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Abstract. A quadratic optimal control problem governed by parabolic equations with
integral constraints is considered. A fully discrete finite element scheme is constructed
for the optimal control problem, with finite elements for the spatial but the backward
Euler method for the time discretisation. Some superconvergence results of the control,
the state and the adjoint state are proved. Some numerical examples are performed to
confirm theoretical results.
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1. Introduction

The Zienkiewicz-Zhu (ZZ) gradient patch recovery method based on local discrete
least-squares fitting [21, 22] is now widely used in engineering practice, due to its ro-
bustness in a posteriori error estimates and efficiency in computer implementation. Su-
perconvergence properties of the ZZ patch recovery method have been proven for both
linear elements under strongly regular triangular meshes and all popular elements under
a rectangular mesh [8,19].

There has been extensive research on the superconvergence of finite element methods
for optimal control problems, mostly focused on the elliptic case. The superconvergence
properties of linear and semi-linear elliptic optimal control problems was established in
Refs. [15] and [2] respectively, and for finite element approximations of bilinear elliptic
optimal control problems [18]. Some superconvergence results for mixed finite element
methods applied to elliptic optimal control problems have also been obtained [1,3,20].
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In recent years, there has been considerable related research for finite element approx-
imations of parabolic optimal control problems that are frequently met in applications but
are much more difficult to handle. A priori and a posteriori error estimates of finite element
approximations for parabolic optimal control problems were derived in Refs. [5] and [17],
respectively. A priori error estimates for the space-time finite element discretisation of
parabolic optimal control problems have been obtained [13, 14], and a posteriori error
estimation of spectral methods for parabolic optimal control problems were also investi-
gated [4]. A variational discretisation method for optimal control involving the convection
dominated diffusion equation has been considered [6], and superconvergence of a semi-
discrete finite element method for parabolic optimal control problems was established [7],
although this result has not been implemented in numerical computation. We have previ-
ously derived the superconvergence of finite element method for parabolic optimal control
problems [16], and to the best of our knowledge there has been little work done on the
superconvergence of fully discrete finite element methods for parabolic control problems.
The purpose of this article is to investigate the superconvergence of fully discrete finite
element approximation for parabolic optimal control problems with integral constraints.

We are interested in the following quadratic parabolic optimal control problem:

T
1
min ~ J (Ily = yall® +llull*) dt ,
0

uek 2
y: —div(AVy)=f +u, xeQ,tel, (1.1)
Y0q =0, teJ,

y(0)=y,, xXEN,

where Q is a bounded domain in R? with a Lipschitz boundary 9§, and J = [0, T] (T > 0).
The coefficient A = (a;;(x))2x2 € (Wl’o"(ﬁ))2><2 is such that for any & € R? we have
(A(x)E)-E>c| £ |? with ¢ > 0.

Let f € C(J;L%(Q)) and y, € Hcl)(ﬂ), and assume that K is a nonempty closed convex
subset in L2(J; L2(£2)), defined by

T
K:{VELZ(J;LZ(Q)):J J vdxdt>0}.
0 Q

We adopt the standard notation W™%(£2) for Sobolev spaces on  with norm || - [|yyma(q)
and seminorm | - |yyma(q), set Hy() = {v EHY Q) :v|pg = 0}, and denote W™2(Q) by
H™(). We also denote by L°(J; W™1(Q2)) the Banach space of all L* integrable functions
from J into W™4(Q2) with norm ||v||s¢s.wmacq)) = (fOT ”Vllixvm:qm)d )5 for s € [1,00) and
the standard modification for s = co. Similarly, one can define the space H!(J; W™4())
(cf. Ref. [11]). In addition, ¢ or C denotes a generic positive constant.

In Section 2, we define a fully discrete finite element approximation for the model
problem, and introduce some intermediate variables and some useful error estimates in
Section 3. We derive superconvergence properties in Section 4, and then present some
numerical examples in the last section.
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2. A Fully Discrete Finite Element Approximation

A fully discrete finite element approximation for the model problem (1.1) is now con-
sidered. For ease of exposition, we denote LP(J; W™(Q2)) by LP(W™1), and let W =
Hy(2) and U = L*(Q2). Moreover, we denote || - [|gm(q)y and || - [l;2¢q) by Il - ll,, and || - I,
respectively. Let

a(v,w):J(AVv)-VW, Yv,weWw,
Q

(flafZ):ffl'fZa Vfi, f2€U.
Q

It follows from the assumptions on A that
av,v)zclvli, lav,w)l < Clvilliwlly,  Yv,wew.
Thus a possible weak formulation for the model problem (1.1) is

T
1
s = _ 2 2
Ilféll?zfo (Ily = yall* + lull*) dt,

(2.1)
ew)t+aly,w) = +uw), VweW,teJ,

y(0)=y,, xXeEN.

