
East Asian Journal on Applied Mathematics Vol. 4, No. 4, pp. 329-344

doi: 10.4208/eajam.090614.031014a November 2014

Backward Error Analysis for an Eigenproblem

Involving Two Classes of Matrices

Lei Zhu1 and Weiwei Xu2,∗

1 College of Civil Aviation, Nanjing University of Aeronautics and Astronautics,

Nanjing 210016, P. R. China;

College of Engineering, Nanjing Agricultural University, Nanjing 210031, P. R. China.
2 School of Mathematics and Statistics, Nanjing University of Information Science

and Technology, Nanjing 210044, P. R. China.

Received 9 June 2014; Accepted (in revised version) 3 October 2014

Available online 5 November 2014

Abstract. We consider backward errors for an eigenproblem of a class of symmetric gen-

eralised centrosymmetric matrices and skew-symmetric generalised skew-centrosym-

metric matrices, which are extensions of symmetric centrosymmetric and skew-symmetric
skew-centrosymmetric matrices. Explicit formulae are presented for the computable

backward errors for approximate eigenpairs of these two kinds of structured matrices.
Numerical examples illustrate our results.
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1. Introduction

It is well-known that backward errors are very important for assessing the stability

and quality of numerical algorithms. In this article, we consider backward errors for an

eigenproblem of a special class of symmetric generalised centrosymmetric matrices and

skew-symmetric generalised skew-centrosymmetric matrices, with practical applications.

For example, a small perturbation method and backward errors for an eigenproblem were

key techniques for a nonlinear component level model, and a state variables linear model

of a turbofan engine — cf. [16–18].

Let C and C m×n denote the set of complex numbers and m × n complex matrices,

respectively. (We will abbreviate C m×1 as C m.) The conjugate, transpose, conjugate trans-

pose and Moore-Penrose generalised inverse of a matrix A are denoted by Ā, AT , A∗ and A+,

respectively. The identity matrix of order n is denoted by In; the matrix norm adopted is
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the Frobenius norm defined by ‖A‖F =
p

t r(A∗A); and PA and P⊥
A

denote the orthogonal

projection onto R(A) and the projection complementary to PA, respectively. We also write

OC m×m = {A∈ C m×m|AT A= AAT = Im}.
Definition 1.1 (cf. Ref. [1]). Let A, B ∈ C k×k, µ,ν ∈ C k, β ∈ C and assume P ∈ C k×k is

nonsingular. Then the block matrices

A2k =

�

A BP

P−1B P−1AP

�

(k ≥ 1) ,

A2k+1 =





A µ BP

νT β νT P

P−1B P−1µ P−1AP



 (k ≥ 0) ,

are called 2k, 2k + 1 step generalised centrosymmetric matrices and denoted by GC 2k×2k

and GC (2k+1)×(2k+1), respectively. Similarly,

B2k =

�

A BP

−P−1B −P−1AP

�

(k ≥ 1) ,

B2k+1 =





A µ BP

−νT β νT P

−P−1B −P−1µ −P−1AP



 (k ≥ 0) ,

are called 2k, 2k + 1 step generalised skew-centrosymmetric matrices and denoted by

GC̃ 2k×2k
and GC̃ (2k+1)×(2k+1)

, respectively.

Definition 1.2 (cf. Ref. [6]). We define S GC m×m = {A∈ GC m×m|A= AT } and S̃ G C̃ m×m

= {A ∈ GC̃ m×m|A = −AT } — i.e. as the sets of symmetric generalised centrosymmetric

matrices and skew-symmetric generalised skew-centrosymmetric matrices, respectively.

