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Abstract. A spectral-element method is developed to solve the scattering problem for

time-harmonic sound waves due to an obstacle in an homogeneous compressible fluid.

The method is based on a boundary perturbation technique coupled with an efficient

spectral-element solver. Extensive numerical results are presented, in order to show the

accuracy and stability of the method.
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1. Introduction

The scattering of acoustic and electromagnetic waves is important in a wide range of

problems of scientific and technological interest, and various numerical techniques have

been proposed to solve related problems — cf. the book [3] and two surveys [16, 23]

for example. A particularly compelling class of methods is based on boundary perturba-

tions [2], and can be traced back to the work of Rayleigh [15] and Rice [17]. However,

such algorithms depend upon significant cancellations for convergence, so their numerical

implementations are highly ill-conditioned when pursued to high order [11, 12]. A new

boundary perturbation algorithm called the transformed field expansion (TFE) that does

not rely on strong cancellations for convergence was therefore proposed, and proved to be

not only accurate and stable but also robust at high order [11–13].

The main purpose of this article is to apply the well developed method in Ref. [13] to

the scattering problem for time-harmonic acoustic waves due to an obstacle in an homoge-

neous compressible fluid. In particular, we construct a well-conditioned spectral-element

solver for the Helmholtz equation, which repeatedly involves the TFE algorithm. This

solver is highly efficient and accurate because it exploits the fact that the Dirichlet-to-

Neumann operator (DNO) is global in physical space but local in frequency space, hence
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we can reduce the two-dimensional problem to a sequence of one-dimensional problems

using a spectrally accurate approximation to the DNO. We demonstrate that this provides

an efficient numerical solution, as the frequency of the scattered radiation is varied from

low to moderate.

In Section 2 we formulate the governing equations for an electromagnetic field in-

cident upon a periodic two–dimensional irregular grating. In Section 3, we present the

Method of Transformed Field Expansions, where we make a change of variables followed

by an expansion in terms of the boundary perturbation. We then construct our two-domain

spectral-element method to solve the resulting two–point boundary value problem in Sec-

tion 4 and present the consequent numerical results in Section 5, followed by concluding

remarks in Section 6. Finally, some of the detailed formulae needed in Section 3 are sum-

marised in the Appendix.

2. Governing Equations

Given an incident field φ on a bounded obstacle Ω+ ⊂ R2 in the homogeneous com-

pressible fluid, the scattered field in the exterior of the obstacle, Ω− = R2\Ω̄+ can be

written as

u− = Pe −φ ,

where Pe is the (total) acoustic pressure. The governing equation for u− is

∆u−+ (k−)2u−= 0 in Ω− , (2.1)

where k− = ω/c− is the wave number (assumed to be real and positive), ω is the fre-

quency, and c− is the sound speed in Ω−. We assume that the incident field φ satisfies

(2.1) everywhere, except possibly at some places in Ω− such that φ could correspond to

a point source in Ω− for example. We require that u− satisfies the Sommerfeld radiation

condition at infinity. Within the obstacle Ω+, the reflected acoustic pressure u+ satisfies

the Bergmann equation [1,6]

∆u++ (k+)2u+ = 0, in Ω+ , (2.2)

where k+ = ω/c+ with c+ denoting the sound speed in Ω+. At the interface S = ∂Ω+,

we have a pair of transmission conditions expressing continuity of pressure and normal

velocity — viz.

Pe = u+ and
1

ρ−

∂ Pe

∂ n
=

1

ρ+

∂ u+

∂ n
on S , (2.3)
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where ρ+, ρ− denote the constant densities of the fluid in Ω+,Ω−, respectively.

In summary, we seek to solve the following problem:

∆u+ + (k+)2u+ = 0 in Ω+, (2.4)

∆u− + (k−)2u− = 0 in Ω−, (2.5)

u+ − u− = φ on S , (2.6)

1

ρ+

∂ u+

∂ n
−

1

ρ−

∂ u−

∂ n
=

1

ρ−

∂ φ

∂ n
on S , (2.7)

lim
r→∞

r
1

2 (∂ru
− − ik−u−) = 0 , (2.8)

in which Eq. (2.7) can be re-stated as

∂ u+

∂ n
− δ

∂ u−

∂ n
= δ

∂φ

∂ n
on S , where δ = ρ+/ρ− . (2.9)

We now assume that the obstacle is a star-shaped domain — i.e. there exists g(θ) such

that

Ω+ = {(r,θ) : 0≤ r < a+ g(θ), 0≤ θ < 2π} ,

and we also write

Ω− = {(r,θ) : r > a+ g(θ), 0≤ θ < 2π} ,

S = {(r,θ) : r = a+ g(θ), 0≤ θ < 2π} .