It is well known (e.g. see [10]) that the problem (2.1) has a unique solution (y,u), and
the pair (y,u) € (H ML) nL*(H 1)) x K is the solution of the formulation (2.1) if and only
if there is a adjoint state p € H'(L2) N L2(H') such that the triplet (y, p,u) satisfies the
following optimality conditions:

Yow)+aly,w)=( +tuw), VweW,telJ,

(2.2)
y(0)=yp, xenN,
—(pe-)+alg,p) =y — Y49 Vgew,teJ, 2.3)
p(T)=0, xeQ, '
(u+p,v—u)>0, VveK,teld. (2.4)

We have the following Lemma.

Lemma 2.1 ( [4]). Let (y,p,u) be the solution of (2.2)-(2.4). Then u = max(0,p) — p,

where .
fo fﬂpdxdt

T
Jo [ 1dxdt
denotes the integral average on £ X J of the function p.

p=
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Now let 7" be regular triangulations of Q2 such that Q = UresnT and h = max cn{h.},
where h, denotes the diameter of the element 7. Furthermore, set

th{vaLZ(Q):thTzconstant, Vregh } ,
WhZ{vaC(Q):vhlfePl, VeI wylg=0 } ,

where P; is the space of polynomials up to order 1 and K" = {vh eU": f vpdx > 0}. Let

At>0,N=T/At€Z",and t, =nAt forn=0,1,---,N. Set " = p(x, t,) and
n_ ,,n—1
dtapnzu,fornzl,z,---,N
At

Moreover, for 1 < p < oo let us define the discrete time-dependent norms

N-1 >
el wmacy) = (At Z ”‘P meq(ﬂ)) )

n=1-1

where [ = 0 for the control u and state y, and [ = 1 for the adjoint state p, with the
standard modification for p = oco. For convenience, we denote ||| - ||[;s¢;wmaqy) by Il -
[|lscwmay and let

DEHY:={ f:llflllp@sy <0}, 1<p<oo.

We also define the elliptic projection operator R, : W — W', such that for any ¢ € W we
have

a(¢ —Ryp,wy) =0, VYw,eWh, (2.5)
and the approximation property

¢ —Rpopll < CR?l¢ll,, V¢ € H*(Q). (2.6)

Then a possible fully discrete finite element approximation of the weak formulation (2.1)
is

13161112 —ZAt (Ilyh yd”2+”u}?”2)

(dtyh,wh) +a (yh,wh) = (f”—l—uh,wh), Vw,eWhn=1,2,---,N, @7

W) =yh(x),  xeq,

where y "(x)=Ry (¥o(x)) and Ry, is the elliptic projection operator defined in Eq. (2. 5)
It follows (e.g. see [12]) that the control problem (2.7) has a unique solution (yh ,

forn=1,2,---,N, and (y;,up) € Wh x K" for n = 1,2,---,N is the solution of (2.7)
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if and only if there is a adjoint state pZ_l e Wh, n=1,2,---,N such that the triplet
(y}’l",pg_l,u”) eWhxWhxK" n=1,2,---,N satisfies the optimality conditions

(dty}’f,wh) +a (y;:,wh) = (f”—i—uz,wh) , Vw,eWh n=1,2,--- N

(2.8)
y)=ylx), xeq,
—(dpfan) +a(anpf ™) = (3 -yhan), VYapeWhn=N,-- 21, 29
p,’:[(x)zo, xEN, '
(up+pptv—up) >0, Vvek" n=12--,N. (2.10)

3. Error Estimates of Intermediate Variables

We now give some error estimates of intermediate variables. For any v € K, let
(y(),p() € (H*ZHNLXHY)) x (H'(L?)NLA(H)) be the solution of the following
equations:

(Y, w)+a(yw),w)=(f +v,w), VYwew,telJ,

y(0)=y,, x€Q, (3.1

—(pM), Q) +a(q,pM) =(yWM)—ys.q9) , YqgeW,teJ,

p()(T)=0, xeq. (3.2)

