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Abstract. Given two n×n matrices A and A0 and a sequence of subspaces {0}=V0⊂
· · · ⊂ Vn = R

n with dim(Vk) = k, the k-th subspace-projected approximated matrix Ak

is defined as Ak = A+ Πk(A0 − A)Πk , where Πk is the orthogonal projection on V ⊥
k

.

Consequently, Ak v = Av and v∗Ak = v∗A for all v ∈ Vk. Thus (Ak)
n
k≥0

is a sequence

of matrices that gradually changes from A0 into An = A. In principle, the definition of

Vk+1 may depend on properties of Ak, which can be exploited to try to force Ak+1 to be

closer to A in some specific sense. By choosing A0 as a simple approximation of A, this

turns the subspace-approximated matrices into interesting preconditioners for linear

algebra problems involving A. In the context of eigenvalue problems, they appeared

in this role in Shepard et al. (2001), resulting in their Subspace Projected Approximate

Matrix method. In this article, we investigate their use in solving linear systems of

equations Ax = b. In particular, we seek conditions under which the solutions xk of

the approximate systems Ak xk = b are computable at low computational cost, so the

efficiency of the corresponding method is competitive with existing methods such as the

Conjugate Gradient and the Minimal Residual methods. We also consider how well the

sequence (xk)k≥0 approximates x , by performing some illustrative numerical tests.

AMS subject classifications: 65F10, 65F08
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1. Introduction

Subspace iterative methods for linear algebra problems are based on the repeated ap-

plication of two consecutive ideologically separate steps — viz. the generic selection of a

suitable approximation from the space, followed by increasing its dimension in an expan-

sion of the subspace. In this section, we recall two well-known selection mechanisms in the

context of linear systems — viz. the Ritz-Galerkin and Minimal Residual procedures. We

then suggest an alternative.
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1.1. Selecting approximations from a subspace V

In the context of solving a linear system Ax = b and a given a subspace V ⊂ Cn, two

well known and successful selection mechanisms are the Ritz-Galerkin approximation

Ritz-Galerkin: Find x̂ ∈ V such that b− Ax̂ ⊥ V , (1.1)

and the Minimal Residual approximation

Minimal Residual: Find x̂ ∈ V for which ‖b− Ax̂‖ is minimal. (1.2)

On choosing a matrix V with columns spanning V and denoting the transpose by the

superscript t, the Ritz-Galerkin approximation can be computed by solving

x̂ = V y where V t(b− AV y) = 0 , (1.3)

whereas the Minimal Residual approximation can be computed by solving

x̂ = V y where (AV )t(b− AV y) = 0 , (1.4)

because the minimum in (1.2) is realised by the x̂ ∈ V for which Ax̂ equals the orthogonal

projection of b on AV . Although neither approximation x̂ depends on the actual choice of

the basis V for V , the basis is of interest for efficient implementation of the method. For

example, if the matrix A is symmetric and positive definite, in the Ritz-Galerkin approach

the basis can be chosen to be A-orthonormal — i.e. such that V tAV = I and consequently

x̂ = V y = V V t b. If the space V is then expanded by appending another A-orthonormal

basis vector v to V , the new approximation differs only by a simple update vv t b from the

previous one. However, this elegant outcome should not deter us from considering other

options for the basis for V .

Remark 1.1. If the spaces (Vk)
n
k=0

form a sequence of Krylov subspaces, the Ritz-Galerkin

approach leads to the Conjugate Gradient method [9] when A is symmetric and positive

definite, and the Full Orthogonalization method for general non-symmetric A. The Minimal

Residual approach leads to the MinRES [12] method if A is symmetric, and to the GMRES

[16] method for non-symmetric A. The Ritz-Galerkin approach is also used in coarse grid

corrections within the MultiGrid method. Both the Ritz-Galerkin and the Minimal Residual

approach are also used in finite element methods to approximately solve partial differential

equations.

1.2. Selecting an approximation associated with a subspace V

The Ritz-Galerkin and the Minimal Residual approach define aproximations v from the

space V , in the sense that x̂ ∈ V . If the space has dimension k << n, not more than k

matrix-vector products (MVPs) with A are needed to compute these approximations. Since

the number of MVPs with A is often a good indication of the cost of a subspace iterative
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method, in this article we investigate alternative selection methods that need at most k

MVPs with A.

Returning to the case that A is symmetric and positive definite and the Ritz-Galerkin

method is applied, we observe the following. On writing V⊥ for any matrix that spans the

A-orthogonal complement of V , we have that

A−1 = V V t + V⊥V t
⊥. (1.5)

This suggests that the method is unable to include any information about b in the approx-

imation process other than V V t b, and the cost of forming V⊥V t
⊥b is of the same order of

magnitude as inverting A. On the other hand, we may choose V such that V t V = I . Then

instead of the elegant expression x̂ = V V t b we get x̂ = V (V tAV )V t b, which involves solv-

ing a k × k linear system. However, in return we do have V⊥V t
⊥ = I − V V t , which unlike

(1.5) might provide an opportunity to somehow use the information from the term V⊥V t
⊥b

in the approximation process.

