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Abstract. This article explores recursive and integral equations for ruin probabilities

of generalised risk processes, under rates of interest with homogenous Markov chain

claims and homogenous Markov chain premiums. We assume that claim and premium

take a countable number of non-negative values. Generalised Lundberg inequalities for

the ruin probabilities of these processes are derived via a recursive technique. Recursive

equations for finite time ruin probabilities and an integral equation for the ultimate ruin

probability are presented, from which corresponding probability inequalities and upper

bounds are obtained. An illustrative numerical example is discussed.
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1. Introduction

Ruin probabilities in discrete time models have been considered by many authors.

Teugels & Sundt [8, 9] studied the effects of a constant rate on the ruin probability un-

der the compound Poisson risk model. Yang [11] established both exponential and non-

exponential upper bounds for ruin probabilities in a risk model with constant interest force

and independent premiums and claims. Xu & Wang [10] investigated a discrete-time risk

model with constant interest force under a Markov chain interest rate. Yang & Zhang [12]

considered a discrete-time insurance risk model by using an autoregressive process to

model both the premuims and the claims, and they also included investment incomes in

their model. Cai [1,2] investigated the ruin probabilities in two risk models, with indepen-

dent premiums and claims and used a first-order autoregressive process to model the rates

of interest. Cai & Dickson [3] obtained Lundberg inequalities for ruin probabilities in a

two discrete-time risk process with a Markov chain interest model and independent premi-

ums and claims. The author established Lundberg inequalities using a recursive technique

for ruin probabilities in a two discrete-time risk process with homogenous Markov chain
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premiums when claims and rate of interest sequences are independent [5], and also by the

Martingale approach in a two discrete-time risk process with homogenous Markov chain

claims when premiums and rate of interest sequences are independent [6].

In this article, we extend the models considered by Cai & Dickson [3] to introduce

homogenous Markov chain claims and homogenous Markov chain premiums, assuming

independent rates of interest.

2. The Model and Basic Assumptions

Let X = {Xn}n≥0 denote the premiums, Y = {Yn}n≥0 the claims and I = {In}n≥0 the

interests, where X , Y and I are defined on the probability space (Ω,A, P). To establish

the probability inequalities for ruin probabilities, two styles of premium collection are

considered. On the one hand, for premiums collected at the beginning of each period, the

surplus process {U (1)n }n≥1 with initial surplus u can be written

U (1)n = U
(1)
n−1(1+ In) + Xn− Yn , (2.1)

which can be rearranged as

U (1)n = u

n∏

k=1

(1+ Ik) +

n∑

k=1

�
Xk − Yk

� n∏

j=k+1

(1+ I j) . (2.2)

On the other hand, for premiums collected at the end of each period, the surplus process

{U (2)n }n≥1 with initial surplus u is

U (2)n = (U
(2)
n−1 + Xn)(1+ In)− Yn , (2.3)

or equivalently

U (2)n = u

n∏

k=1

(1+ Ik) +

n∑

k=1

�
Xk(1+ Ik)− Yk

� n∏

j=k+1

(1+ I j) , (2.4)

where throughout this article
∏b

t=a zt = 1 and
∑b

t=a zt = 0 if a > b.

We make several assumptions.

Assumption 2.1. U (1)o = U (2)o = u> 0 .

Assumption 2.2. X = {Xn}n≥0 is an homogeneous Markov chain, such that for any n the

values of Xn are taken from a set of non-negative numbers EX = {x1, x2, · · · , xm, · · · } with

X0 = x i and

pi j = P
�
ω ∈ Ω : Xm+1(ω) = x j

��Xm(ω) = x i

�
, (m ∈ N), x i, x j ∈ EX ,

where 0≤ pi j ≤ 1 ,
∑+∞

j=1 pi j = 1 .
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Assumption 2.3. Y =
�

Yn

	
n≥0 is a homogeneous Markov chain, such that for any n the

values of Yn are taken from a set of non-negative numbers EY = {y1, y2, · · · , yn, · · · } with

Yo = yr and

qrs = P
�
ω ∈ Ω : Ym+1(ω) = ys

��Ym(ω) = yr

�
, (m ∈ N), yr , ys ∈ EY ,

where 0≤ qrs ≤ 1,
∑+∞

s=1 qrs = 1.

Assumption 2.4. I = {In}n≥0 is a sequence of independent and identically distributed

non-negative continuous random variables with the same distributive function

F(t) = P(ω ∈ Ω : I0(ω)≤ t) .

Assumption 2.5. X , Y and I are assumed to be independent.

For Eq. (2.1) with Assumptions 2.1 to 2.5, the finite time and ultimate ruin probabilities

are defined by

ψ(1)n (u, x i, yr)

=P

 
ω ∈ Ω :

n⋃

k=1

(U
(1)

k
(ω)< 0)

�����U
(1)
o (ω) = u, Xo(ω) = x i, Yo(ω) = yr

!
, (2.5)

ψ(1)(u, x i, yr) = lim
n→∞ψ

(1)
n (u, x i, yr )

=P

 
ω ∈ Ω :

∞⋃

k=1

(U
(1)

k
(ω)< 0)

�����U
(1)
o (ω) = u, Xo(ω) = x i, Yo(ω) = yr

!
. (2.6)