In Definition 1.1, P is restricted to be orthogonal; and the corresponding classes of

symmetric generalised centrosymmetric matrices and skew-symmetric generalised skew-

centrosymmetric matrices are denoted by K1 and K2, respectively. These classes of sym-

metric generalised centrosymmetric matrices and skew-symmetric generalised skew-centro-

symmetric matrices have practical applications in aerostatics, information theory, linear

system theory, and linear estimate theory [1–6]. We can obtain the block forms of K1 and

K2 as follows (for a proof see Lemmas 2.3 and 2.6 below):

for 2k (k ≥ 1),

K1 =

��

A1 BP0

P−1
0 B P−1

0 A1P0

��

, K2 =

��

A2 BP0

−P−1
0 B −P−1

0 A2P0

��

;

for 2k+ 1 (k ≥ 0),

K1 =











A1 µ BP0

µT β µT P0

P−1
0 B P−1

0 µ P−1
0 A1P0











,
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K2 =











A2 µ BP0

−µT 0 µT P0

−P−1
0 B −P−1

0 µ −P−1
0 A2P0











,

where A1, A2, B, P0 ∈ C k×k, µ ∈ C k satisfy A1 = AT
1 , A2 = −AT

2 , B = BT , PT
0 P0 = Ik.

Definition 1.3 (cf. Ref. [6]). If ei denotes the i-th column of the identity matrix, then

P0 = (em, em−1, · · · , e1) is called an m-step sub-identity matrix.

It is not difficult to see that K1 and K2 depend upon the orthogonal matrix P0. If P0 is

a sub-identity matrix, then K1 and K2 reduce to the sets of well-known symmetric cen-

trosymmetric matrices and skew-symmetric skew-centrosymmetric matrices, respectively.

Throughout this article, we always assume that orthogonal matrix P0 is fixed.

It is well known that structured eigenvalue problems occur in numerous applications

— e.g. see [7–14]. A backward error of an approximate eigenpair (x ,λ) of a matrix A is

a measure of the smallest perturbation E such that (A+ E)x = λx . This backward error

can be used to determine if (x ,λ) solves a nearby problem, by comparing the backward

error with the size of any uncertainties in the data matrix A. A natural definition of the

norm-wise backward error of an eigenpair (x ,λ) is

η(x ,λ) =min
�

α−1‖E‖F : (A+ E)x = λx
	

, (1.1)

where α is a positive parameter that allows freedom in the way the perturbations are mea-

sured.

Let Xk = (x1, x2, · · · , xk), Λk = diag(λ1,λ2, · · · ,λk), and {(x j ,λ j), j = 1, · · · , k} be

the set of approximate eigenpairs. In order to measure the backward error, the following

definition given in Ref. [9] is a natural generalisation of the definition (1.1):

η(Xk,Λk) =min
�

α−1‖E‖F : (A+ E)Xk = XkΛk

	

.

Another definition for the backward error of eigenproblems for structured matrices is as

follows. Let K be the set of some classes of structured matrices, and let

ηK (Xk,Λk) =min
�

α−1‖E‖F : (A+ E)Xk = XkΛk, A, A+ E ∈K 	 .

However, when K = K1, K2 the backward errors for eigenproblem of these structured

matrices have never been considered yet. We consider this problem, and present an explicit

formula for ηKi
(Xk,Λk), i = 1,2.

The remainder of this article is organised as follows. In Section 2, we present some

useful lemmas to deduce our main results. In Section 3, computable backward errors

ηKi
(Xk,Λk), i = 1,2 are derived. Finally, some examples and our concluding remarks

are given in Section 4.
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2. Some Lemmas

We now present some lemmas, to be used in our subsequent derivation of structured

backward errors.

Lemma 2.1 (cf. Ref. [15]). Let Y, B ∈ C m×n be given and let

L = {X ∈ C m×m : X Y = B, X T = X } .

Then L 6= ; if and only if BPY ∗ = B and PȲ BY + = (PȲ BY +)T ; and if L 6= ;, then

L ′ = �BY + + (BY +)T P⊥
Y
+ P⊥

Ȳ
HP⊥

Y
|H = HT
	

,

‖Xopt‖F = min
X∈L ‖X‖F ,

where Xopt = BY + + (BY +)T P⊥Y .

Lemma 2.2 (cf. Ref. [15]). Let X , B ∈ C m×k, Y, C ∈ C n×k be given, and let

Sk = {A∈ C m×n : AY = B, AT X = C} .