Indeed, rather than an A-orthonormal and an I-orthonormal basis, there may be a

range of feasible choices. Generally, if H is a symmetric and positive definite approxima-

tion of A with inverse H−1 that is explicitly available or inexpensive to apply, the relation

H−1 = V V t + V⊥V t
⊥ that holds if (V |V⊥) represents an H-orthonormal basis, which may

be used to define alternative approximations of x as investigated in this paper. Since such

approximations do not necessarily lie in the space V , we will call them approximations

associated with V . As with approximations from V , their MVPs with A equals k, and k

linear systems with H need to be solved. Since H may be used as a preconditioner of the

original linear system Ax = b, the fairest comparison with the Ritz-Galerkin and Minimal

Residual methods that select approximation from V is with their preconditioned versions.

It emerges that the notion of an approximation associated with a space V leads to

a connection with the Subspace Projected Approximate Matrix method [17], or SPAM for

short. In this subspace iterative method for eigenvalue problems, a sequence (Ak)k≥0 is de-

fined based on an initial approximation A0 of A. The matrices Ak, called subspace-projected

approximate matrices, are increasingly better approximations of A. Apart from their use in

the SPAM method, at least theoretically they can be used to define approximations of the

solution x of Ax = b, for instance by the relation Ak xk = b. Indeed, since each matrix

Ak is associated with a subspace Vk, this renders xk as an approximation associated with

this space rather than from this space. The main concern is that xk should be computable

efficiently, and if possible by using at most k MVPs with A.

1.3. Outline

In Section 2, we recall the definition and use of the Subspace Projected Approximate

matrices [17], leading to their SPAM eigenvalue method — cf. also [4, 8, 11, 14, 20]. In

Section 3, the selection mechanism based on the subspace-projected approximate matrices

is developed and converted into an algorithm. Section 4 discusses the selection in combi-

nation with an arbitrary expansion and with a Krylov subspace expansion of the sequence

of subspaces, and then some numerical tests. Our concluding remarks are in Section 5.
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2. The SPAM method for Eigenvalue Problems

We briefly recall the Subspace Projected Approximate Matrix method (SPAM) from

Ref. [17]. This is a so-called inner-outer iteration method to compute approximations of

eigenvalues of a Hermitian matrix A via an approximation A0 of A in a particular way.

2.1. Subspace Projected Approximate Matrices

Given a sequence of subspaces {0}= V0 ⊂ · · · ⊂ Vn = R
n with dim(Vk) = k, let us write

Vk for the n×k orthogonal matrix where the first j columns span V j for each j ∈ {1, · · · , k},
and write Πk = I − VkV t

k
for the orthogonal projection on V ⊥

k
.

Definition 2.1 ( [17]). Let A be an n× n matrix, and A0 an approximation of A. Then for

each k ∈ {0, · · · , n} the matrix

Ak = A+Πk(A0− A)Πk (2.1)

is called the kth subspace-projected approximated matrix of A based on A0.

This definition is consistent for k = 0 and An = A. Moreover,

AkVk = AVk and V t
k

Ak = V t
k

A , and in particular M = V t
k

AkVk = V t
k

AVk . (2.2)

In other words, with respect to the orthonormal basis of Rn given by the columns of Vn the

matrices A and Ak take the block form

V t
n AVn =

�

M G t

R S

�

=: Â and V t
n AkVn =

�

M G t

R Ŝ

�

=: Âk , (2.3)

where S and Ŝ are of size (n− k) × (n− k) and Ak is a rank-2 update of Ak−1. Indeed,

Figure 1: Sparsity pattern of the rank-2 updates for in
reasing values of k.
with respect to the basis Vn in (2.3), the matrices Âk and Âk−1 can easily be seen to differ

only at the 2(n−k)+1 matrix entries depicted in Fig. 1, so Â0 gradually changes into Â for

increasing values of k. On transforming back to the standard basis of Rn, one can verify

that the following explicit updating formula is valid.
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Proposition 2.1. Let n ≥ k ≥ 1, and write Vk = (Vk−1|v). Then Ak is the following rank-2

update of Ak−1:

Ak = Ak−1+ (Πkw)v t + v
�

Πk−1u
�t

, (2.4)

where w = (A− A0)v and u = (A−A0)
t v.