On the other hand, for Eq. (2.3) with Assumptions 2.1 to 2.5, the finite time and ultimate

ruin probabilities are defined by

ψ(2)n (u, x i, yr)

=P

 
ω ∈ Ω :

n⋃

k=1

(U
(2)

k
(ω)< 0)

�����U
(2)
o (ω) = u, Xo(ω) = x i, Yo(ω) = yr

!
, (2.7)

ψ(2)(u, x i, yr) = lim
n→∞ψ

(2)
n (u, x i, yr )

=P

 
ω ∈ Ω :

∞⋃

k=1

(U
(2)

k
(ω)< 0)

�����U
(2)
o (ω) = u, Xo(ω) = x i, Yo(ω) = yr

!
. (2.8)

We shall derive probability inequalities for ψ(1)(u, x i, yr) and ψ(2)(u, x i , yr). In Sec-

tion 3, recursive equations are obtained for ψ(1)n (u, x i, yr ) and ψ(2)n (u, x i, yr ), and integral

equations for ψ(1)(u, x i, yr) and ψ(2)(u, x i , yr). Probability inequalities for ψ(1)(u, x i, yr)

and ψ(2)(u, x i, yr ) are constructed in Section 4 by an inductive approach. An illustrative

numerical example is then given in Section 5, and our conclusions in Section 6.
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3. Integral Equation for Ruin Probabilities

We now construct a recursive equation for finite time ruin probabilities and an integral

equation for the ultimate ruin probability, firstly a recursive equation forψ(1)n (u, x i, yr) and

an integral equation for ψ(1)(u, x i, yr ).

Theorem 3.1. Given Eq. (2.1) and Assumptions 2.1 to 2.5, for n= 1,2, · · · , we have

ψ
(1)
n+1(u, x i , yr) =

+∞∑

j=1

+∞∑

s=1

pi jqrs

¨
F

�
ys − x j − u

u

�

+

∫ +∞
ys−x j−u

u

ψ(1)n

�
u(1+ t) + x j − ys, x j , ys

�
dF(t)

«
, (3.1)

and

ψ(1)(u, x i , yr) =

+∞∑

j=1

+∞∑

s=1

pi jqrs

¨
F

�
ys − x j − u

u

�

+

∫ +∞
ys−x j−u

u

ψ(1)
�

u(1+ t) + x j − ys, x j , ys

�
dF(t)

«
. (3.2)

Proof. Consider X1(ω) = x j ∈ EX , Y1(ω) = ys ∈ EY (ω ∈ Ω) and

B =
¦
ω ∈ Ω : U (1)o (ω) = u, Xo(ω) = x i, Yo(ω) = yr

©
,

A js =
¦
ω ∈ Ω : X1(ω) = x j, Y1(ω) = ys

©
,

A1 =

�
ω ∈ Ω : I1(ω)<

Y1(ω)− X1(ω)− u

u

�
,

A2 =

�
ω ∈ Ω : I1(ω)≥

Y1(ω)− X1(ω)− u

u

�
.

From Eq. (2.1), U
(1)
1 (ω) = u(1+ I1(ω))+x j− ys and P(ω ∈ Ω : U

(1)
1 (ω)< 0|A1∩A js∩B) = 1

such that

P

 
ω ∈ Ω :

n+1⋃

k=1

(U
(1)

k
(ω)< 0)

�����A1 ∩ A js ∩ B

!
= 1. (3.3)

In addition,

P

�
ω ∈ Ω : U

(1)
1 (ω)< 0

���A2 ∩ A js ∩ B

�
= 0. (3.4)

Let {X̃n}n≥0, {Ỹn}n≥0, {Ĩn}n≥0 be independent copies of {Xn}n≥0, {Yn}n≥0, {In}n≥0 with

X̃o(ω) = X1(ω) = x j, Ỹo(ω) = Y1(ω) = ys, Ĩo(ω) = I1(ω), (ω ∈ Ω). Thus Eqs. (2.2) and
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(3.4) imply

P

 
ω ∈ Ω :

n+1⋃

k=1

(U
(1)

k
(ω)< 0)

�����A2 ∩ A js ∩ B

!

=P

 
ω ∈ Ω :

n+1⋃

k=2

(U
(1)

k
(ω)< 0)

�����A2 ∩ A js ∩ B

!

=P

 
ω ∈ Ω :

n+1⋃

k=2

 
�

u(1+ I1(ω))+ x j − ys

� k∏

m=2

(1+ Im(ω)) +

k∑

m=2

�
Xm(ω)− Ym(ω)

�

×
k∏

p=m+1

(1+ Ip(ω))< 0




������
A2 ∩ A js ∩ B




=P


ω ∈ Ω :

n⋃

k=1

�
Ũ (1)o (ω)

k∏

m=1

(1+ Ĩm(ω)) +

k∑

m=1

�
X̃m(ω)− Ỹm(ω)

� k∏

p=m+1

(1+ Ĩp(ω))

< 0
�
�����
�

Ũ (1)o (ω) = u(1+ I1(ω))+ x j − ys, X̃o(ω) = x j, Ỹo(ω) = ys

�
∩ A2 ∩ B

!
, (3.5)

Now Eq. (2.1) implies

ψ
(1)
n+1(u, x i, yr) = P

 
ω ∈ Ω :

n+1⋃

k=1

(U
(1)

k
(ω)< 0)

���B
!