Then

(i) Sk 6= ; if and only if BPY ∗ = B, C PX ∗ = C and C T Y = X T B; and

(ii) if Sk 6= ;, then

Sk =
�

BY + + (CX+)T P⊥Y + P⊥
X̄

HP⊥Y |H ∈ C m×n
	

,

‖Aopt‖F =min
A∈Sk

‖A‖F ,

where Aopt = BY + + (CX+)T P⊥Y .

Lemma 2.3. Let K1 ⊆ C m×m be as given in Section 1, and let

Φ=

��

C1 D1P0

P−1
0 D1 P−1

0 C1P0

�

∈ C 2k×2k, k ≥ 1

�

∪











C1 µ D1P0

µT β µT P0

P−1
0 D1 P−1

0 µ P−1
0 C1P0



 ∈ C (2k+1)×(2k+1), k ≥ 0







.

Then K1 = Φ, where C1, D1 ∈ C k×k, C1 = C T
1 , D1 = DT

1 , µ ∈ C k and β ∈ C .

Proof. Assuming that A∈ K1, we have A∈ GC m×m. Then from Definition 1.1, A has the

following block forms:

for m= 2k (k ≥ 1),

A=

�

C1 D1P0

P−1
0 D1 P−1

0 C1P0

�

,
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and for m = 2k+ 1 (k ≥ 0),

A=





C1 µ D1P0

νT β νT P0

P−1
0 D1 P−1

0 µ P−1
0 C1P0



 ,

where C1, D1 ∈ C k×k, µ,ν ∈ C k, β ∈ C .

Now since A= AT , we have

µ= ν, C1 = C T
1 , D1 = DT

1 ,

hence

A∈ Φ
and therefore

K1 ⊆ Φ . (2.1)

Conversely, if A∈ Φ it follows that

A∈ GC m×m

and

A= AT ,

hence

A∈K1

and therefore

Φ ⊆K1 . (2.2)

Consequently, from (2.1) and (2.2) we conclude that K1 = Φ.

Before we present the next lemma, let us introduce some notation — viz.

Q =
1p
2

�

Ik −P0

Ik P0

�

∈ C 2k×2k(k ≥ 1) ,

Q̃ =
1p
2





Ik 0 −P0

0T
p

2 0T

Ik 0 P0



 ∈ C (2k+1)×(2k+1)(k ≥ 0) ;

and for any matrices Y, B ∈ C m×n,

QY =

�

Y1

Y2

�

, QB =

�

B1

B2

�

(m = 2k, k ≥ 1) , (2.3)

Q̃Y =

�

Y1

Y2

�

, Q̃B =

�

B1

B2

�

(m = 2k+ 1, k ≥ 0) , (2.4)

where Y1, B1 ∈ C k×n.
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Lemma 2.4. Given Y, B ∈ C m×n and Y1, Y2, B1, B2 as in (2.3) and (2.4), for

SK1
= {A∈K1 ⊆ C m×m : AY = B},

S̃K1
= {A∈ C k×k : AY1 = B1,AT = A},

S ′K1
= {A∈ C (m−k)×(m−k) : AY2 = B2,AT = A},

we have SK1
6= ; if and only if S̃K1

6= ; and S ′K1
6= ;.

Proof. From Lemma 2.3, for any A∈K1, we have:

for m= 2k(k ≥ 1),

A=

�

C1 D1P0

P−1
0 D1 P−1

0 C1P0

�

,

and for m = 2k+ 1(k ≥ 0),

A=





C1 µ D1P0

µT β µT P0

P−1
0 D1 P−1

0 µ P−1
0 C1P0



 ,

where C1, D1 ∈ C k×k, C1 = C T
1 , D1 = DT

1 , µ ∈ C k, β ∈ C .

When m = 2k (k ≥ 1), let G = 1p
2

�

Ik Ik

−P−1
0 P−1

0

�

such that

GT = G−1 =
1p
2

�

Ik −P0

Ik P0

�

.

When m = 2k+ 1 (k ≥ 0), let G̃ = 1p
2





Ik 0 Ik

0T
p

2 0T

−P−1
0 0 P−1

0



 such that

G̃T = G̃−1 =
1p
2





Ik 0 −P0

0T
p

2 0T

Ik 0 P0



 .