Proof. Substituting Πk = Πk−1 − vv t into the definition of Ak in Eq. (2.1) and using

the notations w = (A− A0)v and u = (A− A0)
t v, the statement is obtained after some

rearrangement. �

Remark 2.1. When A and A0 are symmetric, the vectors u and w in Proposition 2.1 coincide

and the rank-2 update is also symmetric. For general matrices, two matrix-vector products

are needed to compute the update, one with A−A0 and one with At − At
0.

In Ref. [17], there is a dependence between the space Vk and the matrices Ak other

than that described above — viz. the next space Vk+1 is defined as Vk ⊕ 〈v〉, where v is a

properly chosen eigenvector of Ak. We explain this in the next subsection, and by doing so

introduce the Subspace Projected Approximate Matrix method to compute approximations

to the eigenvalues of A.

2.2. Subspace-projected approximate matrices in eigenvalue computations

The subspace-projected approximate matrices (Ak)k≥0 are used to compute approxi-

mations of eigenvalues of an Hermitian matrix A [17]. Let τ ∈ R be the target — i.e. the

eigenvalue of A closest to τ we seek. Let Vk ∈ R
n be a given subspace. The matrix Vk with

columns forming an orthonormal basis for Vk is employed in the usual way to compute

the Ritz values of A in Vk, which are the eigenvalues µk ≤ µk−1 ≤ · · · ≤ µ2 ≤ µ1 of the

k × k matrix M = V ∗
k

AVk. The vectors u j = Vkz j , where {z1, · · · , zk} is an orthonormal

basis for Ck consisting of eigenvectors of M belonging to the corresponding µ j, are the

Ritz vectors of A in V . The vectors r j = Au j − u jµ j ⊥ Vk associated with the respective

Ritz pairs (µ j,u j) are called the residuals. The Ritz pairs can be viewed as approximate

eigenpairs of A — cf. for example [1,10,13,18]. The way in which the next subspace Vk+1

is defined distinguishes the subspace methods for eigenvalue problems from each other.

Unlike methods such as the Lanczos [6], Jacobi-Davidson [19], and Riccati [2] methods,

in the SPAM method we have Vk ⊕ 〈v〉 where v is (an approximation of) a target eigenvec-

tor of the subspace-projected approximate matrix Ak — i.e. an eigenvector corresponding

to an eigenvalue of Ak closest to τ. It is notable that after computing the Ritz pairs and

their residuals corresponding to the space Vk, the matrix Ak is available without perform-

ing any additional matrix-vector products with A. Since Ak resembles A more closely as k

increases, the hope is that expanding Vk with an approximate eigenvector of Ak enriches

the search space and so leads to a Ritz pair in Vk+1 that is a better approximation of the

target eigenvalue than the Ritz values computed in Vk. With Vk+1 defined in terms of Vk,

it remains to define V1, which is (an approximation of) the target eigenvector of the initial

approximating matrix A0.
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Remark 2.2. An inner iteration is needed to compute an approximation of the target eigen-

vector of Ak. The philosophy of Ref. [17] is that, by choosing A0 such that its action is much

cheaper to apply than the action of A itself, the inner iteration will be less expensive than

the Jacobi-Davidson method [19] for instance. Previously, we presented a mathematical

and numerical comparison of SPAM with certain preconditioned versions of the Jacobi-

Davidson and Lanczos methods. This analysis shows that the methods coincide for certain

choices, but that there do exist circumstances in which SPAM performs slightly better than

the Jacobi-Davidson method — cf. Ref. [3] for relevant details.

3. Definition of a SPAM Method for Linear Systems

We now investigate if subspace-projected approximate matrices can play a role in solv-

ing linear systems of equations Ax = b, for instance via the solutions xk of the systems

Ak xk = b. As a reference point, we first recall the Conjugate Gradient method [9], and

present the method in such a way that a correspondence with subspace-projected approx-

imate matrices becomes evident. This leads to a definition of a SPAM-based method to

approximate the solutions of linear systems.

3.1. The A-inner product and the Conjugate Gradient method

Let A be a symmetric positive definite n× n matrix, and write 〈·, ·〉A for the so-called

A-inner product defined by

〈y, z〉A = y tAz . (3.1)

Given a sequence of subspaces {0} = V0 ⊂ · · · ⊂ Vn = R
n with dim(Vk) = k, let us write Vk

for the n× k matrix where the first j columns v1, · · · , v j form an A-orthonormal basis for

V j for each j ∈ {1, · · · , k}. Then V t
n AVn = I and

A−1 = VnV t
n =

n
∑

j=1

v j v
t
j , and thus Pk(y) =

k
∑

j=1

v j〈y, v j〉A =
k
∑

j=1

v j v
t
j Ay (3.2)

is the A-orthogonal projection of y ∈ Rn on Vk. Therefore if Ax = b, the A-orthogonal

projection of x on Vk can be computed from b and Vk as

xk := Pk(x) =

k
∑

j=1

v j v
t
j Ax = VkV t

k
b . (3.3)

This shows that an iterative method can be set up that produces a sequence (xk)k≥0 of x

that converges monotonically to x in the norm associated with the A-inner product (3.1).

