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Abstract. A Stefan problem is a free boundary problem where a phase boundary moves

as a function of time. In this article, we consider one-dimensional and two-dimensional

enthalpy-formulated Stefan problems. The enthalpy formulation has the advantage that

the governing equations stay the same, regardless of the material state (liquid or solid).

Numerical solutions are obtained by implementing the Godunov method. Our simu-

lation of the temperature distribution and interface position for the one-dimensional

Stefan problem is validated against the exact solution, and the method is then applied

to the two-dimensional Stefan problem with reference to cryosurgery, where extremely

cold temperatures are applied to destroy cancer cells. The temperature distribution and

interface position obtained provide important information to control the cryosurgery

procedure.
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1. Introduction

Stefan problems describe phase change moving boundaries, such as in solidification

and melting processes. Their main characteristic is that the location of the interface be-

tween two phases is unknown, and must be determined as part of the solution. After Josef

Stefan compared his calculations for the melting of the polar ice cap with the existing ob-

servational data around 1890, Stefan problems were soon found to be important in many

other areas of the natural sciences and elsewhere. In industrial processes, Stefan problems
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occur in metal solidification, food freezing, and ice production. In medical science, the

Stefan problem arises in cryosurgery, where in particular cancer cells may be destroyed

under extremely cold temperatures.

In Stefan problems where the heat conduction equation is to be solved in both solid and

liquid regions, the moving boundary or interface that separates the two regions presents a

major difficulty. Analytical solutions are very limited, even for one-dimensional problems.

Alexiades & Solomon [1] have discussed in detail the analytical and numerical solution of

one-dimensional and two-dimensional Stefan problems.

There have been many methods developed to solve moving boundary problems more

generally, including the enthalpy method, the boundary immobilisation method and per-

turbation, nodal integral and heat balance integral methods [2]. However, the enthalpy

method is the most widely used in solving Stefan problems [3–5], as its strength lies in

reformulating the heat conduction equations to involve the internal energy (enthalpy).

Thus in the enthalpy reformulation the governing equation stays the same for any phase

— whether solid, liquid, or even gas. In corresponding discrete formulations, the conserva-

tive property of the system is directly preserved in the difference equations. In particular,

the finite volume method can thereby simulate the discontinuous solutions with correct

speeds, and automatically predict the moving interfaces.

In this article, the first-order Godunov method is adopted to solve the Stefan problem.

Comprehensive reviews of the Godunov method can be found in Refs. [6–10]. In Section 2,

the exact solution of the one-dimensional solidification problem is used to test our imple-

mentation, which is then applied to simulate the two-dimensional system in Section 3.

2. One-Dimensional Stefan Problem

In this section, we first discuss the mathematical formulation and the analytical solution

of the one-dimensional Stefan problem, and then compare the results we obtain using the

Godunov method in the enthalpy formulation.

2.1. Mathematical formulation and analytical solution

Consider a one-dimensional container of length l, full of liquid with a freezing tem-

perature Tm. Suppose the initial temperature of the liquid TL is higher than Tm, and one

end of the liquid x = 0 is maintained at temperature TS(< Tm) for t > 0, whereas the

other end x = l is insulated. The solidification process consequently starts from x = 0, and

extends over increasing intervals as the time t increases (a well-known Stefan problem).

We assume that the material density ρ is constant; and the thermophysical properties are

the latent heat L, the respective specific heats of the liquid and solid cL and cS , and the

respective thermal conductivities of the liquid and solid kL and kS .

Suppose X (t) is the interface that separates the two regions at time t, such that 0 ≤
x < X (t) is the solid region and X (t) < x ≤ l is the liquid region — cf. Fig. 1. Our

aim is to determine the temperature distribution T (x , t) throughout the material, and the

interface position X (t). Heat conduction in the solid and liquid regions obeys the respective
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solid liquid
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x=X t( )Figure 1: Con�guration for the one-dimensional Stefan problem.
diffusion equations

ρcS Tt = kS Tx x , 0< x < X (t) , t > 0 (solid) (2.1)

and

ρcL Tt = kLTx x , X (t) < x < l , t > 0 (liquid) . (2.2)

At the interface X (t), conservation of heat flux yields

ρLX ′(t) = kS Tx(X (t)
−, t)− kL Tx (X (t)