For any v € K, any pair (yﬁ(v),pg_l(v)) e Wh x Wh for n = 1,2,--- N satisfies the
following system:

(deyp ), wy) +a (Y0, wy) = (f"+v"wy) , Yw,eWhn=1,2,--- N, 33)
YW =yi, xeq,

— (deppv)qn) +a (qnpp ') = () - yihan) » YareWh n=N,--- 2,1, )
th(v):O, xenN. '

Thus we have (y,p) = (y(w), p(w)) and (yp, pp) = (¥n(up), pr(up)).
As in Ref. [15], we define the interpolation function u;(x,t) € U" for any t € J such

that
u;(x, t) =u(S;,t), Vx,S;et,T; egh, (3.5)

where S; is the centroid of the triangle 7;.
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Lemma 3.1 ( [15]). If f € H%(Q), then

J (f(X) _f(Sl)) dx| < Ch® % |Ti||f|H2(Ti) > (3.6)

and

> J (fG) = f(S)) dx SChz( > Ifl,z,z(m) : (3.7)

T,eTh i T, €Th

Lemma 3.2. Let (y,(w), pp(w)) and (yn(ur), pr(u;)) be the discrete solutions of (3.3)-(3.4)
with v =u and v = uy, respectively. Suppose that u € 112) (H?). Then

ynCur) = ya@lzay + pa() = pr@llizgry < CRA i) - (3.8)

Proof. Set v = u; and v = u in (3.3), respectively. For n = 1,2,---,N we obtain the
error equation

(deyp@uy) = doyp @, wy) +a (yp(w) = ypw),wy) = (uf —u",wy) , Yw, € Wh (3.9)
We note that
(deypiuy) = dey (), yi(up) — yi(w))

> (It =@l - ) - i)

(3.10)

and

(uf =",y (wy) — @) < C |luf —u|| ||yrCu) — ||
< CR2[lu™la || yiup) = yp@)|| 3.11)
< C(EMH2 + 5 ||y ) - yrw|” -

By choosing wy, = y;/(u;) — ¥4/ (u) in (3.9) and multiplying both sides of (3.9) by 2At, and
then summing n from 1 to N, we get

N
7N @) = N @) +¢ > Aty - yiw);
. e (3.12)
<CEM D Atllu2+8 Y At||yiu) - yiw); .
n=1 n=1

and hence

ya(ur) = ya@lllizgry < Ch2|lulllzg2,) - (3.13)
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On setting v = u; and v = u in (3.4) respectively, we obtain the error equation

— (depp(up) = d,pi(u),qr) +a (qupp () — pi (W) = (¥ up) — y(w),qp) »

v R (3.19)
g, €W',n=N,---,2,1.

Similarly, we derive

1pa(up) = pr@lizgeny < Clllya(ur) = ya@l a2y » (3.15)
so inequality (3.8) follows from (3.13) and (3.15). O

Lemma 3.3. For any v € K, let (y(v),p(v)) and (y3(v), pn(v)) be the solutions of (3.1)-
(3.2) and (3.3)-(3.4), respectively. Assume that y(v),p(v) € [3(H*)nH'(H*)nH?(L*) and
Y4 € HY(L?). Then

IIRLY (V) = yaO)lizny + IR (V) — O 2qery < C (h2 + At) : (3.16)
Proof. From (3.1) and (3.3), we obtain
(y:‘(v) — dty}’:(v),wh) +a (y”(v) - y,’f(v),wh) =0,VYw,eW' n=1,2,---,N. (3.17)
From the definition of Ry,

(dRpy" (V) = do i (v), wy) +a (Ruy" (V) = yi(v), wy,)

(3.18)
= (dRypy" () = dey" (M) + dy" (V) = Y2 () wy)

and we note that

(deRpy" (V) = d,y"(v), Rpy"(v) = y2(v))
<||deRy" () = dey" )| Ry ) = ¥ )|
< Ch2||d.y" )|, [|Ray™ (V) = ¥ )|

. (3.19)
< ChZ(At)*J y: )|, dt [|Rey" () = ¥ (1)
th1

_1
< CR(AD) 2y Wllize, v,z |[ReY ") = yi(v)