,

so we have

ψ
(1)
n+1
(u, x i, yr )

=

+∞∑

j=1

+∞∑

s=1

pi jqrsP

 
ω ∈ Ω :

n+1⋃

k=1

(U
(1)

k
(ω)< 0)

�����A js ∩ B

!

=

+∞∑

j=1

+∞∑

s=1

pi jqrs

(
P

(
ω ∈ Ω :

n+1⋃

k=1

�
U
(1)

k
(ω)< 0

����A1 ∩ A js ∩ B

)
P(A1|B ∩ A js)

+ P

(
ω ∈ Ω :

n+1⋃

k=1

�
U
(1)

k
(ω)< 0

����A2 ∩ A js ∩ B

)
P(A2|B ∩ A js)

)
. (3.6)

From Eq. (3.3)

P

(
ω ∈ Ω :

n+1⋃

k=1

�
U
(1)

k
(ω)< 0

����A1 ∩ A js ∩ B

)
.P(A1|A js ∩ B)

=P

�
ω ∈ Ω : I1(ω)<

ys − x j − u

u

�
=

∫ ys−x j−u

u

0

dF(t) ,
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and from Eq. (3.5)

P

(
ω ∈ Ω :

n+1⋃

k=1

�
U
(1)

k
(ω)< 0

����A2 ∩ A js ∩ B

)
.P(A2|A js ∩ B)

=P

(
ω ∈ Ω :

n⋃

k=1

�eU (1)
k
(ω)< 0

��� eU (1)0 (ω) = u(1+ I1(ω)) + x j − ys, eXo(ω) = x j, eYo(ω) = ys

)

× P

�
ω ∈ Ω : I1(ω)≥

ys − x j − u

u

�

=

∫ +∞
ys−x j−u

u

ψ(1)n

�
u(1+ t) + x j − ys, x j , ys

�
dF(t) ,

therefore Eq. (3.6) may be written

ψ
(1)
n+1(u, x i, yr) =

+∞∑

j=1

+∞∑

s=1

pi jqrs

¨∫ ys−x j−u

u

0

dF(t)

+

∫ +∞
ys−x j−u

u

ψ(1)n (u(1+ t) + x j − ys, x j , ys)dF(t)

«
. (3.7)

When n= 0, we have

ψ
(1)
1 (u, x i, yr) =

+∞∑

j=1

+∞∑

s=1

pi jqrsF

�
ys − x j − u

u

�
. (3.8)

From the dominated convergence theorem, the integral equation for ψ(1)(u, x i , yr) in The-

orem 3.1 then follows immediately by letting n→∞ in Eq. (3.7). .

A recursive equation for ψ(2)n (u, x i, yr) and an integral equation for ψ(2)(u, x i, yr ) sim-

ilarly hold, as stated in the following theorem.

Theorem 3.2. Let model (2.3) satisfy Assumption 2.1 to Assumption 2.5 then for n= 1,2, · · ·

ψ
(2)
n+1
(u, x i, yr) =

+∞∑

j=1

+∞∑

s=1

pi jqrs

¨
F

�
ys − (x j + u)

u+ x j

�

+

∫ +∞
ys−(x j+u)

u+x j

ψ(2)n

�
(u+ x j)(1+ t)− ys, x j, ys

�
dF(t)

«
, (3.9)

and

ψ(2)(u, x i, yr) =

+∞∑

j=1

+∞∑

s=1

pi jqrs

¨
F

�
ys − (x j + u)

u+ x j

�

+

∫ +∞
ys−(x j+u)

u+x j

ψ(2)
�
(u+ x j)(1+ t)− ys, x j, ys

�
dF(t)

«
. (3.10)
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4. Probability Inequalities for Ruin Probabilities

We now establish probability inequalities for the ruin probabilities corresponding to

Eq. (2.1) and Eq. (2.3), respectively. Thus for Eq. (2.1), we first prove the following

Lemma.

Lemma 4.1. Given (2.1) and Assumptions 2.1 to 2.5, and

E(Y1

��ω ∈ Ω : Yo(ω) = yr) < E
�

X1

��ω ∈ Ω : Xo(ω) = x i

�

and

P
�
(Y1 − X1)> 0

��ω ∈ Ω : Xo(ω) = x i, Yo(ω) = yr

�
> 0 (4.1)

for any x i ∈ EX and yr ∈ EY , then there exists a unique positive constant Rir satisfying

E

�
eRir (Y1−X1)

���ω ∈ Ω : Xo(ω) = x i, Yo(ω) = yr

�
= 1 . (4.2)

Proof. Let fir(t) = E{et(Y1−X1)|ω ∈ Ω : Xo(ω) = x i, Yo(ω) = yr}− 1; t ∈ (0,+∞), when

fir(t) = E
¦

etY1

��ω ∈ Ω : Yo(ω) = yr

©
.E
¦

e−tX1

��ω ∈ Ω : Xo(ω) = x i

©
− 1

= gr(t).hi(t)− 1 .