It follows that for m = 2k,

GT AG =

�

C1 − D1 O

O C1 + D1

�

, (2.5)

and for m = 2k+ 1,

G̃T AG̃ =





C1 − D1 0 O

0T β
p

2µT

O
p

2µ C1 + D1



 . (2.6)



Backward Error Analysis for an Eigenproblem Involving Two Classes of Matrices 335

Consequently, AY = B is equivalent to

GT AGGT Y = GT B, G̃T AG̃G̃T Y = G̃T B . (2.7)

Let GT Y =

�

Y1

Y2

�

and GT B =

�

B1

B2

�

for m = 2k and G̃T Y =

�

Y1

Y2

�

, G̃T B =

�

B1

B2

�

for

m = 2k+ 1, where Y1, B1 ∈ C k×n.

Now assume that SK1
6= ;, and let A0 ∈ SK1

. Since A0 ∈K1, from Lemma 2.3

A0 =

�

C10 D10P0

P−1
0 D10 P−1

0 C10P0

�

(m = 2k, k ≥ 1) ,

A0 =





C10 µ0 D10P0

µT
0 β0 µT

0 P0

P−1
0 D10 P−1

0 µ0 P−1
0 C10P0



 (m = 2k+ 1, k ≥ 0) ,

where C10, D10 ∈ C k×k, C10 = C T
10, D10 = DT

10, µ0 ∈ C k, β0 ∈ C .

From (2.5)-(2.7), for m = 2k (k ≥ 1) we have C10 − D10 ∈ S̃K1
, C10 + D10 ∈ S

′
K1

; and for

m = 2k + 1 (k ≥ 0), we have C10 − D10 ∈ S̃K1
,

�

β0

p
2µT

0p
2µ0 C10 + D10

�

∈ S ′K1
. It follows

that S̃K1
6= ; and S ′K1

6= ;.

Conversely, suppose that S̃K1
6= ; and S ′K1

6= ;, and also H0 ∈ S̃K1
and Z0 ∈ S

′
K1

.

Then for m= 2k (k ≥ 1), it is easy to verify that

Ã0 =







(H0 + Z0)

2

(Z0 −H0)

2
P0

P−1
0

(Z0 −H0)

2
P−1

0

(H0 + Z0)

2
P0





 ∈ SK1
.

For m = 2k + 1 (k ≥ 0), let Z0 =

�

z Z T
01

Z01 Z02

�

, where z ∈ C , Z01 ∈ C k, Z02 ∈ C k×k and

Z T
02 = Z02. It then follows that

Ã0 =















(H0 + Z02)

2

p
2

2
Z01

(Z02 −H0)

2
P0p

2

2
Z T

01 z

p
2

2
Z T

01P0

P−1
0

(Z02 −H0)

2

p
2

2
P−1

0 Z01 P−1
0

(H0 + Z02)

2
P0















∈ SK1
.

Hence SK1
6= ;, which implies the desired result.
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Lemma 2.5. Let SK1
, Yi, Bi be given as in Lemma 2.4. Then SK1

6= ; if and only if Bi PY ∗
i
= Bi

and PȲi
BiY

+
i
= (PȲi

BiY
+
i
)T , i = 1,2.

Proof. With S̃K1
,S ′K1

given as in Lemma 2.4, from Lemma 2.1 we have S̃K1
6= ;

and S ′K1
6= ; if and only if Bi PY ∗

i
= Bi and PȲi

BiY
+
i
= (PȲi

BiY
+
i
)T , i = 1,2. Thus from

Lemma 2.4 we have the desired result.

Lemma 2.6. Let K2 ⊆ C m×m be as given in Section 1, and let

Ψ =

��

C1 D1P0

−P−1
0 D1 −P−1

0 C1P0

�

∈ C 2k×2k, k ≥ 1

�

∪











C1 µ D1P0

−µT 0 µT P0

−P−1
0 D1 −P−1

0 µ −P−1
0 C1P0



 ∈ C (2k+1)×(2k+1), k ≥ 0







.