3

and

(dey" () = ¥P ), Rpy" (V) = ¥ (1))
= (A0 (") =y V) - Aty (), Rey" (V) — (V)
<A y") =yt ) — Aty 0| [Rey" ) = v

(3.20)

= (a0~ f ' (tas = )0 6)ds |Rey" (V) = ¥ (v

n—1

1
< CAD2 Iy e, 2y Ry () = v )| -
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Similarly to Lemma 3.2, from (3.18)-(3.20) and Young’s inequality we have
2 u 2
RN ) =y " +¢ D At Ry () = v}
n=1
<€) (R*11ye(IPagy + ANl 2)) (3.21)

N
+6 Y At|[Rpy" () - ypo)|[”
n=1

whence
IRy () = yn(WIli2ry < € (h2||yt(v)||L2(H2) + At||}’rr(v)||L2(L2)) . (3.22)
From (3.2) and (3.4), for any q; € Wh n=N,---,2,1 we obtain

— (PF ') = dpp(v), 1) +a (anp" () = Pp ()

=" M) -y - yi +yhan) 429
and from the definition of R;, we derive
— (d:Rwp"(v) = d:Pp(v), qn) + a (g, Rpp" ' (v) = pj ' (1)) 300
= (=dRpp" M +pI )+ YO = YO + Y =y wy) '
Similarly, we can prove that
1IRRp(v) = PRV ey
< ¢(8) (IR () = 3y + EANY OBy + ] o)
+C(8)(At)? (Illp(V)Illfz(Hl) + ||ptt(V)||§z(Lz)) (525
+CEA? (11yePagyy + 11Tl Pyz)) -
From (3.22) and (3.25), we then obtain (3.16). O

4. Superconvergence Analysis

We now discuss superconvergence properties between the finite element solution and
projections of the exact solution, and begin by deriving the superconvergence of the control
variable.

Theorem 4.1. Let u and uy, be the solutions of (2.2)-(2.4) and (2.8)-(2.10), respectively.
Assume that all of the conditions in Lemmas 3.1-3.3 are valid. Then

;= wplllzqzy < € (R +At) (4.1)



146 Y. Tang and Y. Hua

Proof. As in Ref. [15], since uy, € K it follows from (2.4) that we have point-wise almost
everywhere
(u(x, £) + p(x, £))(up(x, t) —u(x,t)) =0, Vteld. (4.2)

On applying this formula for x = S;, it follows that
(U(Si, t) +p(SU t))(uh(si: t) - u(Si: t)) >0 > VSl €T,7; € yh andVteJ

ie.,
W +pHWr—uM) >0, VS;et,1;€I"andVn=1,2,--,N, (4.3)

because of the continuity of u", p", and u; at these points, and hence
(uf +pj,uy —u;) =0, n=1,2,---,N. 4.4)
On choosing v = u; in (2.10),
(up+pp~huf —up) =0,  n=1,2-,N, (4.5)

hence
(uf —uf +pi~ ' —phuf —ul) >0, n=1,2---,N. (4.6)

Moreover, we obtain
Mty = 132,
N
< Atz (p,’:_l —pryu; — uZ)
n=1
N N
= e (P @) = pp ) ) + ey (T w) —pp W ) 47)
n=1 n=1

N N
+AeY ] (P w) = p MW, uf ) + Ay (p"Hw) - puf — )
n=1

n=1

::II+IZ+IS+I4 .
According to (3.3)-(3.4), for the first term we have
(deypiQup) = deypCup), wy) +a (i Cup) = y(up), wy) = (ufp —uf,wy) ,
Vw,eWh, n=1,2,--- N, (4.8)
Yy =y u) =y, xeq,
and
—(d n —d.p" n—1 _ n-1 _ n _ N
DR(uy) — depp (), qn) +a (@r P () — pp wp)) = (P (un) — Y, qn)
Vg, eW", n=N,---,2,1, (4.9)
pr W) =py (W) =0, xeQ.
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On selecting wy, = p,’ll_l(uh) — pZ_l(uI) in (4.8) and q;, = y} (up) — ¥ (u;) in (4.9),

I = = 1lyaCur) = ya(ullZ gz <. (4.10)

and from Lemma 3.2 we have
N
=AY (pp ")~ pp g —uf) < CEM + 6l —ullZs . @1D)
i=1

From (2.6) and Lemma 3.3, we derive
N
Ii=AtY (pilw)—p" (w),uf —uf)
i=1

N N
< Atz (p,’;_l(u) —th”_l(u),u’l1 — u,’:) + Atz (th”_l(u) —p" (w), uy — uZ)
i=1 i=1

