.1. Optimality solution of stochastic equations

Let us now examine the existence of an optimal solution that minimises our functional

(1.1). We first define

Uad =
¦

(u, f ) ∈H 1
0 ×L 2 such that (2.5) satisfied and J (u, f )<∞

©

(4.1)

be the admissibility set. Then (û, f̂ ) ∈ Uad is said to be an optimal solution of J (u, f ) if,

for all (u, f ) ∈ Uad satisfying ‖u− û‖H 1
0 (D)
+ ‖ f − f̂ ‖L 2(D) ≤ ε for some ε > 0,

J (û, f̂ )≤ J (u, f ) . (4.2)

The constrained minimisation problem can then be written

min
(u, f )∈Uad

J (u, f ) , subject to (2.5) . (4.3)

Assume that f̂ ∈ L 2(D) is a minimiser of J and û is the corresponding state variable,

and define the adjoint variable ξ̂ ∈H 1
0 (D) such that

b[ξ̂,ζ] = [û− ud ,ζ] , ∀ ζ ∈H 1
0 (D) . (4.4)

Theorem 4.1. J has a unique minimiser f̂ ∈ L 2(D) and it is determined by

[δ f̂ , g] = −[ξ̂, g] , ∀ g ∈ L 2(D) . (4.5)
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Proof. The existence and uniqueness follow from the standard theory of optimal con-

trols [18]. Now for f ∈ L 2(D), let u( f ) be the solution of (2.3). Then ∀ g ∈ L 2(D),

∂

∂ ε
u( f̂ + εg)
�

�

ε=0
= u(g) .

Since f̂ is a minimiser of J ,

dJ (û( f̂ ), f̂ )

d f
=

d

dε
J (û( f̂ + εg), f̂ + εg)

�

�

ε=0
= 0 ,

which implies

E

�∫

D

(û− ud)u(g) d x + δ

∫

D

f g d x

�

= 0 . (4.6)

From (4.4) and integration by parts, we have

E

�
∫

D

(û− ud)u(g) d x

�

= E

�
∫

D

(∇ · (a∇ξ̂))u(g) d x

�

= −E
�∫

∂ D

(a∇ξ̂ · ~n)u(g) d x +

∫

D

a∇ξ̂∇u(g) d x

�

= E

�∫

D

ξ̂∇ · (a∇u(g)) d x

�

= E

�∫

D

ξ̂g d x

�

.

(4.7)

From (4.6) and (4.7), we obtain (4.5).

From the above theorem , we conclude that solving the minimisation problem (4.2) is

equivalent to solving the following optimality system of equations:

b[u, v] = [ f , v] , ∀ v ∈H 1
0 (D) ,

b[ξ,ζ] = [u− ud ,ζ] , ∀ ζ ∈H 1
0 (D) ,

δ[ f , g]L 2(D) = [ξ, g]L 2(D) , ∀ g ∈ L 2(D) .

(4.8)

Thus the reduced optimality system becomes

b[u, v] =

�

−ξ
δ

, v

�

, ∀ v ∈ H 1
0 (D) ,

b[ξ,ζ] = [u− ud ,ζ] , ∀ ζ ∈H 1
0 (D) .

(4.9)



Sparse Grid Collocation Method for an Optimal Control Problem Involving a SPDE 179

4.2. Recasting the optimality system and its discrete approximation into the

BRR framework

We first fit the optimality system and its discrete approximation into the BRR frame-

work to derive error estimates for the discrete approximation of the optimality system,

and then obtain the desired error estimates by verifying assumptions in the BRR theory.

The BRR theory implies that the error of approximation of solutions of some nonlinear

problems under certain hypotheses is basically the same as the error of approximation of

solutions of related linear problems [10, 11, 16]. For the sake of completeness, we state

the relevant results, specialised to our needs.

Consider the following type of nonlinear problem: seek ψ ∈ X such that

ψ+T G (ψ) = 0 , (4.10)

where T ∈ L (Y ;X ), G is a C2 mapping fromX into Y , andX andY are Banach spaces.

