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Abstract. We obtain the coefficient matrices of the finite element (FE), finite volume
(FV) and finite difference (FD) methods based on P;-conforming elements on a quasi-
uniform mesh, in order to approximately solve a boundary value problem involving the
elliptic Poisson equation. The three methods are shown to possess the same H'-stability
and convergence. Some numerical tests are made, to compare the numerical results
from the three methods and to review our theoretical results.
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1. Introduction

Elliptic equations form one of the most common classes of partial differential equa-
tions (PDE). Numerical schemes to obtain approximate solutions to elliptic equations are
fundamentally different from those for parabolic and hyperbolic equations. Many practical
problems involve elliptic equations — e.g. the well known cases of steady heat flow and
the irrotational flow of an inviscid incompressible fluid.

Finite element (FE), finite volume (FV) and finite difference (FD) methods are three
standard approaches to the discretisation of PDE that are often used for their approximate
solution [1,5,12,13,17,18]. The FV method may be regarded as a generalisation of the
FD method [3,7,8], and may be applied to arbitrary domains without much difficulty.

The relationship between the FE and FV methods applied to the two-dimensional Pois-
son equation has been discussed by Vanselow [17], who also considered the FV method

*Corresponding author. Email addresses: heyn@mail.xjtu.edu.cn (Y. He), fxlmath@gmail.com
(X. Feng)

http://www.global-sci.org/eajam 154 (©)2013 Global-Science Press



H'-Stability and Convergence of the FE, FV and FD Methods for an Elliptic Equation 155

with Voronoi boxes for discretising elliptic boundary value problems — and showed that
the matrix of the linear system of equations for the FV method is equivalent to the matrix
for the FE method if and only if the Delaunay triangulation and P;-conforming element
are used. However, he did not prove any convergence results in comparing the FE solution
and FV solutions under weaker assumptions. Mattiussi [18] applied aspects of algebraic
topology to the analysis of the FV and FE methods, illustrating the similarity between the
discretisation strategies adopted by the two methods via a geometric interpretation of the
role played by weighting functions involved with the respective finite elements. Recently,
Xu and Zou [16] presented some convergent properties of both linear and quadratic sim-
plicial FV methods for elliptic equations. They established an inf-sup condition in a simple
fashion for the linear FV method on domains of any dimension, and proved that the so-
lution via a linear FV method is “super-close” to that from a relevant FE method — cf.
also [3,4,11].

If the partition of a domain possesses certain geometrical properties, the linear conver-
gence of the FE method with respect to a special energy norm follows when the solution of
the problem involving the Poisson equation belongs to H? space. It is notable that the same
convergence results can be obtained for the FD and FE methods based on P;-conforming
elements under weaker assumptions. In Section 2, we obtain the coefficient matrices of the
FE, FD and FV methods based on continuous P;-elements on a quasi-uniform grid to solve
a boundary value problem involving the Poisson equation on a one-dimensional domain,
and show that the three methods possess the same H!-stability and convergence. The coef-
ficient matrices of the three methods are provided and their H!-stability and convergence
are then analysed in a two-dimensional domain in Section 3. Numerical experiments are
presented in Section 4, to confirm the theoretical analysis and demonstrate the numerical
results of the three methods.

2. FE, FV and FD Methods in One Dimension (d = 1)

In this article, we consider applying FE, FD and FV methods on a quasi-uniform grid
for the boundary value problem involving the Poisson equation

—Au=f (3, ,xq) €N 2.1
u=20 (31, ,xq) €20 (2.2)

on a bounded domain Q < R? with boundary 8%, where A = Ox,x; T+ Ox,x, is the
Laplacian corresponding to the gradient operator V = (9, ,+, 0y d)T. We always assume
f € L?(Q), and the regularity estimate

||U||2,Q < C||f||o,n . 2.3)

In this section, we consider the one-dimensional case d = 1, with the assumed domain Q =

(0,1) sub-divided as 0 = xy < x; < -** < X417 = 1 — i.e. into sub-intervals I; = x;_1, X;)

of size h; = x; — x;_; (cf. Fig. 1). Let us also define x,, 1 = (x; + x;41)/2fori =0,--- ,m,
2

and set h = max;<;<p41 h;-
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Figure 1: The quasi-uniform line segment mesh (one-dimensional case d =1).

