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Abstract. In order to determine the stationary distribution for discrete time quasi-birth-

death Markov chains, it is necessary to find the minimal nonnegative solution of a

quadratic matrix equation. The Newton-Shamanskii method is applied to solve this

equation, and the sequence of matrices produced is monotonically increasing and con-

verges to its minimal nonnegative solution. Numerical results illustrate the effectiveness

of this procedure.
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1. Introduction

Some necessary notation for this article is as follows. For any matrix B = [bi j] ∈ R
n×n,

B ≥ 0 (B > 0) if bi j ≥ 0 (bi j > 0) for all i, j; for any matrices A, B ∈ Rn×n, A≥ B (A> B) if

ai j ≥ bi j (ai j > bi j) for all i, j; for any vectors x , y ∈ Rn, x ≥ y (x > y) if x i ≥ yi (x i > yi)

for all i = 1, · · · , n; the vector with all entries one is denoted by e — i.e. e = (1,1, · · · , 1)T ;

and the identity matrix is denoted by I . The quadratic matrix equation (QME)

Q(X ) = AX 2 + BX + C = 0 (1.1)

is considered, where A, B, C , X ∈ Rn×n, A, B + I , C ≥ 0, A+ B + I + C is irreducible and

(A + B + C)e = e. This quadratic matrix equation arises in quasi-birth-death processes

(QBD) [4], and its element-wise minimal nonnegative solution S is of particular interest.

The rate ρ of a QBD Markov chain is defined by

ρ = pT (B + I + 2A)e , (1.2)

where p is the stationary probability vector of the stochastic matrix A+ B + I + C — i.e.

pT (A+ B + I + C) = pT and pT e = 1 (cf. the monograph [4] for further details). A QBD is
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said to be positive recurrent if ρ < 1, null recurrent if ρ = 1 and transient if ρ > 1 — and

throughout this article the QBD is assumed to be positive recurrent.

There have been several numerical methods proposed to solve the QME (1.1). Some

linearly convergent fixed point iterations are summarised and analysed in Ref. [1] and

references therein. Latouche [2] showed the application of Newton’s algorithm is well

defined, and that the matrix sequence is monotonically increasing and quadratically con-

vergent. An invariant subspace method approximates the minimal nonnegative solution

S quadratically, through approximating the left invariant subspace of a block companion

matrix [4,9]. Latouche & Ramaswami [5] proposed a logarithmic reduction algorithm gen-

erating sequences of approximations that converge quadratically to S, based on a divide-and

conquer strategy. Bini et al. [6–10] proposed a quadratically convergent and numerically

stable algorithm for the computation of S based on a functional representation of cyclic

reduction, which applies to general M/G/1-type Markov chains [16] and generalises the

method of Ref. [5]. Poloni [12] studied several quadratic vector and matrix equations with

nonnegativity hypotheses in a unified fashion, giving further insight into the equations.

The Newton-Shamanskii method has been proposed for other equations — e.g. the vector

equation arising in transport theory [13], the algebraic Riccati equation with four coeffi-

cient matrices forming a nonsingular M -matrix or an irreducible singular M -matrix [14],

and the vector equation arising in Markovian binary trees [15].

In this article, the Newton-Shamanskii method is applied to the QME (1.1). Newton’s

method is recalled and the Newton-Shamanskii iterative procedure is presented in Section

2. Then in Section 3 it is shown that, starting with a suitable initial guess, the sequence of

iterative matrices generated by the Newton-Shamanskii method is monotonically increasing

and converges to the minimal nonnegative solution of the QME (1.1). Numerical results in

Section 4 show that the Newton-Shamanskii method can be more efficient than the Newton

method. Final conclusions are presented in Section 5.

2. Newton-Shamanskii Method

The function Q in the QME (1.1) is a mapping from Rn×n into itself, and the Fréchet

derivative of Q at X is a linear map Q
′

X : Rn×n→ Rn×n given by

Q
′

X
(Z) = AZX + AX Z + BZ . (2.1)

The second derivative Q
′′

X
: Rn×n→ Rn×n at X is given by

Q
′′

X (Z1, Z2) = AZ1Z2 + AZ2Z1. (2.2)

For given X0, the Newton sequence for the solution of Q(X ) = 0 is

Xk+1 = Xk − (Q
′

Xk
)−1Q(Xk), k = 0,1,2, · · · , (2.3)

provided that Q
′

Xk
is invertible for all k. From Eq. (2.1), the Newton iteration (2.3) is

equivalent to
�

AZXk + (AXk + B)Z = −Q(Xk) ,

Xk+1 = Xk + Z , k = 0,1,2 , · · ·
(2.4)
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or

AXk+1Xk + (AXk + B)Xk+1 = AX 2
k
− C , k = 0,1,2 , · · · . (2.5)