As Y1 is a discrete random variable taking values in EY =
�

y1, y2, · · · , yn, · · ·	, we have

that

gr(t) = E
¦

etY1

��ω ∈ Ω : Yo(ω) = yr

©
=

+∞∑

s=1

qrse
t ys

has an n-th derivative function on (0,+∞) for any n ∈ N ∗ = N\{0}. Similarly, as X1 is a

discrete random variable taking values in EX = {x1, x2, · · · , xm, · · · }, we also have that

hi(t) = E
¦

e−tX1

��ω ∈ Ω : Xo(ω) = x i

©
− 1=

+∞∑

j=1

pi je
−t x j

has an n-th derivative function on (0,+∞) for any n ∈ N ∗ = N\{0}. Consequently, fir (t)

has an n-th derivative function on (0,+∞) (any n ∈ N ∗ = N\{0}) and

f ′ir(t) = E

§
(Y1 − X1)e

t(Y1−X1)
���ω ∈ Ω : Xo(ω) = x i, Yo(ω) = yr

ª
,

f ′′ir (t) = E

§
(Y1− X1)

2et(Y1−X1)
���ω ∈ Ω : Xo(ω) = x i, Yo(ω) = yr

ª
≥ 0 ,

which implies that

fir(t) is a convex function with fir(0) = 0 (4.3)

and

f ′ir (0) = E
¦
(Y1 − X1)

��ω ∈ Ω : Xo(ω) = x i, Yo(ω) = yr

©

= E
�

Y1

��ω ∈ Ω : Yo(ω) = yr

�
− E(X1

��ω ∈ Ω : Xo(ω) = x i)< 0 . (4.4)
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As P((Y1− X1)> 0|ω ∈ Ω : Xo(ω) = x i, Yo(ω) = yr)> 0, we can find some constant δ > 0

such that

P
�
(Y1− X1)> δ > 0

��ω ∈ Ω : Xo(ω) = x i, Yo(ω) = yr

�
> 0 .

We therefore have

fir(t)

=E

§
et(Y1−X1)

���ω ∈ Ω : Xo(ω) = x i, Yo(ω) = yr

ª
− 1

≥E
�¦

et(Y1−X1)|ω ∈ Ω : Xo(ω) = x i, Yo(ω) = yr

©
.1{(Y1−X1)>δ|ω∈Ω:Xo(ω)=xi ,Yo(ω)=yr }

�
− 1

≥etδ.P
¦
(Y1− X1)> δ

��ω ∈ Ω : Xo(ω) = x i, Yo(ω) = yr

©
− 1 ,

implying that

lim
t→+∞ fir(t) = +∞ , (4.5)

and hence from Eqs. (4.3), (4.4) and (4.5) there exists a unique positive constant Rir

satisfying Eq. (4.2).

Now consider Ro = inf{Rir > 0 : E(eRir (Y1−X1)|ω ∈ Ω : Xo(ω) = x i, Yo(ω) = yr) =

1(x i ∈ EX , yr ∈ EY )}.
Remark 4.1. E

�
eRo(Y1−X1)

��ω ∈ Ω : Xo(ω) = x i, Yo(ω) = yr

�≤ 1.

Using Lemma 4.1 and Theorem 3.1, we obtain a probability inequality forψ(1)(u, x i, yr)

by an inductive approach as follows.

Theorem 4.1. Given Eq. (2.1) and Assumptions 2.1 to 2.5, under the conditions of Lemma 4.1

and Ro > 0 we have that

ψ(1)(u, x i , yr)≤ β1.E
�−Rou(1+I1)

�
(4.6)

for any u> 0, x i ∈ EX and yr ∈ EY , where

β−1
1 = inf

z>0
u>0

eRouz
z∫

0

e−Rout dF(t)

F(z)
, 0< β1 ≤ 1 .

Proof. Firstly, we have

β−1
1 = inf

z>0
u>0

∫ z

0
eRou(z−t)dF(t)

F(z)
≥ inf

z>0
u>0

∫ z

0
dF(t)

F(z)
= 1⇐⇒ β1 ≤ 1 .

For any z > 0, we also have

F(z) =


 eRouz .

∫ z

0
e−Rout dF(t)

F(z)



−1

.eRouz .

∫ z

0

e−Rout dF(t)

≤β1.eRouz .

∫ z

0

e−Rout dF(t) . (4.7)
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From Eqs. (3.8) and (4.7), for any u > 0, x i ∈ EX and yr ∈ EY we then have F((ys − x j −
u)/u) = 0 if ys ≤ x j + u, whence

ψ
(1)
1 (u, x i, yr ) = 0≤ β1E

�
e−Rou(1+I1)

�
.

If ys > x j + u then

ψ
(1)
1 (u, x i, yr ) =

+∞∑

j=1

+∞∑

s=1

pi jqrsF

�
ys − x j − u

u

�

≤ β1

+∞∑

j=1

+∞∑

s=1

pi jqrse
Ro[ys−x j−u].

∫ ys−x j−u

u

0

e−Rout dF(t)

= β1

+∞∑

j=1

+∞∑

s=1

pi jqrse
Ro(ys−x j).

∫ ys−x j−u

u

0

e−Rou(1+t)dF(t)

≤ β1

+∞∑

j=1

+∞∑

s=1

pi jqrse
Ro(ys−x j).