Let ¢1(x), -+, ¢,,(x) be a set of piecewise linear basis functions in Q such that

Xh = Span{¢1’ ) ¢m})

with
X — Xij_1 X'+1_X
¢i(x)=h—l, xel;, ¢i(X)=lh—, x€liyq,
i i+1
and

$i(x)=0, x€Q/(I;Ul,).

Similarly, we construct the basis functions at the boundary points:

X1 —X
Po(x) = P x€l, ¢o(x)=0, x€Q/I;;
1
X=X,
Pm1(x) = h , X€Inty, Om(x)=0, x€Q/I,4.
m+1

Given the finite element space X;, the numerical approximation is

m

w,(x) =Y u';(x) € Xy

i=1

with Vuy,(x) = (u! — ui~1)/h; for x € I,. In the FE solution, {u'} is obtained from

Dwve,Ve)=Ffi=]  FOi(x)dx,
j=1 Xi—1
or
_L(ui-i-l_ui)_’_l(ui_ui—l):fi (2 4)
R h; ’ ‘

where f;i“ ¢;(x)dx = (h; + h;+1)/2. In the FV solution, {u'} is obtained from
i—1

- [dxuh(xH—%) - dxuh(xi—%)] =f! ZJ " f(x)dx,
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or

I N
__(ul _ul)+_(ul_ul ):fl‘ (2.5)
hita h;

Finally, in the FD solution {u'} is obtained from

1 N : i
—— W )+ =W - =f'= flx)dx. (2.6)

Rim h
We also note that u® = u™*! = 0 in all three approximation methods for u;, and in this
section we adopt the notation

2 N .
du) =22 au)= 0 b= DD,

Thus the numerical solution procedure to obtain the approximate solution uy is to find
U=(u',---,u™) such that

AU =F, 2.7)

where F = (fy,+, f,)| with f; = fi, fland f! for the FE, FV and FD methods, respec-
tively; and

1 1 1
=+ = - 0 0
! 1h2 1 h21 1
b b TR Th o0
A= 0 h ha + ha 0 0
1 1 1
0 0 0 - —+
hm hm hm+l mxm

On writing Vuy|y, | «] = §,ut = (u' —u'~1)/h; we can determine the stability of the
FE, FV and FD methods as follows.

Lemma 2.1. If f € L?(Q), then the numerical solution uy, defined by the three methods (FE,
FV and FD) satisfies the following stability criterion and error estimate:

IVuplloo < cllflloo, IIV(u—uplloa <chllfllog - (2.8)

Proof. In the FE and FV solutions for uy, the inequality (2.8) is well-known [5]. In the
case of the FD solution for uy, taking the R!-scalar product of Eq. (2.6) with u' yields

u12_u1+12+u1_u1+12 + u12_u1—12+u1_u1—12 < [fillult] .
o [P =P+ ]+ g [P = P 2] < 1]
2.9)
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m+1 _

On summing (2.9) from i = 1 to i = m, noting that u® =u = 0, and using the modified

discrete Poincare inequality [2], we have

m+1

Zh|u |2<c2h 15,1, (2.10)

and hence the stability criterion

m+1

R 18P = (V2 g < cllf 12, - 2.11)

i=1

Next, we can deduce the error estimate of the FD solution for u;. Thus applying the
X .
integral operator f .. ~+dx to Eq. (2.1) and noting that
i—1

. 1 [
G, = du(xi_1) — o, u(x;) = h_J (x = x;)Au(x)dx,
LJx

i—1

Gl+1 dyu(x;) — 6,u(xiq1) = ! JI (x — x;41)Au(x)dx,
hiva ),
to obtain
1
5 (u(x;y1) — ulx; ))+ (u(x) u(x;_1)) =f" +(GHr1 G! ) (2.12)
i+1

Subtracting Eq. (2.6) from Eq. (2.12) and writing el = u(x;) — u', we obtain the error
equation