We say that ψ is a regular solution of (4.10) if ψ+ T Gψ(ψ) is an isomorphism from X
into X , where Gψ denotes the Fréchet derivative of G with respect to ψ. We assume that

there exists another Banach space Z , contained in Y , with continuous imbedding such

that

Gψ(ψ) ∈ L (X ;Z ) , ∀ ψ ∈ X . (4.11)

Approximations are defined by introducing a subspace X h ⊂ X and an approximating

operator T h ∈ L (Y ;X h). We seek ψh ∈ X h such that

ψh+T hG (ψh) = 0 . (4.12)

Concerning the operator T h, we assume the approximation properties

lim
h→0
‖(T h−T )ω‖X = 0 , ∀ ω ∈ Y (4.13)

and

lim
h→0
‖T h−T ‖L (Z ;X ) = 0 . (4.14)

Note that whenever the imbedding Z ⊂ Y is compact, Eq. (4.14) follows from (4.13) and

moreover, (4.11) implies that the operator T Gψ(ψ) ∈ L (X ;X ) is compact.

We now state the result of Ref. [10] to be used below. In the statement of the theorem,

D2G represents any and all second Fréchet derivatives of G .

Theorem 4.2. LetX and Y be Banach spaces. Assume that G is a C2 mapping fromX to Y
and that D2G is bounded on all bounded sets of X . Assume that (4.11), (4.13), and (4.14)

hold and that ψ is a regular solution of Eq. (4.10). Then there exists a neighborhood O of

the origin in X and, for h ≤ h0 small enough, a unique ψh ∈ X h such that ψh is a regular

solution of (4.12). Moreover, there exists a constant C > 0, independent of h, such that

‖ψh−ψ‖X ≤ C‖(T h−T )G (ψ)‖X . (4.15)
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We set X = H 1
0 (D)×L 2(D)×H 1

0 (D) and Y = H −1(D)×H 1
0 (D), and define the

linear operator T ∈ L (Y ;X ) as follows:

(ũ, f̃ , ξ̃) = T (r̃, τ̃)

if and only if

b[ũ, v] = [r̃, v] ∀v ∈H 1
0 (D) , (4.16)

b[ξ̃,ζ] = [τ̃,ζ] ∀ζ ∈H 1
0 (D) , (4.17)

and

[β f̃ + ξ̃, z] = 0 ∀z ∈ L 2(D) . (4.18)

We define G :X →Y by

G (ũ, f̃ , ξ̃) = (− f̃ − ũ+ U) .

Then it is clear that the optimality system (4.8) can be written as

(u, f ,ξ) +T (G (u, f ,ξ)) = 0 , (4.19)

hence the optimality system is recast into the form of (4.10).

We now setX hp = V hp×Ghp×V hp and define the discrete operator T hp ∈ L (Y ;X hp)

as follows:

(ũhp, f̃ hp, ξ̃hp) = T hp(r̃, τ̃)

if and only if

b[ũhp, vhp] = [r̃, vhp] ∀vhp ∈ V hp, (4.20)

b[ξ̃hp,ζhp] = [τ̃,ζhp] ∀ζhp ∈ V hp, (4.21)

and

[β f̃ h+ ξ̃hp, zh] = 0 ∀zh ∈ Gh. (4.22)

Then it is clear that the discrete optimality system

b[uhp, vhp] = [−ξhp, vhp] ∀vhp ∈ V hp , (4.23)

b[ξhp,ζhp] = [uhp − U ,ζhp] ∀ζhp ∈ V hp (4.24)

can be written as

(uhp,ξhp) +T hp
�

G (uhp,ξhp)
�

= 0 ,

hence the discrete optimality system is recast into the form of (4.12).
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4.3. Error estimates for approximation of solutions of the optimality system

We proceed to verify all assumptions in Theorem 4.2. We first define a space Z =
L 2(D) × L 2(D), clearly continuously embedded into Y = H −1(D) ×H −1(D). If the

Fréchet derivative of G (u, f ,ξ) with respect to (u, f ,ξ) us denoted by DG (u, f ,ξ) or G(u, f ,ξ)

(u, f ,ξ), then from G (u, f ,ξ) for (u, f ,ξ) ∈ X we obtain

DG (u, f ,ξ) · (ũ, f̃ , ξ̃) = (− f̃ ,−ũ) ∀(ũ, f̃ , ξ̃) ∈ X .

There are now the following propositions leading to our error analysis for the stochastic

optimal control problem — cf. [17].

Proposition 4.1. 1. DG (u, f ,ξ) ∈ L (X ;Z ) f or all (u, f ,ξ) ∈ X .

2. G is twice continuously differentiable and D2G is bounded on all bounded sets of X .

3. For any (r̃, τ̃) ∈ Y , ‖(T −T hp)(r̃, τ̃)‖X → 0 as h, p→ 0.

4. ‖T −T hp‖L (Z ,X )→ 0 as h, p→ 0.