∫ +∞

0

e−Rou(1+t)dF(t)

= β1E

�
eRo(Y1−X1)

���ω ∈ Ω : Xo(ω) = x i, Yo(ω) = yr

�
.E
�

e−Rou(1+I1)
�

≤ β1E
�

e−Rou(1+I1)
�

. (4.8)

Under an inductive hypothesis, we assume

ψ(1)n (u, x i , yr)≤ β1E
�

e−Rou(1+I1)
�

, (4.9)

so inequality (4.8) implies (4.9) holds with n= 1. We have

ψ(1)n

�
u(1+ t) + x j − ys, x j, ys

�
≤β∗1 E

h
e−R∗o[u(1+t)+x j−ys](1+I1)

i

≤β∗1 e−R∗o[u(1+t)+x j−ys]. (4.10)

For x j ∈ EX , ys ∈ EY , u(1+ t) + x j − ys > 0 and I1(ω)≥ 0, (ω ∈ Ω), where

β∗−1
1 = inf

z>0
u(1+t)+x j−ys>0

eR∗o[u(1+t)+x j−ys]z
∫ z

0
e−R∗o[u(1+t)+x j−ys]x dF(x)

F(z)
,

R∗o = inf

§
R js > 0 : E

�
eR js(Y1−X1)

���Xo = x j, Yo = ys

�
= 1

ª
.

We have R∗o = Ro and β∗1 = β1.

Thus as R∗o[u(1 + t) + x j − ys] = Ro[u(1 + t) + x j − ys] > 0, inequality (4.10) may be

rewritten

ψ(1)n

�
u(1+ t) + x j − ys, x j, ys

�
≤ β1e−Ro[u(1+t)+x j−ys] , (4.11)
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so from Lemma 4.1, Eq. (3.1) and inequalities (4.7) and (4.11) we obtain

ψ
(1)
n+1(u, x i, yr)

=

+∞∑

j=1

+∞∑

s=1

pi jqrs



F

�
ys − x j − u

u

�
+

∫ +∞
ys−x j−u

u

ψ(1)n

�
u(1+ t) + x j − ys, x j , ys

�
dF(t)





≤β1

+∞∑

j=1

+∞∑

s=1

pi jqrs





∫ ys−x j−u

u

0

e
Rou
h

ys−x j−u

u
−t
i

dF(t)+

∫ +∞
ys−x j−u

u

e−Ro[u(1+t)+x j−ys]dF(t)





=β1

+∞∑

j=1

+∞∑

s=1

pi jqrs





∫ ys−x j−u

u

0

eRou
� ys−x j−u(1+t)

u

�
dF(t) +

∫ +∞
ys−x j−u

u

e−Ro[u(1+t)+x j−ys]dF(t)





=β1

+∞∑

j=1

+∞∑

s=1

pi jqrs





∫ ys−x j−u

u

0

eRo[ys−x j−u(1+t)]dF(t)+

∫ +∞
ys−x j−u

u

e−Ro[u(1+t)+x j−ys]dF(t)





=β1

+∞∑

j=1

+∞∑

s=1

pi jqrse
Ro(ys−x j)

∫ +∞

0

e−Rou(1+t)dF(t)

=β1E

�
eRo(Y1−X1)

���ω ∈ Ω : Xo(ω) = x i, Yo(ω) = yr

�
.E
�

e−Rou(1+I1)
�

≤β1E
�

e−Rou(1+I1)
�

.

Consequently

ψ
(1)
n+1(u, x i, yr)≤ β1E

�
e−Rou(1+I1)

�
,

such that inequality (4.9) holds for any n= 1,2, · · · and inequality (4.6) follows by letting

n→∞ in inequality (4.9).

Remark 4.2. Let A(u, x i, yr) = β1.E[e−Rou(1+I1)]. From I1(ω)≥ 0 (ω ∈ Ω) and β1 ≤ 1, we

have

A(u, x i, yr)≤ β1.E[e−Rou] = β1e−Rou ≤ e−Rou ,

so an upper bound for the ruin probability from inequality (4.6) is better than e−Rou.

Similar to Lemma 4.1, we have the following lemma.

Lemma 4.2. Given (2.3) and Assumptions 2.1 to 2.5, E(Ik
1 )< +∞ (k = 1,2), and

E
�
(Y1− X1(1+ I1)

��ω ∈ Ω : Xo(ω) = x i, Yo(ω) = yr

�
< 0

and

P
�

Y1− X1(1+ I1)> 0
��ω ∈ Ω : Xo(ω) = x i, Yo(ω) = yr

�
> 0. (4.12)
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for any x i ∈ EX and yr ∈ EY , there exists a unique positive constant Rir satisfying

E

�
eRir[Y1−X1(1+I1)]

���ω ∈ Ω : Xo(ω) = x i, Yo(ω) = yr

�
= 1. (4.13)

Moreover, we obtain the following outcomes if we now let

Ro = inf

§
Rir > 0 : E

�
eRir[Y1−X1(1+I1)]

���ω ∈ Ω : Xo(ω) = x i, Yo(ω) = yr

�

=1(x i ∈ EX , yr ∈ EY )
o

.

Remark 4.3. E(eRo[Y1−X1(1+I1)]|ω ∈ Ω : Xo(ω) = x i, Yo(ω) = yr)≤ 1.

Lemma 4.2 and Theorem 3.2 yields a probability inequality for ψ(2)(u, x i, yr ) by an induc-

tive approach.