1 . . 1 . . . .
—h‘—H(el+1 —e )+ E(el —ei )= G;H -G, (2.13)
1 1

On taking the R%scalar product of Eq. (2.13) with e/,

[lei|2_ |ei+1|2+|ei_ei+1|2:| 4+ — [lei|2_|ei—1|2+|ei_ei—1|2:|

2hi11 2h;
=(G*1 —GL)e' . (2.14)
Summing Eq. (2.14) from i = 1 to i = m and noting that e® = ¢™"! = 0, we obtain

m+1 ‘ m+1 m+1 E m+1
D hylsyeF= Zh G5 el (Zh |Gl|2) (Zh 15, e |2)
i=1

1

1 2 (m+1 ‘ 2
ShU IAu(x)Ide) (ZhiISXellz) ,
0 i=1

-
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so inequality (2.3) yields
IV(Ipu = up)llon < chllAulloq < chllflloq » (2.15)

where I, : Hcl)(ﬂ) — X, is an interpolation operator [5] such that

m

Tt = Y u(x)$:(x), [V(u—Iwlog < chllAullyg . 2.16)

i=1

From inequalities (2.3) and (2.16), we have
IV(u— Mo < IV = Lwllog + IV —u"llog < chllAullgg < chllf lloq ,

so inequality (2.11) yields the results (2.8). M

3. FE, FV and FD Methods in Two Dimensions (d = 2)

We now construct a quasi-uniform grid for 2 = (0,1) x (0, T), where (0,1) is sub-
divided as in Section 2 and (0, T) is sub-divided into yu =0<y; < - <Yy <Yn41 =T.
with 7; = y; —yj_ for j=0,1,--- ,N+1and T =max1<j <N +17;. We also define
Yirl = (¥j+1 +¥;)/2 with j=0,---,N, and assume that h;/h;_; <¢; fori =1,--- ,m+1
and 7;/7;_1 < cy for j=1,---,N + 1, where hy = h; and 7, = 7, are known. For each
point (x;,y;) € (0,1) x (0,T) withi =1,---,m and j = 1,---,N, we construct a macro-
element kij = (xj—1,Xi+1) X (¥j—1, ¥j+1) that is divided into six elements Kilj, S ,Kfj, and
the dual element Klfkj = (xl._%,xiJr%) X (yj_%,yj+%) as shown in Fig. 2; and also introduce

the basic hat function ¢;;(x, y) such that supp ¢;; C K; j and

Y —Yi—1 Y—Yin
¢ij(x, y) = ———— for (x,) eKilj ., ¢ij(x,y)=—"—for (x,y) eKl.“]. ,
i) Yi = Yi+
X~ Xi— X — Xit1
d)l](x,y) = Rt for (X,y) GK? , ¢U(X,y) — - Tl for (X,y) EKE] ,
Xi ™ X Xi— Xit1
Vi
5 4
3
Y,
6
1 2
Yj1

Figure 2: The quasi-uniform rectangular mesh (two-dimensional case d = 2).
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X — X _ _y__y]

for (x,y) e Kizj ,
Xit1 =X Vi1~ JYj

X = X; —JYj

¢ij(x,y)=1-

¢ij(x,y)=1- for (x,y) €K .

Xi-1 =X Yjiy1—JYj
Similarly, we can construct the basis functions ¢;;(x, y) for (x;,y;) € 9. In this section,
we also adopt the notations

s i Ul — =L
u = ——
X >
h;
ij _ i,
ouY—u
oul = —-——,
Tj
u(x;, y;) —ulxi_1,y5)
2
h;

u(x;, y;) —u(x;,yj—1)
5yu(Xi,J’j)= - iy - >
J

j—1

5xu(xi).)’j) =

and establish the finite element space

Xh:Span{d)ll"":¢m15¢12:”':¢m23"':¢1N:"'5¢mN}'

Based on the finite element space X, the numerical approximation is to find u; such
that uy,(x) = Z?’Zl Yo u7¢;i(x,y) € Xp. In the FE solution, {u'/} is obtained from

N
DD u (I, Vi) = FU =J~ FG,y)i(x,y)dxdy
Kij

[=1k=1
or
Tj+1 + T]'

hit1 +h;
2 2

(5, u™ — 5 u) - (('Syui’j+1 — 5yuij) =fbi. (3.1

In the FV solution, {u%} is obtained from

3uh G
- ——ds=f"=1| f(x,y)dxdy,
a Kl.*j

. on
Kij
or
Tj+1 +T]
2

hiy1+h

(6, uT — 5 u) - 5 l((’Syui’j+1 — 5yuij) =fi . (3.2

Finally, in the FD solution {u'/} is obtained from

—7j(8u ™ = 5u) = hy(8,u T — 5 ul) = fU = f flx,y)dxdy, — (3.3)
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where K;; = (x;_1,x;) X (¥j—1,¥;)- In each case, we set u'/ = 0 when (x;,y;) € 9. Thus
the numerical solution procedure is to find U = (U%,---,UN)T with U/ = (WY,--- ,u™)T
for j=1,---,N such that