For the nonlinear equation Q(X ) = 0 with the minimal nonnegative solution S, the

sequence generated by the Newton method converges quadratically and globally to the

solution S [2]. However, the Newton method has a disadvantage — viz. at every iteration

step, a Sylvester-type equation

A1X BT
1
+ A2X BT

2
= E

must be solved. When the QZ algorithm is involved, the Bartels-Stewart or Hessenberg-

Schur methods can be employed to solve this equation [3]— i.e. a transformation method

that employs the QZ algorithm may be invoked, to structure the equation in such a way that

it can be solved column-wise by a back substitution technique. However, the work count

of floating point operations involved in the QZ algorithm is large compared with the back

substitution [3], and reusing the special coefficient matrix structure form produced by QZ

algorithm is more efficient. The preferred Newton-Shamanskii algorithm for the QME (1.1)

is as follows.

Newton-Shamanskii algorithm for the QME (1.1)

Given an initial value X0, for k = 0,1, · · ·

Xk,0 =Xk − (Q
′

Xk
)−1Q(Xk) , (2.6)

Xk,s =Xk,s−1− (Q
′

Xk
)−1Q(Xk,s−1) , s = 1,2, · · · , nk , (2.7)

Xk+1 =Xk,nk
. (2.8)

3. Convergence Analysis

There is monotone convergence when the Newton-Shamanskii method is applied to the

QME (1.1).

3.1. Preliminary

Let us first recall that a real square matrix A is a Z -matrix if all its off-diagonal elements

are nonpositive, and can be written as sI − B with B ≥ 0. Moreover, a Z -matrix A is called

an M -matrix if s ≥ ρ(B), where ρ(·) is the spectral radius; it is a singular M -matrix if

s = ρ(B), and a nonsingular M -matrix if s > ρ(B). The following result from Ref. [17] is

to be exploited.

Lemma 3.1. For a Z-matrix A, the following statements are equivalent:

(a) A is a nonsingular M-matrix ;

(b) A−1 ≥ 0 ;
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(c) Av > 0 for some vector v > 0 ;

(d) All eigenvalues of A have positive real parts.

The following result is also well known [17].

Lemma 3.2. Let A be a nonsingular M-matrix. If B ≥ A is a Z-matrix, then B is a nonsingular

M-matrix. Moreover, B−1 ≤ A−1.

The minimal nonnegative solution S for the QME (1.1) may also be recalled — cf. Refs. [2,4]

for details.

Theorem 3.1. If the quasi-birth-death process is positive recurrent (i.e. if the rate ρ defined

by Eq. (1.2) is less than 1), then the matrix

−[(ST ⊗ A+ I ⊗ AS) + I ⊗ B]

is a nonsingular M-matrix.

3.2. Monotone convergence

The following lemma displays the monotone convergence properties of the Newton

iteration for the QME (1.1).

Lemma 3.3. Consider a matrix X such that

(i) Q(X ) ≥ 0 ,

(ii) 0≤ X ≤ S ,

(iii) −[(X T ⊗ A+ I ⊗ AX ) + I ⊗ B] is a nonsingular M-matrix .

Then the matrix

Y = X − (Q
′

X )
−1Q(X ) (3.1)

exists such that

(a) Q(Y )≥ 0 ,

(b) 0≤ X ≤ Y ≤ S ,

(c) −[(Y T ⊗ A+ I ⊗ AY ) + I ⊗ B] is a nonsingular M-matrix .

Proof. Q
′

X is invertible and the matrix Y is well defined, from (iii) and Lemma 3.1.

SinceQ(X ) ≥ 0 and −[(X T ⊗A+ I⊗AX )+ I⊗B]−1 ≥ 0 from (iii) and Lemma 3.1, it follows

that vec(Y )≥ vec(X ) and thus Y ≥ X . From Eq. (3.1) and the Taylor formula,

Q(Y ) =Q(X ) +Q
′

X (Y − X ) +
1

2
Q
′′

X (Y − X , Y − X )

=
1

2
Q
′′

X (Y − X , Y − X )

=A(Y − X )2 ≥ 0 ,
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and (b) may be proven as follows. From

AY X + (AX + B)Y = AX 2 − C ,

equivalent to Eq. (3.1), and the equation

AS2 + BS + C = 0 ,

it follows that

A(Y − S)X + (AX + B)(Y − S) =AX 2 − C − ASX − AX S − BS

=A(X − S)(X − S)

≥0 .