Theorem 4.2. Given Eq. (2.3) and Assumptions 2.1 to 2.5, under the conditions of Lemma 4.2

and Ro > 0 we have

ψ(2)(u, x i , yr)

≤β2E

�
eRoY1

���ω ∈ Ω : Yo(ω) = yr

�
E

�
e−Ro(u+X1)(1+I1)

���ω ∈ Ω : Xo(ω) = x i

�
, (4.14)

for any x i ∈ EX and yr ∈ EY , where

β−1
2 = inf

z>0
u>0

eRouz
∫ z

0
e−Rout dF(t)

F(z)
, 0< β2 ≤ 1 . (4.15)

Proof. As for Theorem 4.1, with β2 ≤ 1 and any z > 0 we have

F(z) ≤ β2.eRouz.

∫ z

0

e−Rout dF(t) (4.16)

— so for any u > 0, x i ∈ EX and yr ∈ EY , if ys ≤ u+ x j then F(
ys−(u+x j )

u+x j
) = 0, whence

ψ
(2)
1 (u, x i, yr) = 0

≤β2E
h

eRoY1

��ω ∈ Ω : Yo(ω) = yr

i
.E
h

eRo(u+X1)(1+I1)
��ω ∈ Ω : Xo(ω) = x i

i
.

If ys > u+ x j, then
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ψ
(2)
1 (u, x i , yr)

=

+∞∑

j=1

+∞∑

s=1

pi jqrsF

�
ys − (u+ x j)

u+ x j

�

≤β2

+∞∑

j=1

+∞∑

s=1

pi jqrs

∫ ys−(u+x j )

u+x j

0

e
Rou

�
ys−(u+x j )

u+x j
−t

�

dF(t)

=β2

+∞∑

j=1

+∞∑

s=1

pi jqrs

∫ ys−(u+x j )

u+x j

0

e
Rou

�
ys−(u+x j )(1+t)

u+x j

�

dF(t)

≤β2

+∞∑

j=1

+∞∑

s=1

pi jqrs

∫ ys−(u+x j )

u+x j

0

eRo[ys−(u+x j )(1+t)]dF(t)

≤β2

+∞∑

j=1

+∞∑

s=1

pi jqrs

∫ +∞

0

eRo[ys−(u+x j )(1+t)]dF(t)

=β2E

�
eRoY1

���ω ∈ Ω : Yo(ω) = yr

�
.E

�
e−Ro(u+X1)(1+I1)

���ω ∈ Ω : Xo(ω) = x i

�
,

hence

ψ
(2)
1 (u, x i, yr )

≤β2E

�
eRoY1

���ω ∈ Ω : Yo(ω) = yr

�
.E

�
e−Ro(u+X1)(1+I1)

���ω ∈ Ω : Xo(ω) = x i

�
. (4.17)

Under an inductive hypothesis, we assume that

ψ(2)n (u, x i, yr )

≤β2E

�
eRoY1

���ω ∈ Ω : Yo(ω) = yr

�
.E

�
e−Ro(u+X1)(1+I1)

���ω ∈ Ω : Xo(ω) = x i

�
. (4.18)

Inequality (4.17) implies that inequality (4.18) holds for n= 1.

For x j ∈ EX , ys ∈ EY , t >
ys−(u+x j)

u+x j
and I1(ω)≥ 0 (ω ∈ Ω), we have

ψ(2)n

�
(u+ x j)(1+ t)− ys, x j , ys

�

≤β∗2 E
�

eR
∗
o Y1

��ω ∈ Ω : Yo(ω) = ys

�
.E
�

e−R
∗
o[(u+x j)(1+t)−ys+X1](1+I1)

��ω ∈ Ω : Xo(ω) = x j

�

=β∗2 E
�

eR
∗
o Y1

��ω ∈ Ω : Yo(ω) = ys

�
.E
�

e−R
∗
o[(u+x j)(1+t)−ys](1+I1)−R

∗
oX1(1+I1)

��ω ∈ Ω : Xo(ω) = x j

�

≤β∗2 E
�

eR
∗
o Y1

��ω ∈ Ω : Yo(ω) = ys

�
.E
�

e−R
∗
o[(u+x j)(1+t)−ys]−R

∗
o X1(1+I1)

��ω ∈ Ω : Xo(ω) = x j

�

=β∗2 E
�

eR
∗
o Y1

��ω ∈ Ω : Yo(ω) = ys

�
.E
�

e−R
∗
o X1(1+I1)

��ω ∈ Ω : Xo(ω) = x j

�
.e−R

∗
o[(u+x j )(1+t)−ys]

=β∗2 .e−R
∗
o[(u+x j)(1+t)−ys] , (4.19)
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where

β∗−1
2 = inf

z>0
(u+x j )(1+t)−ys>0

eR
∗
o[(u+x j)(1+t)−ys]z

∫ z

0
e−R

∗
o[(u+x j )(1+t)−ys]x dF(x)

F(z)
,

R
∗
o = inf

§
R js : E

�
eR js(Y1−X1(1+I1))

���Xo = x j, Yo = ys

�
= 1

ª
.

We have R
∗
o = Ro and β∗2 = β2.