AU=F, (3.4)

where

F:(FlyFZ)...3FN)T) F]:(fl_])...)fm])T

with f;; = fU, fU and fU for the FE, FV and FD methods respectively, and A is defined by

Bll _Blz O O ce 0 O 0
_BZ]. BZZ _B23 O ce 0 O 0
A — O _332 B33 _334 ce 0 O 0
0 0 0 0 = —By_in-—2 By-in-1 —Byoin
O O O O e 0 _BN,N—l BN,N NxN
For the FE and FV methods here, we have
Tj+1+Tj
([ by —E= o0 0 - 0 0 0 )
2
T]+1+T] _ Tj+1+Tj .
o b22+ T 0 . 0 0
_ Ty LTy
]] . . . . RS . . . ?
e _TintT _TintTj
0 0 0 0 oh bm_l’:’i—l T
... T
\ 0 0 0 0 0 o bm .
and
hy+hy 0 0 0o --- 0 0 0
0 hy + hs 0 0o --- 0 0 0
_ 1 0 0 hs+hy O 0 0 0
Bjjr1 =5 — :
j+1
0 0 0 0 0 hp,_1+h, 0
0 0 0 0 0 0 hm + Ry mxm
where

Tiv1 + Tj 1 1 hi + hi+1 1 1
B:.,. =B: . b:J— — 4+ + + — .
J,j+1 Jj+1,j i 2 (hi hi+1 2 T ]
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For the FD method, we have

T
(blrl- ~ OT. 0 \
—ZL by -2 0
0 -3 by -7
Bjj: .3 4 . . 5
Ti T
_hm]—l bm—l,m—l i
.
and
hy 0 0 0O - 0 0 0
0 h, 0 O - 0 0 0
1 0 0 hy O 0 0 0
Bjjr=—"— ’
Tin . . . . .
0O 0 0 O 0 hp,.;, O
0O 0 0 O 0 0 h,, i
where

B B b ( ! + ! ) +h ( ! + ! )
i+1,j = Pjj+1, 0 =Tj| - T, il —/7— -
S 7 "\hi  hin Tiv1 T
If we were to use a uniform mesh, the coefficient matrices of three methods are then
the same — viz.

(B - o o 00 0
~L1 B -2 0 e 0 0 0
h h
A | O -t B --f .. 0 0 0 ’
0 0 0 0 i —hy
h
\0o o0 0 o0 o -trs ) .
27 2h T
[(E+2 2 0 0 0 0 0 )
—z g 2 0 0 0 0
T 2t 4 2h T 0 0 0
B= 0 " h n T Th ,
T 2T 2h T
0 0 0 0 _H T'r-i_T Z_’L' 2h
\ 0 0 0 0 0 -5 FT+T ) m

where I = (6;;)nxm is the relevant unit matrix.
We need the modified discrete Poincare inequality [2]

N+1m+1 N+1m+1

DI TP <e >0 hr; [16,u7 P +15,ul?] (3.5)

=0 i=0 j=1 i=1
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to proceed to analyse the stability and error estimate for the FE, FV and FD methods here,
and also the following norm equivalent relation.

N m
Lemma 3.1. For each vy, = ), Y v/ ¢;i(x) €X,,

j=1i=1
1 +1m+1
EZth] (15571 +15,v712] <IIVwli2,
j=11i=1
N+1m+1
Zhl'r] |6, v”|2+|5 VY| ] (3.6)

=1

‘\4

where C = max{l,cy,cy}.
Proof. From the definition of vy,
Vil =V T b1 (e y) v T g (e ) vy, y)
Vh|1<l.6j =v g G ) H v g0 y) H v u(x, ),
which yield
VVh|K}j =(5,vH1 ,5yvij)T, vvh|Kf} =(5,vY ,5yvi_1’j)T .

whence

h;T; N y i [
ZJ [|5xvu|2+|5},v”|2] SJ J |V, |2dxdy
j Xi-1
hiTj . .. o
== [18,v7 712+ (5,7 + |5, v

1 o g L
<C3 [18.:v 7 PRt g + 16,07 PRt + 18, v

2+|5yvij|2]

Zhi_lfj + |5yvij|2hifj:| .