It is notable that −[(X T ⊗A+ I ⊗AX )+ I ⊗B] is a nonsingular M -matrix, so vec(S−Y ) ≥ 0

from Lemma 3.1 — i.e. S − Y ≥ 0. Now Y ≥ X , so (b) follows. From 0≤ Y ≤ S,

−[(Y T ⊗ A+ I ⊗ AY ) + I ⊗ B] ≥ −[(ST ⊗ A+ I ⊗ AS) + I ⊗ B] ,

and −[(ST ⊗A+ I⊗AS)+ I ⊗B] is a nonsingular M -matrix. Consequently from Lemma 3.2,

−[(Y T ⊗ A+ I ⊗ AY ) + I ⊗ B] is a nonsingular M -matrix.

An extension of Lemma 3.3 provides the theoretical basis for the monotone convergence

of the Newton-Shamanskii method for the QME (1.1).

Lemma 3.4. Consider a matrix X such that

(i) Q(X ) ≥ 0 ,

(ii) 0≤ X ≤ S ,

(iii) −[(X T ⊗ A+ I ⊗ AX ) + I ⊗ B] is a nonsingular M-matrix .

Then for any matrix N where 0≤ N ≤ X , the matrix

Y = X − (Q
′

N )
−1Q(X ) (3.2)

exists such that

(a) Q(Y )≥ 0 ,

(b) 0≤ X ≤ Y ≤ S ,

(c) −[(Y T ⊗ A+ I ⊗ AY ) + I ⊗ B] is a nonsingular M-matrix .

Proof. Since 0≤ N ≤ X ,

−[(N T ⊗ A+ I ⊗ AN ) + I ⊗ B] ≥ −[(X T ⊗ A+ I ⊗ AX ) + I ⊗ B] .

From (iii) and Lemma 3.2, Q
′

N is invertible and the matrix Y is well defined such that

0≤ X ≤ Y. Let

Ŷ = X − (Q
′

X
)−1Q(X ) ,



Newton-Shamanskii Method for a Quadratic Matrix Equation Arising in Quasi-Birth-Death Problems 391

such that Ŷ ≥ Y from Lemma 3.2. As also Ŷ ≤ S from Lemma 3.3, (b) follows. Now

−[(Ŷ T ⊗ A+ I ⊗ AŶ ) + I ⊗ B]

is a nonsingular M -matrix from Lemma 3.3 and Ŷ ≥ Y , and −[(Y T ⊗ A+ I ⊗ AY ) + I ⊗ B]

is a nonsingular M -matrix from Lemma 3.2. From the Taylor formula and also noting that

Q
′

N (Y − X ) +Q(X ) = 0,

Q(Y ) =Q(X ) +Q
′

X (Y − X ) +
1

2
Q
′′

X (Y − X , Y − X )

=Q(X ) +Q
′

N (Y − X ) + (Q
′

X −Q
′

N )(Y − X ) +
1

2
Q
′′

X (Y − X , Y − X )

=(Q
′

X −Q
′

N )(Y − X ) +
1

2
Q
′′

X (Y − X , Y − X )

=Q
′′

X (X − N , Y − X ) +
1

2
Q
′′

X (Y − X , Y − X )

=A(X − N )(Y − X ) + A(Y − X )(X − N ) + A(Y − X )2

≥0 .

The monotone convergence result for the Newton-Shamanskii method applied to the QME (1.1)

follows.

Theorem 3.2. Suppose that a matrix X0 is such that

(i) Q(X0) ≥ 0 ,

(ii) 0≤ X0 ≤ S ,

(iii) −[(X T
0 ⊗ A+ I ⊗ AX0) + I ⊗ B] is a nonsingular M-matrix .

Then the Newton-Shamanskii algorithm (2.6)–(2.8) generates a sequence {Xk} such that Xk ≤
Xk+1 ≤ S for all k ≥ 0 , and limk→∞ Xk = S.

Proof. The proof is by mathematical induction. From Lemma 3.4,

X0 ≤ X0,0 ≤ · · · ≤ X0,n0
= X1 ≤ S ,

Q(X1)≥ 0 ,

and

− [(X T
1 ⊗ A+ I ⊗ AX1) + I ⊗ B]

is a nonsingular M -matrix. Assuming

Q(X i) ≥ 0 ,

X0 ≤ X0,0 ≤ · · · ≤ X0,n0
= X1 ≤ · · · ≤ X i−1,ni−1

= X i ≤ S ,
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and that −[(X T
i
⊗ A+ I ⊗ AX i) + I ⊗ B] is a nonsingular M -matrix, from Lemma 3.4

Q(X i+1) ≥ 0 ,

X i ≤ X i,0 ≤ · · · ≤ X i,ni
= X i+1 ≤ S ,

and −[(X T
i+1
⊗A+ I⊗AX i+1)+ I⊗B] is a nonsingular M -matrix. By induction, the sequence

{Xk} is therefore monotonically increasing and bounded above by S, and so has a limit X∗
such that X∗ ≤ S. Letting i →∞ in X i+1 ≥ X i,0 = X i − (Q

′

X i
)−1Q(X i) ≥ 0, it follows that

Q(X∗) = 0. Consequently, X∗ = S since X∗ ≤ S and S is the minimal nonnegative solution

of the QME (1.1).