Thus

R
∗
o

�
(u+ x j)(1+ t)− ys

�
= Ro

�
(u+ x j)(1+ t)− ys

�
> 0

such that

ψ(2)n

�
(u+ x j)(1+ t)− ys, x j, ys

�
≤ β2.e−Ro[(u+x j )(1+t)−ys] , (4.20)

whence from Lemma 4.2, Eq. (3.9) and inequalities (4.9), (4.16) and (4.20) we obtain

ψ
(2)
n+1
(u, x i, yr) =

+∞∑

j=1

+∞∑

s=1

pi jqrs

¨
F

�
ys − (u+ x j)

u+ x j

�

+

∫ +∞
ys−(u+x j )

u+x j

ψ(2)n

�
(u+ x j)(1+ t)− ys, x j , ys

�
dF(t)

«

≤
+∞∑

j=1

+∞∑

s=1

pi jqrs

¨
β2

∫ ys−(u+x j )

u+x j

0

e
Rou

�
ys−(u+x j )

u+x j
−t

�

dF(t)

+ β2

∫ +∞
ys−(u+x j )

u+x j

e−Ro[(u+x j)(1+t)−ys]dF(t)

«

=

+∞∑

j=1

+∞∑

s=1

pi jqrs

¨
β2

∫ ys−(u+x j )

u+x j

0

e
Rou

�
ys−(u+x j )(1+t)

u+x j

�

dF(t)

+ β2

∫ +∞
ys−(u+x j )

u+x j

e−Ro[(u+x j)(1+t)−ys]dF(t)

«

≤
+∞∑

j=1

+∞∑

s=1

pi jqrs

¨
β2

∫ ys−(u+x j )

u+x j

0

e−Ro[(u+x j )(1+t)−ys]dF(t)

+ β2

∫ +∞
ys−(u+x j )

u+x j

e−Ro[(u+x j)(1+t)−ys]dF(t)

«
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=β2

+∞∑

j=1

+∞∑

s=1

pi jqrs

∫ +∞

0

eRo[ys−(u+x j )(1+t)]dF(t)

=β2E

�
eRo Y1

���ω ∈ Ω : Yo(ω) = yr

�
.E

�
e−Ro(u+X1)(1+I1)

���ω ∈ Ω : Xo(ω) = x i

�
,

whence

ψ
(2)
n+1(u, x i, yr)

≤β2E

�
eRoY1

���ω ∈ Ω : Yo(ω) = yr

�
.E

�
e−Ro(u+X1)(1+I1)

���ω ∈ Ω : Xo(ω) = x i

�
.

Thus we have inequality (4.18) for any n = 1,2, · · · , and inequality (4.14) follows by

letting n→∞.

Remark 4.4. Let

B(u, x i , yr) = β2E

�
eRoY1

���ω ∈ Ω : Yo(ω) = yr

�
.E

�
e−Ro(u+X1)(1+I1)

���ω ∈ Ω : Xo(ω) = x i

�
.

From I1(ω)≥ 0 , X1(ω)≥ 0 (ω ∈ Ω) and β2 ≤ 1 , we have

B(u, x i , yr)

=β2E

�
eRo Y1

���ω ∈ Ω : Yo(ω) = yr

�
E

�
e−Rou(1+I1)−RoX1(1+I1)

���ω ∈ Ω : Xo(ω) = x i

�

≤β2E

�
eRo Y1

���ω ∈ Ω : Yo(ω) = yr

�
E

�
e−Rou−RoX1(1+I1)

���ω ∈ Ω : Xo(ω) = x i

�

=β2E

�
eRo Y1

���ω ∈ Ω : Yo(ω) = yr

�
E

�
e−RoX1(1+I1)

���ω ∈ Ω : Xo(ω) = x i

�
.e−Rou

≤β2e−Rou ≤ e−Rou ,

so the upper bound for the ruin probability in inequality (4.14) is better than e−Rou.

5. Numerical Example

We now give a numerical example to illustrate the bounds of ψ(1)(u, x i, yr) derived in

Section 4. Let X = {Xn}n≥0 be an homogeneous Markov chain such that Xn takes values in

EX = {2,4} for any n, with X1 having distribution

X1 2 4

P 0.65 0.35

and P = [pi j]2x2 given by

P =

�
0.4 0.6

0.35 0.65

�
.
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Let Y = {Yn}n≥0 be an homogeneous Markov chain such that Yn takes values in EY = {2,4}
for any n, with Y1 having distribution

Y1 1 3

P 0.7 0.3

and Q = [qi j]2x2 given by

P =

�
0.45 0.55

0.5 0.5

�
.

Then we have

E(X1

��Xo = 2) = 3.2 , E(X1

��Xo = 4) = 3.3 ,

E(Y1

��Yo = 1) = 2.1 , E(Y1

��Yo = 3) = 2.0 .

such that

E
�

X1

��Xo = x i

�
> E

�
Y1

��Yo = yr

�
∀x i ∈ EX , yr ∈ EY , (5.1)

and Y1 − X1 has distribution

Y1 − X1 -3 -1 1

P 0.245 0.56 0.195
.