One iteration encompasses A-orthonormalization of a new basis vector, and the computed

update of the current approximation as

xk+1 = xk + vk+1v t
k+1

b . (3.4)
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If each subspace Vk equals the k-th Krylov subspaceK k(A, b) defined by

K k(A, b) = span{b,Ab, · · · ,Ak−1 b} , (3.5)

the resulting method is mathematically equivalent to the Conjugate Gradient (CG) method

[9]. In the next section, we will interpret CG as a particular instance of a subspace-

projected approximate matrix method for linear systems.

3.2. Towards a SPAM-type linear system solver

Let the k-th search space Vk be given. Assume that Y = (V |V⊥) is nonsingular, that the

columns of V span Vk, and that k << n. Then Ax = b if and only if Y tAY y = Y t b with

x = Y y, or

(V |V⊥)
t

�

A(V |V⊥)

�

y1

y2

�

− b

�

= 0 , (3.6)

with

x = x1 + x2 = V y1 + V⊥ y2 = (V |V⊥)

�

y1

y2

�

. (3.7)

This system can be written in block form as

�

V tAV V tAV⊥
V t
⊥AV V t

⊥AV⊥

��

y1

y2

�

=

�

V t b

V t
⊥b

�

. (3.8)

Rewriting the original linear system Ax = b like this is in principle the same as applying

two-sided preconditioning [7], as discussed in some detail below — cf. 3.2.3.

Remark 3.1. If the columns of Y form an A-orthonormal basis, then Y tAY = I and the

system (3.8) reduces to the situation described in the previous subsection. Note that

V⊥V t
⊥ = A−1 − V V t and thus V⊥V t

⊥ is unavailable in practice, so only x1 can be computed.

Motivated by the subspace-projected approximate matrices and their role in the SPAM

method for eigenvalues, we now proceed to investigate alternative choices for Y = (V |V⊥),
such that an approximation of x can be computed at relatively low cost and somehow

involve the other blocks in the matrix — or possibly approximations of those blocks. We

assume that V , AV and V tAV have all been computed explicitly.

Remark 3.2. It is important to realise that we do not change the column span of the

matrix V , but consider different choices for the basis and apply different approximation

steps. The alternatives that we propose therefore concern the way an approximation based

on the given spaces Vk is computed, and later we also investigate the way that the spaces

are to be expanded.
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3.2.1. Identifying and approximating the bottlenecks

The problems with finding low cost approximations of the solution of (3.8) become evident

when we apply block elimination to (3.8) in order to separate the computation of y1 and

y2, for arbitrary non-singular Y = (V |V⊥). This results in

�

V tAV − V tAV⊥
�

V t
⊥AV⊥
�−1

V t
⊥AV
�

y1 = V t b− V tAV⊥(V
t
⊥AV⊥)

−1V t
⊥b , (3.9)

V t
⊥AV⊥ y2 = V t

⊥(b− AV y1) . (3.10)

Three potential computational hazards can now easily be identified:

(1) the formation and inversion of V t
⊥AV⊥, or equivalently, solving systems with V t

⊥AV⊥;

(2) the computation of V⊥V t
⊥z for a given z;

(3) the computation of V⊥ y2, after y2 has been computed.

A possible way to tackle these problems is as follows. Let H be a symmetric positive definite

approximation of A with known inverse H−1, or such that solving systems is inexpensive.

Assuming that the columns of Y form an H-orthonormal basis, we then have that

V⊥V t
⊥ = H−1 − V V t . (3.11)

The second item above has then been accounted for without any loss of exactness. To also

meet the first item, we apply an approximation step, by replacing A in each occurrence of

the expression V t
⊥AV⊥ with H. Since V⊥ is H-orthonormal we have that V t

⊥HV⊥ = I , so

given (3.11) we proceed to approximate (3.9)-(3.10) by

�

V tAV − V tA
�

H−1 − V V t
�

AV
�

ŷ1 = V t b− V tA
�

H−1 − V V t
�

b , (3.12)

V⊥ ŷ2 =
�

H−1 − V V t
�
�

b− AV ŷ1

�

, (3.13)

where we have denoted the approximations of y1 and y2 by ŷ1 and ŷ2. This results in an

approximation x̂ of x through

x̂ = x̂1+ x̂2 = V ŷ1 + V⊥ ŷ2 . (3.14)

It is notable that in (3.13) we have left-multiplied the second equation by V⊥ in order to

get a computable expression for V⊥ ŷ2, which at the same time also solves the third item

in the above list of potential computational hazards. It is easily seen that (3.12)-(3.13) is

equivalent with the approximate linear system

�

V tAV V tAV⊥
V t
⊥AV I

��

ŷ1

ŷ2

�

=

�

V t b

V t
⊥b

�

with Y = (V |V⊥) and Y t HY = I , (3.15)

and that if H = A this system reduces to the original system (3.8).