Then K2 = Ψ, where C1, D1 ∈ C k×k, C1 = −C T
1 , D1 = DT

1 and µ ∈ C k.

Proof. For A∈ K2, we have A∈ GC̃ m×m
. Then from Definition 1.1, A has the following

block forms:

for m= 2k (k ≥ 1),

A=

�

C1 D1P0

−P−1
0 D1 −P−1

0 C1P0

�

;

and for m = 2k+ 1 (k ≥ 0),

A=





C1 µ D1P0

−νT β νT P0

−P−1
0 D1 −P−1

0 µ −P−1
0 C1P0



 ,

where C1, D1 ∈ C k×k, µ,ν ∈ C k and β ∈ C .

Since A= −AT , we have µ = ν, C1 = −C T
1 , D1 = DT

1 and β = 0 such that A∈ Ψ, and hence

K2 ⊆ Ψ . (2.8)

Conversely, when A ∈ Ψ it follows that A ∈ GC̃ m×m
and A = −AT such that A ∈ K2, and

hence

Ψ ⊆K2 . (2.9)

Combining (2.8) and (2.9), we therefore have K2 = Ψ.

Lemma 2.7. Given Y, B ∈ C m×n and Y1, Y2, B1, B2 as in (2.3) and (2.4), and letting

SK2
= {A∈K2 ⊆ C m×m : AY = B} ,

S̃K2
= {A∈ C k×(m−k) : AY2 = B1,AT Y1 = −B2} ,

we have that SK2
6= ; if and only if S̃K2

6= ;.
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Proof. From Lemma 2.6, for any A∈K2:

for m= 2k (k ≥ 1),

A=

�

C1 D1P0

−P−1
0 D1 −P−1

0 C1P0

�

,

and for m = 2k+ 1 (k ≥ 0),

A=





C1 µ D1P0

−µT 0 µT P0

−P−1
0 D1 −P−1

0 µ −P−1
0 C1P0



 ,

where C1, D1 ∈ C k×k, C1 = −C T
1 , D1 = DT

1 , µ ∈ C k.

Let G, G̃ be as given in Lemma 2.4, such that

GT AG =

�

O C1 + D1

C1 − D1 O

�

=

�

O C1 + D1

−(C1 + D1)
T O

�

=

�

O L

−LT O

�

, (2.10)

G̃T AG̃ =





O
p

2µ C1 + D1

−p2µT 0 0T

C1 − D1 0 O



 =

�

O L̃

− L̃T O

�

, (2.11)

where L = C1 + D1, L̃ = (
p

2µ, C1 + D1).

Also AY = B is equivalent to

GT AGGT Y = GT B, G̃T AG̃G̃T Y = G̃T B. (2.12)

Assuming that SK2
6= ;, we let A0 ∈ SK2

. Since A0 ∈ K2, from Lemma 2.6

A0 =

�

C10 D10P0

−P−1
0 D10 −P−1

0 C10P0

�

(m= 2k, k ≥ 1) ,

A0 =





C10 µ0 D10P0

−µT
0 0 µT

0 P0

−P−1
0 D10 −P−1

0 µ0 −P−1
0 C10P0



 (m = 2k+ 1, k ≥ 0) ,

where C10, D10 ∈ C k×k, C10 = −C T
10, D10 = DT

10, µ0 ∈ C k. From (2.10)-(2.12), for m =

2k (k ≥ 1)we have C10+D10 ∈ S̃K2
; and for m= 2k+1 (k ≥ 0)we have (

p
2µ0, C10+D10) ∈

S̃K2
, which implies that S̃K2

6= ;.