Summing the above relations fori =1,---,m+1and j=1,--- ,N + 1 and noting vii=0

for (x;,y;) € 9, we obtain inequality (3.6). M
We next consider the stability of the FE, FV and FD methods as follows.

Theorem 3.1. Assume uy, is the solution of (3.1), (3.2) or (3.3), respectively. Then

IVunlloq < cllf log - 3.7)

Proof. For the FE and FV methods, it is known that inequality (3.7) holds [5,6]. In the

FD case, we take the R!-scalar product of Eq. (3.3) with uV to obtain

|:|u1]|2 _ |u1+1,]|2 + |u1+1,1 _ u1]|2] + e |:|u1]|2 _ |u1—1,]|2 + |u1] _ ul—l,]lZ]

2hl-{-l 2hl
+ L [|ulJ|2 — |ul,J+1|2 + |ul,J+1 — ulJ|2] NI [|u1J|2 _ |ul,]—1|2 + [ub — ul’1_1|2:|
2T 271,

=fUyl, (3.8)
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Summing Eq. (3.8) fori=1,---,mand j=1,---,N and using inequalities (3.5) and (3.6)
yields the result (3.7). n

We can also deduce an error estimate of the numerical solution uy, for the FE, FV and
FD methods as follows.

Theorem 3.2. Let u; € X; be the FE solution, the FV solution or the FD solution using
Egs. (3.1), (3.2) or (3.3) and f € L?(Q), respectively. Then

IVu = Vuylloq < c(h+7)lIflloq - (3.9)

Proof. For the FE and FV methods, inequality (3.9) holds [5, 6], so it remain to
haa¥erd
prove this result for the FD method. We apply the integral operator f;l f xl -eedxdy
-1 Y Xi-1

to Eq. (2.1), so that
Xi

y] ..
_J axu(xia.y)_axu(xi—lay)d.y_f 8yu(x).yj)_8yu(x).yj—1)d~x:fl] . (3.10)

Yi-1 Xi—1

We note that

G, ZJ Feulxi_1,y)dy — 6,ulx;, yj)T;

Yi—1

1 Yij Xi 1 Yij Xi

:FJ f (x—xi)é‘xxu(x,y)dxdy—gf f (¥ = ¥j—1)0xyulx, y)dxdy ,
LJyj1Jdxi tdyj1Jdxi

Yj

G)icH :f du(x;, y)dy — 8 u(xitq,¥;)7;
y

j-1

1 Yij Xi+1
= J (3 —x;41)0ulx,y)dxdy (3.11)
hi+1 Yj-1 v X
1 Y Xi+1
- h J J (y_yj—l)axyu(-x;.)’)d-)(dy,
i+1 Yj-1 Y X
Xi

Gj/ :J dyu(x, yj—1)dx — & ulx;, y;)h;
X,

i-1
Xi

1 Yi Xi 1 Yi
=— f (v = y;)0yyulx,y)dxdy — — f (x = x;_1)0c u(x,y)dxdy,
T Yj-1 Y Xiq 2 Yj-1

Xi-1
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and

Xi
Gi“ :f Ayulx, y;)dx — & u(x;, yj+1)h
Yi+1
J (r = ¥j41)9yyulx, y)dxdy

y)+l
J (x = x;-1)0yulx,y)dxdy .

Combining Eq. (3.10) with the above equations yields

- T (5xu(xi+1,yj) — 5xu(xl~,y]-)) —h; (5yu(xi,yj+1) - 5yu(xi5yj))
:fl]+G;+1—G;+G§/+1—G§/ . (3.12)

Subtracting Eq. (3.3) from Eq. (3.12) and setting e”/ = u(x;, Yi)— u'/, we obtain the error
equation

—7; (8, = 5,eV) —h; (6, — 5,6V ) =G —GL+ G -G (3.13)
Then taking the R!-scalar product of Eq. (3.13) with e%/,

|:|61]|2 _ |el+1,]|2+ |el+1,] _61]|2:| + j (|61]|2 _ |el—1,]|2 + |el—1,] _ el]lZ)
i

2ht+1
+ 5 |:|eij|2 _ |ei,j+1|2 + |ei,j+1 _ eij|2:| + 2h_l (leij|2 _ |ei,j—1|2 + |ei,j _ ei,j—1|2)
T T
j+1 J
=(GI — G e + (G;+1 — G;)eif . (3.14)