The system matrix of the approximate linear system (3.15) is obviously related to the

subspace-projected approximated matrices from Definition 2.1, and the block form of these
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matrices in (2.3). The difference is only that (V |V⊥) is orthogonal with respect to the H-

inner product, instead of the standard inner product. Thus the system matrix in (3.15) is

identical to the subspace-projected approximate matrix from Definition 2.1 (with approx-

imation A0 = I and subspace V ) only if H = I . However, although H = I is the most

efficient choice, it does not seem to be very attractive from a approximation theoretical

viewpoint cf. 3.2.3. However, let us first comment on the computational cost for solving

the system.

3.2.2. Inventory of the computational cost

A quick glance at (3.12) and (3.13) shows that, because V⊥ has now completely disap-

peared from the formulation (apart from implicitly in the term V⊥ ŷ2 in (3.13)), the nu-

merical effort required to compute x̂ consists of (1) k matrix-vector products with A; (2)

certain inner products between n-vectors; (3) the solution of k+ 1 linear systems with H;

and (4) the solvution of the k× k linear system for ŷ1. If we introduce the notation

Z = H−1W where W = AV , and M = V tW =W t V , (3.16)

then (3.12) and (3.13) may be rewritten in the more compact form

�

M +M2 −W t Z
�

ŷ1 = (MV t + V t − Z t)b , (3.17)

x̂2 = (H
−1 − V V t)b− (Z − V M) ŷ1 . (3.18)

To get a more precise account of the cost in computing the approximation x̂ in (3.14), we

investigate the effect of appending another column v to the n× k matrix V , which leads us

to a new system to solve. In order to set up this new system, we compute

w = Av, z = H−1w, f =W tz, β = w tz, u= V t w, γ= v t w, h= Mu+ γu . (3.19)

This is enough to append to W and Z their new columns, to make available the matrix

(W |w)t(Z |z) =

�

W t Z f

f t β

�

(3.20)

from the left-hand side of (3.17) while re-using W t Z , and to update M and M2 into M+
and M2

+ via

M+ =

�

M u

ut γ

�

and M2
+ =

�

M2 + uut h

ht γ2 + utu

�

. (3.21)

The terms V t b and Z t b in the right-hand side of Eq. (3.17) are trivial to update. Moreover,

since

M+(V |v)
t b =

�

M u

ut γ

��

V t b

v t b

�

=

�

MV t b+ uv t b

ut V t b+ γv t b

�

, (3.22)
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the already computed quantities MV t b and V t b can be re-used here too, leaving only small

updates to perform. However, updating the term V M ŷ1 into (V |v)M+ ŷ1 in the right-hand

side of Eq. (3.18) is a different matter, because unlike b the vector ŷ1 changes in every

iteration. On the other hand, the vector H−1 b in the right-hand side of Eq. (3.18) needs to

be computed only once.

In conclusion, in order to compute the approximation x̂ from the expanded system of size

(k+ 1)× (k+ 1), re-using the quantities computed during the previous iteration as much

as possible, we need:

• one MVP with A,

• one system solve with H, or one MVP with H−1,

• 2k+ 3 inner products between n-vectors, 2k+ 2 of which are in (3.19), and v t b,

• one system solve with M +M2 −W t Z ,

together with updates of n-vectors and some manipulations with k-vectors and matrices.

We may also need to explicitly H-orthonormalise v to V .

Remark 3.3. At the start of the iteration, when V can be interpreted as a 0× n matrix, the

initial approximation resulting from (3.17)-(3.18) in a natural way is x̂ = H−1 b. Of course,

the above considerations clearly show how the method can be turned into an algorithm.

Remark 3.4. Instead of solving the system (3.15) exactly as described above, one could

also approximate its solution. (This is of course necessary in the SPAM method for eigen-

value problems.) One could choose to do so, but it makes sense to consider this option

only if the exact solution results in a competitive method.