Conversely, assume that S̃K2
6= ;. Suppose H0 ∈ S̃K2

, when for m = 2k (k ≥ 1) it is easy to

verify that

Ã0 =







(H0 −HT
0 )

2

(H0 +HT
0 )

2
P0

−P−1
0

(H0 +HT
0 )

2
−P−1

0

(H0 −HT
0 )

2
P0





 ∈ SK2
.
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For m= 2k+ 1 (k ≥ 0), we let H0 =
�

h H01

�

where h ∈ C k and H01 ∈ C k×k. Then

Ã0 =















(H01 −HT
01)

2

p
2

2
h

(H01 +HT
01)

2
P0p

2

2
hT 0

p
2

2
hT P0

−P−1
0

(H01 +HT
01)

2
−
p

2

2
P−1

0 h −P−1
0

(H01 −HT
01)

2
P0















∈ SK2
.

Hence SK2
6= ;, which implies the desired result.

Lemma 2.8. Let SK2
, Yi, Bi , i = 1,2 be as given in Lemma 2.7. Then SK2

6= ; if and only if

B1PY ∗2 = B1, B2PY ∗1 = B2 and BT
1 Y1 = −Y T

2 B2.

Proof. The result follows from Lemmas 2.2 and 2.7.

3. Backward Errors

Some explicit formulae for the structured backward error ηKi
(Xk,Λk), i = 1,2 are now

derived.

Let A ∈ C m×m, Xk ∈ C m×k, Λk = diag(λ1, · · · ,λk), m ≥ k, and Ki be given as in

Section 1, and denote SKi
= {A+E ∈ Ki : (A+E)Xk = XkΛk}, i = 1,2. When m = 2k (k ≥ 1)

and Q is given in (2.3) let

QXk =

�

X1

X2

�

, QXkΛk =

�

T1

T2

�

, Q(XkΛk − AXk) =

�

F1

F2

�

,

and when m= 2k+ 1(k ≥ 0) and Q̃ is given in (2.4) let

Q̃Xk =

�

X1

X2

�

, Q̃XkΛk =

�

T1

T2

�

, Q̃(XkΛk − AXk) =

�

F1

F2

�

,

where X1, T1, F1 ∈ C k×k. To obtain ηKi
(Xk, Λk), one needs to assume that SKi

6= ;, i = 1,2,

so we first provide some necessary and sufficient conditions (or just sufficient conditions)

for SKi
6= ;.

Lemma 3.1. SK1
6= ; if and only if

Ti PX ∗
i
= Ti , (3.1)

and PX̄ i
TiX

+
i = (PX̄ i

TiX
+
i )

T , i = 1,2 . (3.2)

Proof. From Lemma 2.5, we have SK1
6= ; if and only if (3.1) and (3.2) hold.

Lemma 3.2. SK2
6= ; if and only if T T

1 X1 = −X T
2 T2, T1PX ∗

2
= T1 and T2PX ∗

1
= T2.
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Proof. The result follows from Lemma 2.8.

The following theorem provides an explicit formula for ηK1
(Xk,Λk).

Theorem 3.1. Let A ∈ K1 ⊆ C m×m, Xk ∈ C m×k, Λk ∈ C k×k, where m ≥ k. Assume that

(3.1) and (3.2) are satisfied. Then for any α > 0,

ηK1
(Xk,Λk) = α

−1





∑

i=1,2








FiX
+
i + (FiX

+
i )

T P⊥X i










2

F





1
2

. (3.3)

Proof. From Lemma 3.1, SK1
= {A+E ∈K1 : (A+E)Xk = XkΛk} 6= ;. Since A+E,A∈ K1,

from Lemma 2.3 it is also easy to see that E ∈K1.

Now let E have the following block forms:

for m= 2k (k ≥ 1),

E =

�

E1 E2P0

P−1
0 E2 P−1

0 E1P0

�

when

QEQT =

�

E1 − E2 O

O E1 + E2

�

, (3.4)

and for m = 2k+ 1(k ≥ 0),

E =





E1 µ E2P0

µT β µT P0

P−1
0 E2 P−1

0 µ P−1
0 E1P0





when

Q̃EQ̃T =





E1 − E2 0 O

0T β
p

2µT

O
p

2µ E1 + E2



=

�

E1 − E2 O

O J

�

, (3.5)

where E1, E2 ∈ C k×k, µ ∈ C k, β ∈ C , E1 = ET
1 , E2 = ET

2 , J =

�

β
p

2µTp
2µ E1 + E2

�

.