4. Numerical Results

The Newton-Shamanskii method differs from Newton’s method as the Fréchet deriva-

tive is not updated at each iteration. The coefficient matrix pairs of the Sylvester-type

equation may be evaluated and reduced via the QZ algorithm after several inner iteration

steps, so although more iterations are needed than for Newton’s method the overall com-

putational cost of the Newton-Shamanskii method is less. An example from Refs. [5, 10]

was used to test the efficiency of the Newton-Shamskii method for the QME (1.1).

Example 4.1. A quasi-birth-death problem is defined by the n × n matrices A = W , B =

W − I , C = W + δI , where I is the identity matrix, W is a matrix having null diagonal

entries and constant off-diagonal entries and 0 < δ < 1. As observed in Ref. [5], the rate

ρ = pT (B + I + 2A)e where pT (A+ B + I + C) = pT and pT e = 1 is exactly 1−δ.

As reported in Ref. [3], the Hesseberg-Schur method is faster than the Bartels-Stewart

method when solving the general Sylvester-type equation

A1X BT
1 + A2X BT

2 = E ,

so the Hesseberg-Schur method is often adopted in Newton iteration. However, the Bartels-

Stewart method was used in the Newton-Shamanskii calculations reported here, because

the reduced coefficient matrix in the back substitution step may be reused. (In the first call

to the QZ algorithm, A1 was reduced to quasi-upper-triangular form.) The optimal scalars

ni in the Newton-like algorithm (2.7) were chosen without the benefit of any theoretical

results, and the Fréchet derivative was updated every m = 2 steps. The number of evalu-

ations of the Fréchet derivative in the algorithm corresponded to the outer iteration steps

k+ 1 in the Newton-Shamanskii algorithm for the approximate solution xk,l.

Measures of the feasibility and effectiveness of the new method are the number of outer

iteration steps (denoted by “it"), the elapsed CPU time in seconds (“time") and the nor-

malised residual

NRes=
‖ AX̃ 2 + BX̃ + C ‖

‖ X̃ ‖ (‖ A ‖‖ X̃ ‖ + ‖ B ‖)+ ‖ C ‖
,
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where ‖ · ‖ denotes the infinity-norm of the matrix and X̃ is an approximate solution to the

minimal nonnegative solution of the QME (1.1). The numerical tests were performed on a

laptop (2.4 Ghz and 2G Memory) with MATLAB R2013a. The initial value was X0 = 0 and

the stopping criterion was

‖ AX̃ 2 + BX̃ + C ‖< 1e− 12 .

Three different δ values and three problem sizes (n values) were considered. Tables 1,

2 and 3 report the results obtained with sizes n = 20, n = 100 and n = 200, respectively.

The results show that the Newton-Shamanskii method is more efficient than the Newton

method.

Table 1: Comparison of the numeri
al results when n= 20.

δ Method time it NRes

5.0e-1 Newton 0.013 5 4.77e-16

5.0e-1 Newton-Shamanskii 0.009 3 2.38e-14

1.0e-1 Newton 0.031 7 1.61e-16

1.0e-1 Newton-Shamanskii 0.026 5 9.25e-16

1.0e-3 Newton 0.043 13 8.70e-16

1.0e-3 Newton-Shamanskii 0.036 9 3.00e-16

Table 2: Comparison of the numeri
al results when n= 100.

δ Method time it NRes

5.0e-1 Newton 0.142 5 1.24e-15

5.0e-1 Newton-Shamanskii 0.110 3 2.50e-14

1.0e-1 Newton 0.190 7 1.21e-15

1.0e-1 Newton-Shamanskii 0.168 5 1.60e-15

1.0e-3 Newton 0.444 13 1.60e-15

1.0e-3 Newton-Shamanskii 0.359 9 6.14e-16

Table 3: Comparison of the numeri
al results when n= 200.

δ Method time it NRes

5.0e-1 Newton 1.026 5 9.40e-15

5.0e-1 Newton-Shamanskii 0.746 3 2.34e-14

1.0e-1 Newton 1.433 7 2.18e-15

1.0e-1 Newton-Shamanskii 1.200 5 1.25e-15

1.0e-3 Newton 4.798 13 5.64e-15

1.0e-3 Newton-Shamanskii 4.271 9 2.50e-15
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5. Conclusions

In this article, the application of the Newton-Shamanskii method to the quadratic ma-

trix equation arising from the analysis of quasi-birth-death processes has been considerd.

The convergence analysis shows that this method is feasible and the minimal nonnegative

solution of the quadratic matrix equation can be obtained. Numerical calculations show

that the Newton-Shamanskii method can outperform Newton’s method.
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