3.2.3. Relation with two-sided preconditioning

In the approach outlined above, we have assumed the availability of a preconditioner H

of A. This preconditioner could, alternatively and at least in theory, also be applied to

the original system first. In order for the preconditioned system to be symmetric and

positive definite, two-sided preconditioning [7] is preferred. This means we decompose H

as H = N t N from some matrix N , and solve the preconditioned system

N−tAN−1z = N−t b where x = N−1z . (3.23)

However, since H−1 = Y Y t and thus H = Y−t Y−1, solving the system (3.6) — or equiv-

alently, (3.8) — can be interpreted as a particular instance of using H as a two-sided

preconditioner, in the sense that the decomposition H = N tN is not unique. Indeed, if

Q is orthogonal then H = (QN)tQN is such a decomposition. Each Q leads to a different

preconditioned matrix

QN−tAN−1Qt , (3.24)

which are all spectrally equivalent and hence have the same condition number.
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Remark 3.5. Two-sided preconditioning has two different effects, the best known being

a change in the condition number of the resulting system independent of Q. The second

effect is an orthogonal similarity transformation which in subspace iterative methods, one

tries to manipulate such that the relevant information of the transformed matrix is in its

leading k× k principal submatrix.

Now, let H = N t N be an arbitrary factorization of H. We can apply the approxima-

tion method of 3.2.1 to approximate the solution z of the preconditioned system in (3.23).

Since the preconditioner has already been applied to the linear system, it makes sense to

apply the method with the identity matrix I instead of H, and then compute the corre-

sponding approximation of x . Replacing the matrix N−tAN−1 in the block V t
⊥N−tAN−1V⊥

by I also seems attractive — and indeed, after preconditioning the identity is arguably the

best available approximation of the preconditioned system. The matrix Y = (V |V⊥) is then

orthogonal with respect to the standard inner product, and the resulting system matrix is

a true subspace-projected approximate matrix in the sense of Definition 2.1.

4. Numerical Tests with Two Types of Subspace Expansion

We have introduced a SPAM-type selection method that, with the start vector x0 =

H−1 b, computes for each k ∈ {1, · · · , n} an approximation xk associated with the space Vk,

although generally not from Vk. We will refer to the new method as LinSPAM, and assume

that A is a preconditioned matrix. Thus H = I , the basis in (V |V⊥) is orthogonal, and

LinSPAM solves the subspace-projected approximate system
�

M Rt

R I

��

ŷ1

ŷ2

�

=

�

b1

b2

�

, (4.1)

where M = V tAV , R= V t
⊥AV , b1 = V t b and b2 = V t

⊥b, and sets x̂ = x̂1+ x̂2 = V ŷ1+V⊥ ŷ2.

In comparison, the Ritz-Galerkin and Minimal Residual approach respectively solve

M ỹ1 = b1 and

�

M

R

� �

˜̃y1

�

=

�

b1

b2

�

, (4.2)

and set x̃ = V ỹ1 and ˜̃x = V ˜̃y1, which clearly shows the similarities and distinctions be-

tween the methods. Although R is in principle not available, it is notable that the block

residual

R̂= V⊥R=
�

I − V V t
�

AV = AV − V M (4.3)

is available, and hence also RtR = R̂t R̂. This is of interest, since (3.12)-(3.13) with the

choice H = I becomes

�

M − RtR
�

ŷ1 = b1− R̂t b , (4.4)

x̂1 = b− V b1 − R̂ ŷ1 . (4.5)

We now offer choices for the sequence of subspaces V1 ⊂ · · · ⊂ Vn, and compare LinSPAM

with the Ritz-Galerkin and Minimal Residual approximations in some numerical tests.
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4.1. Non-structured subspaces with low approximation quality

For general subspaces, the matrix M in (3.17) is full, and the costs for LinSPAM are

comparable to the costs of applying the Ritz-Galerkin or Minimal Residual selection. Fur-

ther, the residual blocks R = V⊥AV and Rt = VAV⊥ in (4.1) will be full. Since LinSPAM

includes them in the approximation process, this may provide substantial differences with

the Ritz-Galerkin approach (that uses neither R nor Rt) and the Minimal Residual approach

(that uses R only), as is evident in (4.2).

Motivated by the Kaczmarz method [5], we investigate the choice V = I such that

W simply equals the first k columns of A. Especially for sparse matrices, this leads to an

efficient selection — but as one can expect from the trivial expansion, it also leads to a

slowly converging method. Indeed, in an iterative method the choice V = I does not make

much sense, but does isolate the quality from the approximating space V from the quality

of the selection mechanism that we wish to study.

Figure 2: Ritz-Galerkin versus Minimal Residuals versus LinSPAM: A-norm of the error. Left: rea
tion-di�usion problem. Middle: banded matrix. Right: random symmetri
 matrix with eigenvalues
51, · · · , 100. The Minimal Residual and Ritz-Galerkin graphs almost 
oin
ide.

We compared the LinSPAM approach with Ritz-Galerkin and Minimal Residuals for

three simple linear systems. Their convergence histories are given in Fig. 2, where the

errors in the approximations measured in the A-norm are displayed. As shown in the left

picture, the linear system resulted from a finite difference discretization of a reaction-

diffusion problem with 32 degrees of freedom. The system matrix from the middle picture

is also of size 32× 32, and is a banded matrix with 11 nonzero diagonals. In the right

picture, we took for A a random symmetric 50× 50 matrix with eigenvalues 51, · · · , 100.