+, t) , t > 0 , (2.3)

where the temperature at the interface is

T (X (t), t) = Tm , t > 0. (2.4)

The initial condition and boundary conditions are

T (x , 0) = TL > Tm , 0< x ≤ l , X (0) = 0 , (2.5)

T (0, t) = TS < Tm , Tx (l, t) = 0 , t > 0 . (2.6)

The analytical solution of the above Stefan problem for the semi-infinite domain x ≥ 0

is [1]

T (x , t) =
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(2.7)

and

X (t) = 2λ
p

αS t , t > 0 . (2.8)

Here the parameter λ is a solution of the transcendental equation

StS

exp(λ2)erf(λ)
− StL

exp(ν2λ2)erf(νλ)
= λ
p
π , (2.9)

where

αS =
kS

ρcS

, StS =
cS(Tm− TS)

L
, StL =

cL(TL − Tm)

L
, ν =

r

αS

αL

. (2.10)

As previously mentioned, this analytical solution will now be used to test our numerical

implementation.



110 D. Tarwidi and S.R. Pudjaprasetya

2.2. Enthalpy formulation and Godunov method

As indicated, our two-phase Stefan problem involves solving heat conduction equations

in the solid and liquid regions simultaneously, where the boundary or interface is moving so

that the numerical solution is not straightforward. We first reformulate the heat conduction

equations in terms of internal energy (enthalpy), as follows.

Suppose E(x , t) denotes the enthalpy per unit length at position x and time t, the sum

of sensible heat and latent heat — i.e.

E(x , t) =







∫ T(x ,t)

Tm
ρcS(τ)dτ , T (x , t) < Tm (solid) ,

∫ T(x ,t)

Tm
ρcL(τ)dτ+ρL , T (x , t) > Tm (liquid) .

(2.11)

If cS and cL are constants, then (2.11) becomes

E(x , t) =

¨

ρcS(T (x , t)− Tm) , T (x , t)< Tm ,

ρcL(T (x , t)− Tm) +ρL , T (x , t)> Tm ,
(2.12)

as illustrated in Fig. 2. Moreover, we can express T (x , t) in terms of E(x , t) as follows:

T (x , t) =















Tm +
E(x , t)

ρcS

, E(x , t)≤ 0 (solid) ,

Tm , 0< E(x , t)< ρL (interface) ,

Tm +
E(x , t)−ρL

ρcL

, E(x , t)≥ ρL (liquid) .

(2.13)

Here we assume the densities of the solid and liquid are the same (ρ = ρS = ρL), so there

is no volume expansion during the process.

SOLID

LIQUID

ρL

E
(x

,t
)

T(x,t)TmFigure 2: Enthalpy with respe
t to temperature, and the phase states.
For the computation, the fluid domain [0, l] is divided into M subregions called control

volumes — viz. Vi , i = 1,2, · · · , M . Each control volume Vi is associated with a point x i
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located at the midpoint of its respective interval — cf. Fig. 3. Conservation of energy in

each control volume Vi = [x i−1/2, x i+1/2] is represented by

∫ xi+1/2

xi−1/2

[E(x , t +∆t)− E(x , t)] dx =

∫ t+∆t

t

[q(x i−1/2, t)− q(x i+1/2, t)]dt (2.14)

where q(x , t) = −kTx , with k = kS in the solid region and k = kL in the liquid region.

x x x x x

1i
x - i

x 1i
x +1x M

x

0 l1
2i

q
- 1

2i
q

+Figure 3: Dis
retisation of the 
omputational domain into M 
ontrol volumes.
From the Mean Value Theorem

E(x i, t) ≈ 1

∆x

∫ xi+1/2

xi−1/2

E(x , t)dx ,

hence Eq. (2.14) yields

[E(x i, t +∆t)− E(x i, t)]∆x =

∫ t+∆t

t

[q(x i−1/2, t)− q(x i+1/2, t)]dt . (2.15)

From Eq. (2.15), we have the explicit scheme

En+1
i
= En

i +
∆t

∆x

h

qn
i−1/2
− qn

i+1/2

i

, (2.16)

where

qi−1/2 = −
Ti − Ti−1

Ri−1/2

, Ri−1/2 =
1

2
∆x

�

1

ki−1

+
1

ki

�

. (2.17)

This scheme can handle a discontinuous solution automatically, and the enthalpy E is

expected to be discontinuous at the interface due to the different thermal properties in

each phase. Note that the formula in Eq. (2.17) reduces to

qi−1/2 = −kS

Ti − Ti−1

∆x
in the solid region, and

qi−1/2 = −kL

Ti − Ti−1

∆x
in the liquid region .