Summing Eq. (3.14) fori=1,---,mand j=1,---,N, and noting e/ = 0 if (x;, ;) €09,

N+1m+1 )
Z hiT; [|5xelj|2+|5 eV J
j=1 i=1
N+1m+1
=— Z [h G15 61J+T]G§/5ye ]
j=1 i=1
1N+1m +1 . N
<325 2 (Rilldweullok, + 7,10yl ) (hi )2 18V
j=1 i=1
1N+1m+1 1
Z 3 ij
+3 25 25 (Tl o, + iy, ) (i 315,
j=1i=

N+1m+1 2

<ch+Tlulyg | Y. D (I6.e72+15,eT [,

j=1 i=1
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From (3.7) and the above inequality, the H'-bound of the error e, = I bl — ul is
IVerlloo < c(h+ Tlulzq (3.15)
where the interpolation operator I, ;. : H 2(Q)N Hé(ﬂ) — X}, is defined as
N m
Lett= > > u(x, y)i; -
j=1i=1
From Ref. [5] we have
IVUpzu =)l o < clh+Dlulyg (3.16)

so from inequality (2.3) and the inequalities (3.15) and (3.16) we finally obtain the error
estimate of the FD solution

IV —upllo IV —InWlloa + I Venlloo

<c(h+ Dlulyq < cth+ Dlflloq >

the stated result. H

4. Numerical Experiments

We now present a test problems in one dimension and another in two dimensions, to
illustrate the theoretical results obtained in the previous section.
The first test problem is

—Uyx Zf(X), x€(0,1),
u(0)=u(1)=0,

with the exact solution u(x) = sinx/sin1 — x when f(x) = sin x/ sin 1. We use the follow-
ing two quasi-uniform meshes produced by random numbers in [0,1].

T, = {0,0.21396,0.43866,0.49831,0.64349,0.78886, 1},

T;, = {0,0.049754,0.078384,0.23189,0.23931, 0.64082, 0.80487,0.90840, 1}.

We consider three cases:

(M

(1.1). FD method: f'= f(x)dx,
x)i(711
] l+7

(1.2). FVmethod : f = ( * Flx)dx,
in_l
. (‘Xi+21

(1.3). FEmethod: f'= f(x)pi(x)dx,

in—l
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where i = 1,2---,m. Here we use the Thomas algorithm [12] for the tri-diagonal system
(2.7). The numerical results are presented in Tables 1-3, in terms of the H L_norm and
L2-norm convergence rates.

Table 1: Case (1.1): Numerical results for the first example using the FD method.