Let b be such that b > a + |g|L∞. Then using the classical argument of separation of

variables, the general solution of Eqs. (2.5) and (2.8) for r ≥ b can be expressed as

u−(r,θ) =

∞
∑

p=−∞

apH(1)p (k
−r)eipθ , (2.10)

where H(1)p is the p-th degree Hankel function of the first kind. Hence from the expression

u−(b,θ) =ψ(θ) =

∞
∑

p=−∞

ψ̂peipθ ,

the coefficients ap in Eq. (2.10) can be determined uniquely such that

u−(r,θ) =

∞
∑

p=−∞

ψ̂p

H(1)p (k
−r)

H
(1)
p (k

−b)
eipθ .
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We define an operator T by

Tψ= ∂ru−(b,θ) =

∞
∑

p=−∞

k−
dzH(1)p (k

−b)

H
(1)
p (k

−b)
ψ̂peipθ , (2.11)

where dzH(1)p (k
−b) = dH(1)p (z)/dz|z=k−b. This operator T maps the Dirichlet data ψ to

Neumann data ∂ru−|r=b, so it is commonly referred as the Dirichlet-to-Neumann operator

(DNO).

Let us denote Ω−
b
= Ω− ∩ {(r,θ) : r < b}. Using the operator T and bearing in mind

Eq. (2.9), we can re-state Eqs. (2.4)–(2.8) as

∆u+ + (k+)2u+ = 0 in Ω+ , (2.12)

∆u− + (k−)2u− = 0 in Ω−
b

, (2.13)

u+ − u− = φ on S , (2.14)

∂ u+

∂ n
− δ

∂ u−

∂ n
= δ

∂ φ

∂ n
on S , (2.15)

∂ru−(b,θ)− Tu−(b,θ) = 0 . (2.16)

3. Transformed Field Expansion

Although the problem (2.12)–(2.16) is linear with constant coefficients, it involves

a general interface S that prevents us from developing fast solvers through the classical

technique of separation of variables. This difficulty can be circumvented by using a bound-

ary perturbation method [2]. However, a direct application of the boundary perturbation

method can lead to very ill-conditioned recursions [9], and it has been shown that the

transformed field expansion (TFE) method may dramatically improve the conditioning of

the resulting recursions [8,10].

The TFE method consists of two essential steps: (1) ”domain flattening” through a

simple change of variables; and (2) boundary perturbation. The TFE method for acoustic

scattering by an homogeneous obstacle was developed in Ref. [13], and we now extend

that algorithm to solve our present problem.

3.1. Change of variables

We introduce the following change of variables:

θ ′ = θ ,

r ′ =
ar

a+ g
, r < a+ g ,

r ′ =
dr − bg

d − g
, a+ g < r < b ,

(3.1)



194 J. An and J. Shen

where d = b − a. One can easily check that the domain Ω+ = {(r,θ) : r < a + g(θ)} is

transformed into the disk Ωa = {(r
′,θ ′) : r ′ < a}, and we have the following differentiation

rules:







(a+ g)∂θ = (a+ g)∂θ ′ − r ′∂θ ′ g∂r′ ,

(a+ g)∂r = a∂r′ ,

(a+ g)Dr = (a+ g)Dr′ ,

for r < a+ g(θ)

and







(d − g)∂θ = (d − g)∂θ ′ − B(r ′,θ ′)∂r′ ,

(d − g)∂r = d∂r′ ,

(d − g)Dr = dDr′ + A(r ′,θ ′)∂r′ ,

for a+ g(θ)< r < b ,

where

Dr = r∂r , A(r ′,θ ′) = g(θ)(b− r ′) ,

B(r ′,θ ′) = ∂θ ′A= (∂θ ′ g(θ
′))(b− r ′) .

We note also that dr = dr ′+ A(r ′,θ ′).