The one-dimensional solidification problem described in Section 2.1 is now simulated,

assuming the liquid phase is water. We assume that l = 0.1 m, TL = 37 ◦C, and TS =

−200 ◦C (x = 0.1 is the insulated end). The corresponding initial enthalpy is E(x , 0) =

ρcL(TL − Tm) +ρL, and the other physical properties are given in Table 1.
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al properties of water.
symbol parameter value unit

cs specific heat of solid 1.7 kJ/kg/K

cl specific heat of liquid 4.1868 kJ/kg/K

ks thermal conductivity of solid 2.66 ·10−3 kJ/m/s/K

kl thermal conductivity of liquid 0.6 ·10−3 kJ/m/s/K

Tm freezing point 273 K

L latent heat 333.73 kJ/kg

ρ density 1000 kg/m3
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∆x = 0.1/128, ∆x = 0.1/256.Figure 4: (a) Temperature distribution with ∆x = 0.1/128. (b) Error of temperature distribution for
∆x = 0.1/32, ∆x = 0.1/64, ∆x = 0.1/128, ∆x = 0.1/256.

The temperature distribution on 128 nodes is shown in Fig. 4(a), and the correspond-

ing error for the temperature distribution values in Fig. 4(b). The error reduces as the

number of nodes increases, although it is not so small near the interface and the boundary

x = 0.1. At the interface, this is because we approximate the heat flux by first-order finite

differences; and at the boundary, because the numerical computation is implemented on a

finite domain whereas the analytical solution is for a semi-infinite domain.

The position xp(t) of the interface at any time t is defined by T (xp(t), t) = 0, and is not

necessarily at the grid points — cf. Fig. 4(a). A discontinuous enthalpy value indicates a cell

that contains the interface, and when the interface is located in the cell Vi = [x i−1/2, x i+1/2]

we approximate the interface position as follows. First, we define the liquid fraction in a

control volume Vi — i.e.

λn
i =







0 , En
i ≤ 0 (solid) ,

En
i

ρL
, 0< En

i
< ρL (interface) ,

1 , En
i
≥ ρL (liquid) ,

(2.18)
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Figure 5: Interfa
e position. Image order from top left to bottom right: ∆x = 0.1/32, ∆x = 0.1/64,
∆x = 0.1/128, and ∆x = 0.1/256.
where 0 ≤ λi ≤ 1. Thus the value λi = 0 means the control volume Vi contains 100%

solid, whereas λi = 0.25 means it contains 25% liquid and 75% solid. At any time tn,

λn
m = En

m/ρL represents the liquid fraction in Vm, when the interface position is

X n = xm−1/2 +λ
n
m∆xm . (2.19)

In Fig. 5, the interface positions obtained numerically from Eq. (2.19) are shown, to-

gether with the analytical interface given by Eq. (2.8). As more nodes are used, it is seen

that the numerical solution we obtained from the Godunov method is closer to the exact

solution.

3. Two-Dimensional Stefan Problem with a Cryosurgery Application

In this section, the numerical implementation for the one-dimensional Stefan problem

is extended to two dimensions. Our simulation for the two-dimensional Stefan problem

is in the context of a cryosurgery procedure, where extremely cold temperatures are used

to destroy cancer cells. When liquid nitrogen at a temperature of −200 ◦C is injected into

cancer cells through a device called a cryoprobe, an important aspect of the procedure is
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to maximise the destruction of tumour tissue and simultaneously minimise the damage to

surrounding healthy tissue [11,12].