Nu—upllo

Ju—uply

Nu=upllo

[u—uply

Mesh A Ratio o Ratio | Mesh o Ratio ol Ratio
h 1.9611e-1 - 2.6910e-1 h 1.7273e-1 3.1680e-1
h/2 | 9.1155e-2 | 1.1053 | 1.3520e-1 | 0.99305 | h/2 | 7.9044e-2 | 1.1278 | 1.7005e-1 | 0.89761
h/4 | 4.3672e-2 | 1.0616 | 6.7627e-2 | 0.99942 | h/4 | 3.6965e-2 | 1.0965 | 8.703%-2 | 0.96623
h/8 | 2.1341e-2 | 1.0331 | 3.3803e-2 | 1.0004 | h/8 | 1.7812e-2 | 1.0533 | 4.3927e-2 | 0.98655
h/16 | 1.0544e-2 | 1.0172 | 1.6897e-2 | 1.0004 | h/16 | 8.7388e-3 | 1.0273 | 2.2054e-2 | 0.99407
h/32 | 5.2405e-3 | 1.0086 | 8.4471e-3 | 1.0002 | h/32 | 4.3281e-3 | 1.0137 | 1.1048e-2 | 0.99726
h/64 | 2.6123e-3 | 1.0044 | 4.2231e-3 | 1.0002 | h/64 | 2.1538e-3 | 1.0068 | 5.5293e-3 | 0.99862
Table 2: Case (1.2): Numerical results for the first example using the FV method.
Mesh % Ratio % Ratio | Mesh % Ratio % Ratio
h 3.9150e-2 - 2.0031e-1 h 9.0927e-2 2.5519%e-1
h/2 | 9.8105e-3 | 1.9966 | 1.0041e-1 | 0.99633 | h/2 | 2.2906e-2 | 1.9890 | 1.2894e-1 | 0.98487
h/4 | 2.4541e-3 | 1.9991 | 5.0238e-2 | 0.99905 | h/4 | 5.7370e-3 | 1.9974 | 6.4633e-2 | 0.99636
h/8 | 6.1360e-4 | 1.9998 | 2.5123e-2 | 0.99977 | h /8 | 1.4349e-3 | 1.9993 | 3.2337e-2 | 0.99909
h/16 | 1.5341e-4 | 1.9999 | 1.2562e-2 | 0.99994 | h/16 | 3.5877e-4 | 1.9998 | 1.6171e-2 | 0.99978
h/32 | 3.8352e-5 | 2.0000 | 6.2810e-3 | 1.0000 | h/32 | 8.9694e-5 | 2.0000 | 8.0859e-3 | 0.99993
h/64 | 9.5880e-6 | 2.0000 | 3.1405e-3 | 1.0000 | h /64 | 2.2424e-5 | 2.0000 | 4.0430e-3 | 0.99998
Table 3: Case (1.3): Numerical results for the first example using the FE method.
Mesh % Ratio % Ratio | Mesh % Ratio % Ratio
h 4.0574e-2 - 2.0026e-1 h 9.3691e-2 2.5445e-1
h/2 | 1.0183e-2 | 1.9944 | 1.0041e-1 | 0.99597 | h/2 | 2.3861e-2 | 1.9733 | 1.2885e-1 | 0.98169
h/4 | 2.5483e-3 | 1.9986 | 5.0237e-2 | 0.99908 | h/4 | 5.9920e-3 [ 1.9935 | 6.4622e-2 | 0.99560
h/8 | 6.3724e-4 | 1.9996 | 2.5123e-2 | 0.99974 | h/8 | 1.4997e-3 | 1.9984 | 3.2336e-2 | 0.99888
h/16 | 1.5932e-4 | 1.9999 | 1.2562e-2 | 0.99994 [ h/16 | 3.7502e-4 | 1.9996 | 1.6171e-2 | 0.99973
h/32 | 3.9830e-5 | 2.0000 | 6.2810e-3 | 1.0000 | h/32 | 9.3762e-5 | 1.9999 | 8.0859¢-3 | 0.99993
h/64 | 9.9576e-6 | 2.0000 | 3.1405e-3 | 1.0000 | h/64 | 2.3441e-5 | 2.0000 | 4.0430e-3 | 0.99998

The second test problem is

—uy, =f(x,y), (xy)e€(0,1)x(0,1),

TUxx
ulaﬂ =0 )

where the exact solution is u(x, y) = sin(27x)sin(2my)(x3 — y* + x2y®) and the right-
hand side function is generated by f = —Au. We again consider the three cases
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(2.1). FD method :

(2.2). FV method :

(2.3). FE method :

Y. He and X. Feng

.. yJ i
f”=f flx,y)dxdy,
}’]')71 lxi—lx .
—ii j+3 its
f”=J ] J * flx,y)dxdy
Yii1 X1
2 2

fii = f FOo )¢, y)dxdy,
D

where D;; = ZZ:lKikj andi = 1,2---,m;j
meshes produced by random numbers in [0,1].

ij

1,2.--,N. We use the two quasi-uniform

T, = {0,0.37948,0.50281,0.68128,0.83180, 1} x {0,0.30462,0.42889,0.70947, 1},

T; = {0,0.17296,0.27145,0.52259,0.88014,0.97975, 1} x

{0,0.011757,0.13652,0.25233,0.73731,0.87574,0.89390, 1}.