Let us write Ωab={(r
′,θ ′): a < r ′ < b} and ũ±(r ′,θ ′) = u±(r,θ), φ̃(r ′,θ ′)=φ(r,θ).

After some tedious but straightforward manipulation (cf. the Appendix), we transform the

system (2.12)–(2.16) to the new coordinates (r ′,θ ′):

D2
r′

ũ+ + ∂ 2
θ ′

ũ++ (r ′)2(k+)2ũ+ = F1(r
′,θ ′; ũ+) in Ωa , (3.2)

D2
r′

ũ− + ∂ 2
θ ′

ũ−+ (r ′)2(k−)2ũ− = F2(r
′,θ ′; ũ−) in Ωab , (3.3)

ũ+(a,θ ′)− ũ−(a,θ ′) = φ̃(a,θ ′) , (3.4)
�

L1

∂ ũ+

∂ r ′
− L2

∂ ũ+

∂ θ ′

�

− δ

�

L3

∂ ũ−

∂ r ′
− L2

∂ ũ−

∂ θ ′

�

= δ

�

L3

∂ φ̃

∂ r ′
− L2

∂ φ̃

∂ θ ′

�

at r ′ = a , (3.5)

∂r′ ũ
−(b,θ ′)− Tũ−(b,θ ′) = J(θ ′; ũ−) , (3.6)

where F1 and F2 have the explicit expressions given in (A.1)–(A.2) that contain all of the

terms involving the function g(θ), and

L1 =

�

a+
a(∂θ ′ g)

2

(a+ g)2

�

, L2 =
∂θ ′ g

a+ g
, L3 =

d(a+ g)

d − g
−
(a− b)(∂θ ′ g)

2

(d − g)(a+ g)
,

dJ(θ ′; ũ−) = −g(θ ′)Tũ−(b,θ ′) .

A graphical sketch of this procedure is depicted in Fig. 1.
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3.2. Recursion by boundary perturbation

We now describe a boundary perturbation algorithm to solve the transformed system

(3.2)–(3.6). Writing g = ǫ f and assuming that f is sufficiently smooth, one can show that

the transformed fields ũ± are analytic with respect to ǫ — cf. [2,7,11,12]). Consequently,

we can introduce the Taylor expansion

ũ±(r ′,θ ′;ǫ) =

∞
∑

n=0

ũ±n (r
′,θ ′)ǫn . (3.7)

Given the incident field

φ(r,θ) = eir(α cosθ−β sinθ ) ,

for a+ g ≤ r ≤ b we have

φ̃(r ′,θ ′) = ei(
(d−g)r′+bg

d
)(α cosθ ′−β sinθ ′) = eipθ ′

(b−r′) f
d

ǫ eipθ ′r′ , (3.8)

so in particular

φ̃(a,θ ′) = eipθ ′ f ǫ eiapθ ′ =

∞
∑

n=0

eiapθ ′
(ipθ ′ f )n

n!
ǫn :=

∞
∑

n=0

φ̃nǫ
n . (3.9)
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Inserting Eqs. (3.7) and (3.9) into Eqs. (3.2)–(3.6) and collecting all terms in ǫn, after a

straightforward albeit tedious calculation we obtain the following recursions for ũ±n :

D2
r′

ũ+n + ∂
2
θ ′

ũ+n + (r
′)2(k+)2ũ+n = F1n in Ωa , (3.10)

D2
r′

ũ−n + ∂
2
θ ′

ũ−n + (r
′)2(k−)2ũ−n = F2n in Ωab , (3.11)

ũ+n (a,θ ′)− ũ−n (a,θ ′) = φ̃n(a,θ ′) , (3.12)

∂r′ ũ
+
n − δ∂r′ ũ

−
n = Qn on r ′ = a , (3.13)

∂r′ ũ
−
n (b,θ ′)− Tũ−n (b,θ ′) = Jn , (3.14)

where the exact expressions for F1n, F2n, Qn and Jn are given in the Appendix - –cf.

Eqs. (A.3)-(A.6).