Let us suppose that the size of the tumour tissue to be destroyed is 0.04 m ×0.06 m,

and it is located in healthy tissue with size 0.08 m ×0.08 m. A cryoprobe with diameter

3 mm is put into the middle of the tumour tissue as shown in Fig. 6, and liquid nitrogen

is injected through the cryoprobe such that an ice ball crystal or solidification is formed

around it and solidification extends into the surrounding tumour tissue. The tumour tissue

will be destroyed if its temperature reaches −20 ◦C to −30 ◦C. The time needed to freeze

cancer cells depends upon the position of the cryoprobe, their distance to the cryoprobe,

and thermophysical properties. In this study, the cryosurgery procedure is considered to

last for 800 seconds, and is then followed by reheating the frozen tissue on producing a

temperature of 80 ◦C in the cryoprobe.

Such cryosurgery is an example of a two-phase Stefan problem. If the two-dimensional

domain is defined by 0 ≤ x ≤ l1 and 0 ≤ y ≤ l2, let us consider the case when l1 =

l2 = 0.08 m. We divide [0, l1] and [0, l2] into M1 and M2 subintervals respectively, so

there are M1M2 control volumes Vi, j . The conservation of energy in each control volume

Vi, j = [x i−1/2, x i+1/2]× [y j−1/2, y j+1/2] is

∫

Vi, j

[E(x, t +∆t)− E(x, t)] dA=

∫ t+∆t

t

∫

∂ Vi, j

−q · n̂ dSdt , (3.1)

where E(x, t) is the enthalpy per unit area, −q · n̂ is the heat flux into the area Vi, j across

its boundary ∂ Vi, j , where n̂ denotes the outward unit normal to ∂ Vi, j .

As in the one-dimensional case, we apply the Godunov method to the problem repre-

sented in terms of the enthalpy. The explicit scheme for this two-dimensional problem is

thus

En+1
i, j
= En

i, j +
∆t

∆x

h

qn
i−1/2, j

− qn
i+1/2, j

i

+
∆t

∆y

h

qn
i, j−1/2

− qn
i, j+1/2

i

, (3.2)
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where qi+1/2, j and qi, j+1/2 represent the heat flux crossing vertical and horizontal bound

of Vi, j , respectively (cf. Fig. 7).

We assume that the initial tissue temperature is uniform — viz. Tc(x , y, 0) = 37 ◦C,

which is the healthy human body temperature. Since our problem is symmetric, we need

only compute in the right half of the domain. The boundary conditions used are defined

in Fig. 8, where Tprobe(t) is the temperature of the cryoprobe surface, Tair (= 20 ◦C) is the
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surrounding temperature, and h(= 20 W/m2◦C) is the convective heat transfer coefficient

between the skin surface and the surrounding air. The other parameters are given in

Table 1. We also assume that: (a) the healthy tissue and the tumour tissue have the same

thermal properties; and (b) the frozen and unfrozen tissue have same density, so that there
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is no volume expansion.

The simulation results are expected to help a surgeon predict the temperature distri-

bution required before the tumour surgery is performed, so that damage to healthy tissue

can be minimised. The temperature distribution during the cryosurgery procedure as a

function of time is shown in Fig. 9, where the freezing process is seen to start from the

tissue adjoining the cryoprobe and then move outwards into its surroundings. The contour

plot in Fig. 9 represents the interface as a function of time, obtained from interpolating

T (x , y, t) = 0 ◦C (freezing point) using cubic splines. The inner region of the contour

curve shows the area of the ice ball, and on knowing the growth of the ice ball one can

determine how much of the tumour tissue has been frozen and minimise the damage to the

healthy tissue. After the 800 seconds of the freezing process, the frozen tissue is reheated

by the flow of a certain gas with temperature 80 ◦C into the cryoprobe. The temperature

distribution during the reheating process and the melting of the ice ball with time is shown

in Fig. 10.

4. Conclusion

We have shown that the enthalpy formulation for our Stefan problems is suitable

for a finite volume discretisation that accounts for the moving boundaries. For the one-

dimensional Stefan problem, the first-order Godunov method produces relatively small

error, which reduces as more nodes were used (the larger errors occur near the interface

and the right boundary). The Godunov method was then applied to the two-dimensional

Stefan problem, with application to cryosurgery. The simulation provides the temperature

distribution for a two-dimensional tissue model, and the interface position that is important

information to control the cryosurgery procedure. In brief, the Godunov method employed

was found suitable to solve the one-dimensional and two-dimensional Stefan problems nu-

merically, and the future development of a second-order Godunov method may be expected

to produce even more accurate numerical results.
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