Suppose A1 = {Xo = 2; Yo = 1}, A2 = {Xo = 2; Yo = 3}, A3 = {Xo = 4; Yo = 1} and A4 =

{Xo = 4; Yo = 3}. Then we have

P
�

Y1− X1 > 0
��A1

�
= 0.22> 0 , P

�
Y1 − X1 > 0

��A2

�
= 0.18> 0 , (5.2)

P
�

Y1− X1 > 0
��A3

�
= 0.1925> 0 , P

�
Y1 − X1 > 0

��A4

�
= 0.175> 0 . (5.3)

Inequalities (5.1), (5.2) and (5.3) imply Lemma 4.1 holds. Now (Y1− X1)|A1 has distribu-

tion

Y1− X1|A1 -3 -1 1

P 0.27 0.51 0.22
,

and from Lemma 4.1 R1 > 0 satisfies the equation

0.27e−3R1 + 0.51e−R1 + 0.22eR1 = 1

⇔ 22t4 − 100t3+ 51t2 + 27= 0(t = eR1) . (5.4)

On solving Eq. (5.4) using Maple, we have

R1 = ln


 1

22

3

q
31832+ 7590

p
6+

437

11
3
p

31832+ 7590
p

6

+
13

11


 ≈ 1.37028 .
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Now (Y1− X1)|A2 has distribution

Y1− X1|A2 -3 -1 1

P 0.3 0.5 0.2
,

and from Lemma 4.1 R2 > 0 satisfies the equation

0.3e−3R2 + 0.5e−R2 + 0.2eR2 = 1

⇔ 2t4 − 10t3 + 5t2 + 3= 0 (t = eR2) (5.5)

On solving Eq. (5.5) using Maple, we have

R2 = ln


1

6

3

q
890+ 18

p
743+

437

3
3
p

890+ 18
p

743
+

4

3


 ≈ 4.41653 .

Now (Y1− X1)|A3 has distribution

Y1 − X1|A3 -3 -1 1

P 0.2925 0.515 0.1925
,

and from Lemma 4.1 R3 > 0 satisfies the equation

0.2925e−3R3 + 0.515e−R3 + 0.1925eR3 = 1

⇐⇒ 1925t4− 10000t3+ 5150t2+ 2925= 0 (t = eR3) . (5.6)

On solving Eq. (5.6) using Maple, we have

R3 = ln


 2

231

3

q
7019713+ 3465

p
1154634+

65678

231
3
p

7019713+ 3465
p

1154634
+

323

231




≈ 4.59722 .

Finally, (Y1 − X1)|A4 has distribution

Y1 − X1|A4 -3 -1 1

P 0.325 0.5 0.175
,

and from Lemma 4.1 R4 > 0 satisfies the equation

0.325e−3R4 + 0,5e−R4 + 0.175eR4 = 1

⇔ 175t4− 1000t3+ 500t2+ 325= 0 (t = eR4) . (5.7)

On solving Eq. (5.7) using Maple, we have

R4 = ln


 1

21

3

q
58050+ 42

p
478023+

454

7
3
p

58050+ 42
p

478023
+

11

7


 ≈ 5.14537.



Ruin Probability in a Generalised Risk Process 299Table 1: Upper bounds C(u,λ) of ψ(1)(u, x i , yr)

u λ= 1 λ= 0.5 λ = 0.25

1 0.107175447 0.135827694 0.429254335

1.5 0.041905547 0.050104894 0.410015675

2 0.01725255 0.01991452 0.399954849

2.5 0.00734946 0.00828553 0.393771005

3 0.003207691 0.003555534 0.389585629

3.5 0.001425626 0.001560221 0.38656486

4 0.000642584 0.000696301 0.384282043

4.5 0.00029291 0.00031488 0.382496226

5 0.00013475 0.000143915 0.381061052

5.5 6.24655.10−5 6.63519.10−5 0.379882489

6 2.91447.10−5 3.08155.10−5 0.378897365

Consequently, Ro =min
�
R1,R2,R3,R4

	
= R1 ≈ 1,37028.

Let I = {In}n≥0 be a sequence of independent and identically distributed (i.i.d) non-

negative random variable with distribution function F(t) = 1− e−λt (t ≥ 0). We can apply

the result of Theorem 4.1 for ψ(1)(u, x i, yr ) to obtain

ψ(1)(u, x i, yr )≤ β1E
�

e−Rou(1+I1)
�
≤ E

�
e−Rou(1+I1)

�
= C(u,λ) , (5.8)

where

C(u,λ) =

∫ +∞

0

e−Rou−(Rou+λ)t d t =
e−Rou

Rou+λ
. (5.9)

Table 1 shows upper bound values C(u,λ) of ψ(1)(u, x i, yr ), for a range of values of u and

λ.

6. Conclusion

Theorems 4.1 and 4.2 provide upper bounds for ψ(1)(u, x i, yr ) and ψ(2)(u, x i, yr ), by

using a recursive technique. To reach these theorems, we began by obtaining important

preliminary results — viz. Theorems 3.1 and 3.2, which give recursive equations for finite

time ruin probabilities and integral equations for ultimate ruin probability. In addition,

we obtained Lemmas 4.1 and 4.2, which give Lundbergs constants. Our results were il-

lustrated in an application to the ruin probability for a risk process with X = {Xn}n≥0

and Y = {Yn}n≥0 homogeneous Markov chains, and I = {In}n≥0 a sequence of indepen-

dent and identically distributed (i.i.d) non-negative random variable distribution functions
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F(t) = 1− e−λt(t ≥ 0).

There remain many open issues — e.g.

(a) building upper bounds for ψ(1)(u, x i, yr) and ψ(2)(u, x i, yr ) by the martingale ap-

proach;

(b) extending results of this article to consider X = {Xn}n≥0 and Y = {Yn}n≥0 homoge-

neous Markov chains, and I = {In}n≥0 a first- order autoregressive process; and

(c) letting τm := inf{k ≥ 1|U (m)
k
< 0} be the time of ruin, and calculating or estimating

quantities such as E(τm).

Further research in some of these directions is in progress.
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