5. A solution of (4.19) is regular.

Since the items in Proposition 4.1 cover all of the assumptions of Theorem 4.2, we now

have results as follows.

Theorem 4.3. Assume that U ∈H 1
0 (D). Let (u,ξ) ∈H 1

0 (D)×H 1
0 (D) be the solution of the

optimality system (4.9). Let (uhp,ξhp) ∈ V hp × V hp be the solution of the discrete optimality

system (4.23) and (4.24). Then

‖u− uhp‖H 1
0 (D)
+ ‖ξ−ξhp‖H 1

0 (D)
→ 0 as h, p→ 0 .

Moreover, there exists C > 0 such that

‖u− uhp‖H 1
0 (D)
+ ‖ξ− ξhp‖H 1

0 (D)

≤Ch(‖ f ‖L 2(D) + ‖u− U‖L 2(D)) +
p

||ρ/ρ̂||L∞(Γ)C(rmin, N)η−µ, (4.25)

where the isotropic Smolyak formula based on ρ̂-Gaussian abscissas is used.

Remark 4.1. The factor Ch in the first term on the right-hand side of (4.25) can be changed

to Chs, h > 1, where s is determined by the smoothness of (u,ξ) and the degree of the

approximating finite element subspace.

Similar results for the isotropic Smolyak formula based on Clenshaw-Curtis abscissas

can readily be derived.
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Figure 2: The expetation and variane of aN (x , z,ω).
5. Numerical Computation of Stochastic Control Problems

This section illustrates the convergence of the sparse collocation method for a stochastic

elliptic problem in two dimensions, including that the computational results are in accord

with the convergence rate predicted by the theory. The constrained minimisation problem

is given by

J (u, f ) = E

�

1

2

∫

D

|u− U |2 d x +
δ

2

∫

D

| f |2 d x

�

(5.1)

subject to (1.2) with D = (0,1)2 and δ = 10−7, and the reduced optimality system

(4.9) is solved to get optimal solutions. We consider a deterministic desired state U =

sin(πx) sin(πz) and construct the random diffusion coefficient aN (x , z,ω)with two-dimensional

spatial dependence as

aN (x , z,ω) =amin+ exp

�

�

Y1(ω) cos(πx)+ Y3(ω) sin(πz)
�

e−
1

8

+
�

Y2(ω) cos(πx)+ Y4(ω) sin(πz)
�

e−
1

8

�

, (5.2)

where amin = 1/100, and the real random variables Yi, i = 1, · · · , 4 are independent, and

have zero mean and unit variance — i.e. E[Yi] = 0 and E[YiYj] = δi j for i, j ∈ N+.

The random variables Yi, i = 1, · · · , 4 are uniformly distributed in the interval [−p3,
p

3],

and we obtain the joint probability density function ρ of (Y1, · · · , Y4) in this case is (2
p

3)−4

— and in our collocation method we may use either the Clenshaw-Curtis or Gauss-Legendre

abscissass. For the physical domain, we use quadratic triangle finite elements.
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Figure 3: Some realizations of aN (x , z,ω) (left) with orresponding distributed ontrol f (x , z) (middle)and ontrolled solution u(x , z,ω) (right).
5.1. Numerical results

Fig. 3 shows a realisation of the diffusivity coefficient a(x , z,ω), with corresponding

distributed control f hp and controlled solution u(x , z,ω). The distributed control f hp

changes as the controlling uhp affected the random diffusivity coefficient. As expected,



184 N. Kim and H.-C. LeeTable 1: Results for Clenshaw-Curtis absissas with dimension N = 4 and level 6, omparing valuesorresponding to hanging h.
1/h ||u− uhp||H 1

0 (D)
Rate of conv. ||ξ− ξhp||H 1

0 (D)
Rate of conv.