Since EXk = XkΛk − AXk is equivalent to

QEQTQXk = Q(XkΛk − AXk) (m= 2k, k ≥ 1) ,

Q̃EQ̃T Q̃Xk = Q̃(XkΛk − AXk) (m= 2k+ 1, k ≥ 0) ,

it follows from (3.4) and (3.5) that

(E1 − E2)X1 = F1, (E1 + E2)X2 = F2, (m= 2k, k ≥ 1),
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and

(E1 − E2)X1 = F1, JX2 = F2, (m= 2k+ 1, k ≥ 0) ,

where E1 − E2 = (E1 − E2)
T , E1 + E2 = (E1 + E2)

T , J = J T .

From Lemma 2.1, when E1−E2 = F1X+1 +(F1X+1 )
T P⊥X1

we have that ‖E1−E2‖F is minimised.

For m = 2k (k ≥ 1), when E1 + E2 = F2X+2 + (F2X+2 )
T P⊥X2

we have that ‖E1 + E2‖F is

minimised. For m = 2k + 1 (k ≥ 0), when J = F2X+2 + (F2X+2 )
T P⊥X2

we have that ‖J‖F is

minimised. Consequently, either

‖E‖F =‖QEQT‖F =
�‖E1 − E2‖2F + ‖E1 + E2‖2F

� 1
2

=





∑

i=1,2








FiX
+
i
+ (FiX

+
i
)T P⊥

X i










2

F





1
2

(m = 2k, k ≥ 1)

or

‖E‖F =‖Q̃EQ̃T‖F =
�‖E1 − E2‖2F + ‖J‖2F

� 1
2

=





∑

i=1,2








FiX
+
i + (FiX

+
i )

T P⊥X i










2

F





1
2

(m = 2k+ 1, k ≥ 0)

is minimised, and therefore

ηK1
(Xk,Λk) = α

−1





∑

i=1,2








FiX
+
i
+ (FiX

+
i
)T P⊥

X i










2

F





1
2

.

The following theorem provides an explicit formula of ηK2
(Xk,Λk).

Theorem 3.2. Let A ∈ K2 ⊆ C m×m, Xk ∈ C m×k, Λk ∈ C k×k, m ≥ k. Assume that T T
1 X1 =

−X T
2 T2, T1PX ∗2 = T1, T2PX ∗1 = T2. Then for any α > 0

ηK2
(Xk,Λk) =

p
2

α








F1X+2 − (F2X+1 )
T P⊥

X2










F
. (3.6)

Proof. From Lemma 3.2, SK2
= {A+E ∈K2 : (A+E)Xk = XkΛk} 6= ;. Since A+E,A∈ K2,

from Lemma 2.6 we have E ∈ K2.

Let E have the following block form:

for m= 2k (k ≥ 1),

E =

�

E1 E2P0

−P−1
0 E2 −P−1

0 E1P0

�
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when

QEQT =

�

O E1 + E2

E1 − E2 O

�

=

�

O E1 + E2

−(E1 + E2)
T O

�

, (3.7)

and for m = 2k+ 1 (k ≥ 0),

E =





E1 µ E2P0

−µT 0 µT P0

−P−1
0 E2 −P−1

0 µ −P−1
0 E1P0





when

Q̃EQ̃T =





O
p

2µ E1 + E2

−p2µT 0 0T

E1 − E2 0 O



=

�

O N

−N T O

�

, (3.8)

where E1, E2 ∈ C k×k, µ ∈ C k, ET
1 = −E1, ET

2 = E2 and N = (
p

2µ, E1 + E2).

Since

QEQTQXk = Q(XkΛk − AXk) (m = 2k, k ≥ 1),

and

Q̃EQ̃TQ̃Xk = Q̃(XkΛk − AXk) (m = 2k+ 1, k ≥ 0),

it follows from (3.7) and (3.8) that

(E1 + E2)X2 = F1, (E1 + E2)
T X1 = −F2, (m = 2k, k ≥ 1)

and

N X2 = F1, N T X1 = −F2, (m = 2k+ 1, k ≥ 0) .