Table 4: Case (2.1): Numerical results for the second example using the FD method.
Mesh W Ratio % Ratio | Mesh % Ratio % Ratio
h 9.1995e-1 - 8.8531e-1 h 6.9511e-1 8.4733e-1
h/2 | 5.1646e-1 | 0.83290 | 5.8918e-1 | 0.58747 | h/2 | 6.7081e-1 | 0.35586 | 5.4316e-1 | 0.33702
h/4 | 2.4924e-1 | 1.0511 | 3.1940e-1 | 0.88334 | h/4 | 3.1004e-1 | 0.80892 | 3.8602e-1 | 0.79723
h/8 | 1.1915e-1 | 1.0648 | 1.6306e-1 | 0.96996 | h/8 | 1.6227e-1 | 0.93406 | 2.0163e-1 | 0.93697
h/16 | 5.7883e-2 | 1.0416 | 8.1883e-2 | 0.99377 | h/16 | 8.2541e-2 | 0.97521 | 1.0230e-1 | 0.97890
h/32 | 2.8489¢e-2 | 1.0227 | 4.0961e-2 | 0.99931 | h/32 | 4.1565e-2 | 0.98974 | 5.1430e-2 | 0.99212
h/64 | 1.4128e-2 | 1.0118 | 2.0477e-2 | 1.0002 | h/64 | 2.0849e-2 | 0.99539 | 2.5772e-2 | 0.99681
Table 5: Case (2.2): Numerical results for the second example using the FV method.
Mesh W Ratio % Ratio | Mesh % Ratio % Ratio
h 6.1573e-1 - 7.8709e-1 h 4.1946e-1 7.1806e-1
h/2 | 1.8990e-1 | 1.6971 | 4.5302e-1 | 0.79695 | h/2 | 2.2947e-1 | 0.87023 | 4.6248e-1 | 0.63471
h/4 | 5.0682e-2 | 1.9057 | 2.3515e-1 | 0.94599 | h/4 | 6.2350e-2 [ 1.8798 | 2.4407e-1 | 0.92210
h/8 | 1.2898e-2 | 1.9743 | 1.1867e-1 | 0.98663 | h/8 | 1.5931e-2 | 1.9686 | 1.2375e-1 | 0.97987
h/16 | 3.2395e-3 | 1.9933 | 5.9441e-2 | 0.99742 | h/16 | 4.0046e-3 | 1.9921 | 6.2086e-2 | 0.99509
h/32 | 8.1082e-4 | 1.9983 | 2.9724e-2 | 0.99983 | h/32 | 1.0025e-3 | 1.9981 | 3.1069e-2 | 0.99879
h/64 | 2.0277e-4 | 1.9995 | 1.4860e-2 | 1.0002 | h/64 | 2.5071e-4 | 1.9995 | 1.5538e-2 | 0.99967

From this procedure, we get the linear systems (3.4) where the coefficient matrices are
positive definite and symmetric. We use the standard conjugate gradient method [14] as
an iterative solver with initial guess (x, = 0.0), and the stopping criterion that the norm of
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Table 6: Case (2.3): Numerical results for the second example using the FE method.

Mesh IS Ratio leuply Ratio | Mesh Tu—uyllo Ratio JE=T Ratio
llullg uly _ llullg uly
h 6.8008e-1 7.7041e-1 h 4.5829e-1 6.7125e-1

h/2 | 2.2124e-1 | 1.6201 | 4.4972e-1 | 0.77660 71/2 2.6407e-1 | 0.79534 | 4.5342e-1 | 0.56600
h/4 | 6.0485e-2 | 1.8710 | 2.3465e-1 | 0.93852 71/4 7.7233e-2 | 1.7736 | 2.4241e-1 | 0.90340
h/8 | 1.5516e-2 | 1.9628 | 1.1860e-1 | 0.98441 71/8 2.0210e-2 | 1.9341 | 1.2350e-1 | 0.97294
h/16 | 3.9055e-3 | 1.9902 | 5.9433e-2 | 0.99677 71/16 5.1147e-3 | 1.9823 | 6.2053e-2 | 0.99294
h/32 | 9.7806e-4 | 1.9975 | 2.9723e-2 | 0.99968 E/SZ 1.2827e-3 | 1.9955 | 3.1065e-2 | 0.99821
h/64 | 2.4463e-4 | 1.9993 | 1.4860e-2 | 1.0001 71/64 3.2095e-4 | 1.9988 | 1.5537e-2 | 0.99958

the residual vectors is less than 1.0 x 10!, The numerical results are presented in Tables
4-6, in terms of the H!-norm and L2-norm convergence rates.

We observe from these tables that the convergence rates of the three methods in the H®-
norm are optimal on the quasi-uniform meshes, which confirms our theoretical analysis.
As expected, the errors become smaller as the meshes are refined. Moreover, we see from
the numerical results that the convergence rates of both the FE and FV methods in the
L?-norm are of order two, but the convergence rate of the FD method in the L2-norm is
only of order one on the quasi-uniform meshes.
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