2 5.183913772882e-01 6.262470237008e-06

4 2.553241614867e-01 2.030 3.367995092724e-06 1.859

8 1.262056585611e-01 2.023 1.277335662966e-06 2.637

16 6.290141199107e-02 2.006 5.259755611205e-07 2.429Table 2: Number of points for Clenshaw-Curtis and Gauss-Legendre absissas with dimension 4.
Level level 0 level 1 level 2 level 3 level 4 level 5 level 6

# of points for CC 1 9 41 137 401 1105 7537

# of points for GL 1 9 57 289 1268 4994Table 3: Relative errors for optimal solutions using Clenshaw-Curtis absissas.
Level Relative Error for u Relative Error for ξ Relative Error for f

0 2.766738358942e-03 4.783631771340e-01 5.203362074889e-01

1 1.731924111923e-03 9.981821252278e-02 8.884437856187e-02

2 6.159036626895e-04 8.327814181055e-02 1.887166685990e-02

3 4.755702436742e-04 2.834413308018e-02 6.628139678764e-03

4 2.698576676732e-04 1.603426219649e-02 3.267251655201e-03

5 6.924047563378e-05 1.072228515414e-02 2.006748962780e-03Table 4: Relative errors for optimal solutions using Gauss-Legendre absissas.
Level Relative Error for u Relative Error for ξ Relative Error for f

0 2.770736849938e-03 4.785091045750e-01 5.203267896152e-01

1 1.707906304027e-03 1.150198312016e-01 1.156558795547e-01

2 6.163433564976e-04 7.795706690576e-02 1.944239192774e-02

3 2.789940751303e-04 1.045149179460e-02 2.890386272546e-03

4 2.336437664557e-05 2.363674580206e-03 3.893077356697e-04

the controlled solution uhp is similar to the desired state U = sin(πx) sin(πz), so the ex-

pected value of uhp, E[uhp] has shape like U and the variance Var[uhp] is very small (about

10−5). On the other hand, the variance of the control f hp, Var[ f hp] has very large values

(about 103).

We now discuss graphs of the discrete optimal solutions that we obtained, together

with the target solution and tables of relative errors in the optimal solutions, for various

level Clenshaw-Curtis (CC) and Gauss-Legendre (GL) abscissas.

As shown in the Table 1, the H 1
0 (D)-errors of ||u− uhp|| and ||ξ− ξhp|| go to zero as

h → 0 in the fixed level 6 and dim N = 4 with Clenshaw-Curtis abscissas. The rate of
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Figure 4: E[u] (�rst row), Var[u] (seond row), E[ f ] (third row) and Var[ f ] (fourth row) for level 2(�rst olumn), level 3 (seond olumn) and level 6 (third olumn).
convergence becomes h2 as h decreases in agreement with Theorem 4.3, using quadratic

finite elements for the physical domain D = (0,1)2.

The number of points for each method are shown in Table 2. The number of points for

Clenshaw-Curtis abscissas is relatively small compared to using Gauss-Legendre abscissas

at the same level. For comparable values calculated using a similar number of points, the
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Figure 5: Convergene of the solution uhp and the ontrol f hp.
level for the Clenshaw-Curtis is generally higher than for the Gauss-Legendre abscissas. To

see the error corresponding to a level, we fix the step size to be h = 1/16 on the spatial

domain and the dimension N = 4 on the stochastic domain, and investigate the behaviour

when the level w in the Smolyak formula is increased linearly. In particular, we focus on

the convergence of the discrete optimal solutions uhp, ξhp and f hp with respect to the level,

in terms of the relative error norms. For example, for the state solution u and the Lagrange

multiplier ξ we use the H1 norm, and for our control f we use the L2 norm. To estimate

the computational relative error in the level w we approximate

||E[ε(uup)]|| t ||E[A (w, N)πhuN −A (w̃, N)πhuN ]||
||E[A (w̃, N)πhuN ]||

(5.3)

and ||E[ε( f hp)]|| in the same way, where the w̃’s are 6 and 5 for the Clenshaw-Curtis and

Gauss-Legendre, respectively.

We plot the convergence of the relative errors of the approximate solution ||u− uhp||
and || f − f hp|| with respect to the number of the collocation points in Fig. 5. We ran our
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programs by increasing the level w on fixed spatial and stochastic domains as mentioned

above, with Clenshaw-Curtis and Gauss-Legendre abscissas as shown in Fig. 5. As shown

in Fig. 5, based on the values in tables 3 and 4 our results reveal that the error decreases

sub-exponentially as the level w increases, confirming the theoretical convergence rates of

the optimal solutions.

6. Concluding Remarks

We have successfully analysed and tested a sparse grid collocation method for an opti-

mal control problem involving a stochastic partial differential equation and random inputs.

Many mathematicians and engineers have worked on directly relevant problems for at least

two decades, but the corresponding theory and analysis is not trivial. We intend to extend

this work to sparse collocation calculations for the Navier-Stokes and Boussinesq fluid me-

chanics equations with random inputs.
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