< C(8) (h*+(A0?) +8lllur — upl 2 - (4.12)

For the last term, from Lemma 3.1 we have

N
Iy = Atz (p”_l(u) —prou; — u,’;‘)
1;1 y

= Atz (p”_l(u) —p"(w),uy — u,';‘) + Atz (p”(u) —pj,u; — uZ)
i=1 i=1

< C(8) (* +(At)*) + 8lluy — ] (4.13)

2
lZ(LZ) >
and finally inequality (4.1) follows from (4.7)-(4.13). O

Secondly, we consider the superconvergence of the state and the adjoint state.

Theorem 4.2. Let (y,p,u) and (yu,pp,up) be the solutions (2.2)-(2.4) and (2.8)-(2.10)
respectively, and assume that all of the conditions in Theorem 4.1 are valid. Then

IRy = yalllzry + 11Rkp = Prlllizery < € (B + At) . (4.14)
Proof. From (2.2) and (2.8), we have the error equation
(y[‘ — dty;:,wh) +a (y” —y,’:,wh) = (u” — uZ,Wh) ,VYwy € wWh n=1,2,---,N. (4.15)
From the definition of Ry,

(deRpy™ —dey,wy) +a (Rpy™ = yiwy)

— n_ n n_.n . n_ N, n_ N h . _ (4.16)
—(dtRhy d;y"+d.y"—y/+u" —ujt+u] uh,wh),VWhGW,n—l,Z, ,N.
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Let us note that

(1~ Ry ) = o ][Ry 5]

n n||2 n nl|2 (4'17)
< C@) |Ju" — ||+ |[Ruy" = 7]
and
(s =Ry = 51) = € [l = [Ruy™ =i @19
2 2 :
< ) [ —ui["+ 5 |Ray" — "
Similarly to Lemma 3.2, from (4.16)-(4.18), Lemma 3.1 and Theorem 4.1 we have
1IRry — Yulllizcan
2 (4.19)
< G ([[yelagamy + NPl ) + CEAE ([[yeelzguoy + [lpell ey -
From (2.3) and (2.9), forn=N,---,2,1 we obtain
— (Pt —depfaqn) +a (g™ =) = (" =y -y Y an) 4.20)
th S Wh. ‘
By using the definition of Ry, for any g, € W', n=N,---,2,1 we get
— (dRypp™ - d,pfar) +a (anRp" " — i) (41)
=(—dRpp" +p} +y" " = yr =Y Y an) -
Similarly, we can prove that
1R — pall I
< C(8) (IRwY = yullZ gy + BV ey + 1P Py 4.22)
— lz(Hl) lZ(HZ) t LZ(HZ) .
+CBIA? (1Pl g+ 1peclBaggey + 1l oo + 10l agsz))
whence (4.14) from (4.19) and (4.22). O

5. Numerical Experiments

For a constrained parabolic optimization problem:

inJ
min (w),

where J(u) is a convex functional on X and K is a close convex subset of X, the iterative
scheme reads (n =0,1,2,---):

{ b(un+%,v)= b(uy,v)—pn (J'(u),v), VveX,

(5.1)
Unt1 ::P£(u

n+%)’
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where b(-,-) = f OT(-, -) is a symmetric positive definite bilinear form, p,, is the step size of
the iteration, and the projection operator P}g can be computed as in Ref. [9].

Similar to Ref. [9], for an acceptable error Tol we present the following projection
gradient algorithm, by applying (5.1) to the discretised parabolic optimal control problem
(2.7). For ease of exposition, we have omitted the subscript h.

Algorithm 5.1. Projection gradient algorithm

Step 1. Initialize uy.
Step 2. Solve the following equations:

T
b(un+%,v)= b(un,v)—pnf (up+pnsv), Upy1,Un € uh vy euh,
0

C
Yo~ Yn i _(fi g i -1 h h
(A—t’w +a(yn,w) = (f +un,w), Yo ¥y  EWLVWeWT, 5.2)

At

_ pb
Unt —PK(UH+%)~

pi~l _pi g o o
(u,q) +a(qp)=(yi-yhq), pLpitewhvgewh,

Step 3. Calculate the iterative error: E, 11 = |||tup1 — Unlll12(12)-
Step 4. If E,,,1 < Tol, stop; else go to Step 2.