In all cases, the preconditioner A0 was the diagonal of A, and applied in advance.
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Remark 4.1. The preconditioned matrices are all relatively well-conditioned, correspond-

ing to our assumption that the identity is a reasonable approximation of the block V t
⊥AV⊥.

Due to the well-conditioning, minimising the A-norm of the error or the A2-norm of the

error (the standard norm of the residual) does not make much difference, so the Ritz-

Galerkin and Minimal Residuals approaches behave almost the same.

Figure 3: Ritz-Galerkin versus Minimal Residuals versus LinSPAM: residual norms. Left: rea
tion-di�usion problem. Middle: banded matrix. Right: random symmetri
 matrix with eigenvalues
51, · · · , 100. The Minimal Residual and Ritz-Galerkin graphs almost 
oin
ide

In Fig. 3 we plot the standard norms of the residuals for the same numerical experi-

ments. Due to the well-conditioning of the problems, the differences with the A-norm are

again small, although here MinRES is always better than Ritz-Galerkin, whereas in the

previous experiment as shown in Fig. 2 the converse was true.

With the choice V = I , it is notable that the LinSPAM approach corresponds to replacing

the trailing principle submatrix of A of size (n− k)× (n− k) by the identity, and solving

the resulting system. As can be seen from the convergence graphs, this is always better

than solving a system which involves only the k × k leading principal submatrix M , as is

the case in the Ritz-Galerkin approach. The Minimal Residual approach, which also takes

into account the block below M , seems to do better if the standard norm of the residuals

is of interest.

4.2. Krylov subspace expansion

At first sight, the LinSPAM approach seems more expensive than the preconditioned CG

(PCG) method. However, the efficiency of the PCG derives largely from the use of Krylov

subspaces, and LinSPAM can also benefit from Krylov subspaces. Indeed, let Vk =K
k(A, b)
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for the presumed preconditioned system Ax = b, such that V has orthonormal columns.

Then M in (4.4) is tridiagonal, and R is zero apart from its top right entry. Consequently,

R̂ is zero apart from its right column, and R̂t R̂ = RtR is zero apart from its bottom right

entry. Similarly, the vector R̂t b in the right hand side in (4.4) is just a multiple of ek.

Thus the LinSPAM system for x̂1 is only a minor perturbation of the corresponding PCG

system, and can be computed with the same efficiency. Moreover, the residual of the PCG

approximation is orthogonal to V , so we may expect the right-hand side of (4.5) (and

thus also x̂2) to be small. All in all, using the same Krylov subspaces as PCG we expect

that the new approach will not differ very much from the PCG method, but at the same

time any difference may perhaps favour our new approach. This is confirmed in numerical

experiments.

We compared the LinSPAM selection using Krylov subspaces with the PCG method.

Since the residuals of MinRES [12] — i.e. the Minimal Residual approach in the context

of Krylov subspace methods — are a known function of the residuals of CG when using

Krylov subspaces, we refrain from a comparison with MinRES. Thus in all experiments we

simply took the diagonal of A as an approximation A0.

Figure 4: (Pre
onditioned) Conjugate Gradients versus (Pre
onditioned) LinSPAM: A-norm of the error.Left: rea
tion-di�usion problem. Right: banded matrix.
The first linear system is again the discretised reaction-diffusion problem. The system

matrix from the second test is the banded matrix with 11 nonzero diagonals. The conver-

gence histories are given in Fig. 4, where the errors in the approximations measured in the

A-norm are displayed. Clearly, LinSPAM provides slightly better approximations than the

PCG method.

In the next experiment depicted in Fig. 5, we took the 729× 729 matrix nos7 from

Matrix Market resulting from the finite difference approximation of a diffusion equation

with variable diffusivity in a 3D unit cube with Dirichlet boundary conditions. On the left,

we again plot the A-norm of the respective errors against the iteration number, and in the

right picture the standard norm of the residuals corresponding to those approximations is

plotted. As expected, the LinSPAM behaviour is similar to that of the PCG method.
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Figure 5: Matrix Market test matrix nos7 of size 729×729. Left: A-norm of the error. Right: standardnorm of the residual.
We conclude that applying LinSPAM using Krylov subspaces seems to have some advan-

tage over the PCG method at the cost of a small number of additional computations, but

without involving another MVP with the system matrix A. It seems that the gain is about

one iteration at most, which does makes sense in the following way. In the PCG method,

the off-diagonal elements at positions (k, k + 1) and (k + 1, k) of the (k + 1) × (k + 1)

tridiagonal matrix at the next iteration are already available at iteration k. However, they

are not used in the PCG approximation, whereas in LinSPAM they are used together with

an approximation of the entry at position (k + 1, k + 1). This may result in a fairly good

approximation of the PCG iterate xk+1.