From Lemma 2.2, when E1 + E2 = F1X+2 − (F2X+1 )
T P⊥

X2
we have ‖E1 + E2‖F minimised;

and when N = F1X+2 − (F2X+1 )
T P⊥

X2
, we have ‖N‖F minimised. Consequently, we have

‖E‖F = ‖QEQT‖F =
p

2‖E1 + E2‖F =
p

2‖F1X+2 − (F2X+1 )
T P⊥X2
‖F (m = 2k, k ≥ 1) or

‖E‖F = ‖Q̃EQ̃T‖F =
p

2‖N‖F =
p

2‖F1X+2 − (F2X+1 )
T P⊥X2
‖F (m = 2k+1, k ≥ 0)minimised,

and therefore

ηK2
(Xk,Λk) =

p
2

α








F1X+2 − (F2X+1 )
T P⊥

X2










F
.
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4. Examples and Remarks

In this section, we give two examples to compute the backward errors ηK1
(Xk,Λk) and

ηK2
(Xk,Λk).

Example 4.1. Consider P0 =

�

0 1

1 0

�

, when in (2.3) Q = 1p
2







1 0 0 −1

0 1 −1 0

1 0 0 1

0 1 1 0





. Let

A =







0 1 −i 1

−1 0 1 1

i −1 0 −1

−1 −1 1 0





 ∈ K2 ⊆ C 4×4, Xk =
1p
2







1+ i 2+ 2i

1+ i −1− i

1− i −1+ i

1− i 2− 2i





 ∈ C 4×2, Λk =

�

2 0

0 2

�

∈ C 2×2. Then a simple calculation yields

QXk =







i 2i

i −i

1 2

1 −1





 :=

�

X1

X2

�

,

QXkΛk =







2i 4i

2i −2i

2 4

2 −2





 :=

�

T1

T2

�

,

where X1 =

�

i 2i

i −i

�

, T1 =

�

2i 4i

2i −2i

�

. It is easy to verify that

T T
1 X1 = −X T

2 T2 =

� −4 −2

−2 −10

�

,

and a simple calculation gives

Q(XkΛk − AXk) =
1p
2







−2+ 2i −4+ 10i

−4+ 8i −2+ 4i

4+ 4i 8+ 2i

6+ 2i −2i





 :=

�

F1

F2

�

,

where F1 =
1p
2

� −2+ 2i −4+ 10i

−4+ 8i −2+ 4i

�

. Hence from Theorem 3.2,

ηK2
(Xk,Λk) =

8.0001

α
.
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Example 4.2. Consider P0 =







0 0 · · · 1

0 · · · 1 0

. . . . . . . . . . . .

1 0 · · · 0





 ⊆ C 2500×2500,

C = diag

�� −1 i

i 2

�

,

� −1 i

i 2

�

, · · · ,
� −1 i

i 2

��

⊆ C 2500×2500 ,

D = diag

��

i 1

1 2

�

,

�

i 1

1 2

�

, · · · ,
�

i 1

1 2

��

⊆ C 2500×2500 ,

A=

�

C DP0

P−1
0 D P−1

0 C P0

�

∈ K1 ⊆ C 5000×5000 .

From Theorem 3.1, we compute

ηK1
(Xk,Λk) =

8.4092

α
.

When A is some stochastic symmetric generalised centrosymmetric matrices or skew-sym-

metric generalised skew- centrosymmetric matrices, by simple calculations one sees that the

above inequalities still hold, implying both structured stability and stability of the numeri-

cal algorithm. For the backward errors for the eigenproblem of a special class of symmetric

generalised centrosymmetric and skew-symmetric generalised skew-centrosymmetric ma-

trices, the corresponding explicit formulae are in (3.3) and (3.6)). In particular, when the

orthogonal matrix P0 reduces to a subidentity matrix, (3.3) and (3.6) reduce to the ex-

plicit formulae of backward errors for the eigenproblem of symmetric centrosymmetric and

skew-symmetric skew-centrosymmetric matrices [6].
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