Let Q =[0,1] x [0,1], T =1, and A(x) = I. The optimal control problem was solved
numerically with codes developed based on AFEPack, a package that is freely available (cf.
Ref. [9]). The discretisation was as described in Section 2. We denote ||| - [||;2(z1) and
I 1ll2c2) By [l - 1l1 and [[] - [|], respectively. The convergence order rate is computed from
the formula
_ log(e; 1) —log(e;)

log(hiy1) —log(h;)’

where e; (e;,1) denotes the error when the spatial partition size is h; (h;;;). We solved the
parabolic optimal control problem

Rate

T
min= | (IlyGe, 0 = yaCe, O + luCe, OIF) de
ueK 2 0 s 5 5 b

Ye(x,t) = div(A(x)Vy(x,t)) = f(x,t) +u(x,t)in Q2 x (0,T], (5.3)
y(x,t)=00n 90 x(0,T],
¥(x,0) = yo(x)in 2,

for the following two examples.
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Example 5.1. The data are as follows:

p(x,t) =sin(27mx;)sin(27xy)(1 —t),

y(x, t) =sin(27mx; )sin(27wx,)t

u(x, £) = max(0, p(x, ) — p(x, 1),

flx,t) =y (x,t) — div(A(x)Vy(x, t)) —u(x, t),
ya(x, ) = y(x, )+ p(x, t) + div(A"(x)Vp(x, 1)) .

The errors on a sequence of uniformly refined meshes are shown in Table 1. In Fig. 1,
we show the numerical solution uj, at t = 0.5 when h = 1.25x 1072 and At = 6.25x 1073,
It is easy to see [|[u; — wylll = & (R + At), [[[Rpy = y4llly = € (h®+ At) and |||Ryp —
pullly = 0 (K2 + At).

Table 1: Numerical results, Example 5.1.

h | At | |llu; —wlll | Rate | |[IRpy — yalll; | Rate | |[IRyp —palll; | Rate
= | &5 | 457845e-02| — | 3.31962e-02 | — | 3.31860e-02 | —

% 4i0 1.22388e-02 | 1.90 | 8.22965e-03 | 2.01 | 8.22864e-03 | 2.01
% 11@ 3.09192e-03 | 1.98 | 2.05253e-03 | 2.00 | 2.05242e-03 | 2.00
= | =5 | 7.78481e-04 | 1.98 | 5.16524e-04 | 1.99 | 5.18543e-04 | 1.98
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Figure 1: The numerical solution u; at t = 0.5 for Example 5.1.
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Example 5.2. The data are as follows:

p(x, t) =sin(2mx;)sin(27wx,)sin(t) ,

y(x, t) = sin(27mx; )sin(27wx,)sin(t) ,

u(x, £) = max(0, p(x, ) = p(x, 1),

fOx, ) =yi(x, t) = div(A(x)Vy(x, t)) — u(x, t),
Ya(x,6) = y(x, t) + p(x, t) + div(A*(x)Vp(x, t)) .

In Table 2, the errors |||u; —uyl|l, [[|IRny — yx!ll; and |||Ryp — palll; based on a sequence
of uniformly refined meshes are shown. We plot the profile of the numerical solution uy,
at t = 0.5 when h = 1.25 x 1072 and At = 6.25 x 1072 in Fig. 2. It is easy to see that
[llu; — uplll, IRy — yulll; and [||Ryp — pplll; are the second order convergent which is
consistent with our theoretical results.

Table 2: Numerical results for Example 5.2.

At | |llu—uplll | Rate | [[IRpy = ynllls | Rate | [[[Rnp — pallly | Rate
= | 4.97429e-02 | — | 8.36251e-03 | — | 7.42735e-03 | —

- | 1.31232e-02 | 1.92 | 2.30218e-03 | 1.86 | 2.00054e-03 | 1.89
— | 3.31625e-03 | 1.98 | 5.91429e-04 | 1.96 | 5.10980e-04 | 1.97
== | 8.31263e-04 | 2.00 | 1.48953e-04 | 1.99 | 1.28457e-04 | 1.99
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Figure 2: The numerical solution u;, at t = 0.5 for Example 5.2.
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