4.3. Immediate restart: a one-step LinSPAM method

In general, subspace methods have many favourable properties that result from the

expansion of the subspaces, such as monotonicity and finite termination. Each of the

methods has its own restarted version — i.e. after a certain number of iterations, the

current residual r = b− Ax̂ is taken as the right-hand side of a new linear system Au = r,

and the method is re-applied to this system. The approximation û of u in addition to the

approximation x̂ of x computed before the restart leads to a new approximation x̂ + û of

the system Ax = b.

LinSPAM can also be restarted. Since the above experiments suggest that the gain with

LinSPAM in comparison to Ritz-Galerkin and Minimal Residual selection is already present

at the first iteration, and does not increase very much in the course of the process, we

investigate the one step version of LinSPAM, and call it LinSPAM(1) for short. In each step,

LinSPAM(1) solves a system with matrix







α1 β1

β1 1

I





 , (4.6)
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where α1 and β1 are the exact numbers that would also appear in the tridiagonalisation of

the matrix A as performed within the PCG method — cf. also (4.1).

Remark 4.2. In practice, Krylov subspace methods such as PCG and MinRES for linear

systems are never restarted, even though they are highly numerically unstable. Loss of

orthogonality or conjugacy does not affect the convergence of these methods, but it may

delay the convergence. The comparison below is thus merely an academic exercise to get

some insight, to try to determine the optimal one-step method.

We repeated the experiments of Subsection 4.1 to compare LinSPAM(1) with Min-

RES(1), the version of MinRES that restarts after each iteration — cf. Fig. 6. Although

Figure 6: LinSPAM(1) versus MinRES(1): A-norm of the error. Left: rea
tion-di�usion problem. Middle:banded matrix. Right: random symmetri
 matrix with eigenvalues 51, · · · , 100.
LinSPAM(1) was better than MinRES(1) in the first experiment, there was no substantial

improvement in the second and third experiments. This also seemed to be so in other

numerical experiments, where it was found that MinRES(1) stagnates and LinSPAM(1) ex-

plodes (because it has no minimization property), or both methods converge in a similar

manner.

4.4. A note on the non-symmetric case

If A is not symmetric, it is generally difficult to define symmetric positive definite ap-

proximations H of A. On the other hand, if we again assume that A has been precondi-

tioned as far as possible, then considering the identity I to be such an approximation is

not entirely without merit. However, the drawback in comparison with Ritz-Galerkin and



136 J. Brandts and R.R. da Silva

Minimal Residual selection is that (4.4) changes into

(M − G tR) ŷ1 = b1 − R̂t b, where G tR= Ĝ t R̂ (4.7)

with R̂ as in (4.4) and Ĝ = V⊥G = At V − V M t the block left residual with respect to V ,

where G = V tAV⊥ is as in (2.3). This block is not automatically available, and to compute

it k MVPs with At are needed. If the spaces Vk are a sequence of Krylov subspaces, the

situation becomes much better. Then R is still zero apart from its top right entry, because

(V |V⊥)
tA(V |V⊥) is an upper Hessenberg matrix, so to compute the product G tR only the

first column of G t is needed — hence instead of V tA, only V t a1 is needed, where a1 is

the first column of A. On the other hand, the first column of G t contains the top k of the

k+1 coefficients to be computed in the next step of the process of transforming A to upper

Hessenberg form. As such and contrary to the symmetric case, computing them in the k-th

iteration of LinSPAM is unfair, if one regards LinSPAM as an enhancement of GMRES [16]

or FOM [15].

Remark 4.3. Computational experiments do show the same marginal gain of LinSPAM in

comparison with GMRES as witnessed for LinSPAM in comparison with CG, but for the

reason just mentioned we refrain from presenting the results here explicitly.

5. Concluding Remarks

LinSPAM selection is an attempt to improve upon both Ritz-Galerkin and Minimal

Residual selection, and seems especially attractive for (4.1) and (4.2). Moreover, LinSPAM

selection has a clear connection with the Subspace Projected Approximate Matrix method

for eigenvalue computation [17]. Experiments with rather randomly selected subspaces

show the potential of the LinSPAM selection. Using Krylov subspaces, the difference with

Ritz-Galerkin and Minimal Residuals is relatively small, but additional costs are very low.

Since the gain seems to be immediate, the one-step LinSPAM version LinSPAM(1) may be

competitive with other one-step methods. The LinSPAM approach can also be applied to

non-symmetric systems if they have been preconditioned and the approximation of V t
⊥AV⊥

by the identity makes sense, and in the Krylov subspace context it uses information that

GMRES would compute one iteration later.
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