Eqs. (3.10) and (3.11) are now set in a separable domain where the interface is the

circle r ′ = a, so we can apply the classical technique of separation of variables. We first

expand all the quantities in Fourier series in θ ′ — i.e. we write

ũ±n (r
′,θ ′) =

∞
∑

p̃=−∞

ũ±
n,p̃
(r ′)eip̃θ ′, F1n(r

′,θ ′) =

∞
∑

p̃=−∞

F1n,p̃(r
′)eip̃θ ′ ,

F2n(r
′,θ ′) =

∞
∑

p̃=−∞

F2n,p̃(r
′)eip̃θ ′ , φ̃n(a,θ ′) =

∞
∑

p̃=−∞

φ̃n,p̃eip̃θ ′ ,

Qn(a,θ ′) =

∞
∑

p̃=−∞

Qn,p̃eip̃θ ′, Jn(b,θ ′) =

∞
∑

p̃=−∞

Jn,p̃eip̃θ ′.

On inserting these Fourier expansions into Eqs. (3.10)–(3.14) and taking Eq. (2.11) into

account, we obtain a sequence of one-dimensional equations for ũ±
n,p̃

:

D2
r′

ũ+
n,p̃
− p̃2ũ+

n,p̃
+ (r ′)2(k+)2ũ+

n,p̃
= F1n,p̃ , 0< r ′ < a , (3.15)

D2
r′

ũ−
n,p̃
− p̃2ũ−

n,p̃
+ (r ′)2(k−)2ũ−

n,p̃
= F2n,p̃ , a < r ′ < b , (3.16)

ũ+
n,p̃
(a)− ũ−

n,p̃
(a) = φ̃n,p̃ , (3.17)

∂r′ ũ
+
n,p̃
(a)− δ∂r′ ũ

−
n,p̃(a) = Qn,p̃ , (3.18)

∂r′ ũ
−
n,p̃
(b)− k−

dzH
(1)

p̃
(k−b)

H
(1)

p̃
(k−b)

ũ−
n,p̃
(b) = Jn,p̃ . (3.19)

The above system should be supplemented with the essential pole condition [20]

ũ+
np̃
(0) = 0 , for p̃ 6= 0 . (3.20)
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In summary, we can express the solutions ũ± of Eqs. (3.2)–(3.6) as

ũ±(r ′,θ ′) =

∞
∑

n=0

∞
∑

p̃=−∞

ũ±n,p̃(r
′)ei p̃θ ′ǫn ,

such that our main computational task is to obtain the set {ũ±
n,p̃
} as the solutions of

Eqs. (3.15)–(3.19) for all n and p̃.

4. A Two-Domain Spectral-Element Method

After dropping the subscript p and the superscripted tilde from Eqs. (3.15)–(3.19), It

emerges that we have the following generic one-dimensional problem for each pair of n

and p:

L+p u+(r) := D2
r u+(r)− p2u+(r)+ r2(k+)2u+(r) = F1(r) , 0< r < a , (4.1)

L−p u−(r) := D2
r u−(r)− p2u−(r)+ r2(k−)2u−(r) = F2(r) , a < r < b , (4.2)

u+(a)− u−(a) = φ , ∂ru+(a)− δ∂ru−(a) = Q , (4.3)

u+(0) = 0 for p 6= 0 , and ∂ru−(b)− k−
dzH(1)p (k

−b)

H
(1)
p (k

−b)
u−(b) = J . (4.4)

We describe below a two-domain spectral-element method for solving this system.

4.1. Weak formulation

We first homogenise the interface and boundary conditions in Eqs. (4.1)–(4.4) and

rewrite the system in a suitable form for a Galerkin approximation. Thus denoting

Tp = k−
dzH(1)p (k

−b)

H
(1)
p (k

−b)
, (4.5)

and setting

u∗+ = (
δ(Tp(φ −Qa)− J)

Tpa(δ− 1)− (1− Tp b)
+Q)r ,

u∗− =
Tp(φ−Qa)− J

Tpa(δ− 1)− (1− Tp b)
r + a(δ− 1)

Tp(φ −Qa)− J

Tpa(δ− 1)− (1− Tp b)
−φ +Qa ,

û+ = u+ − u∗+, û− = u−− u∗− ,
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we can rewrite Eqs. (4.1)–(4.4) as

Dr

�

1

ρ+
Dr û+(r)

�

−
1

ρ+
p2û+(r)+

1

ρ+
r2(k+)2û+(r) =

1

ρ+
F̂1(r) , 0< r < a , (4.6)

Dr

�

1

ρ−
Dr û−(r)

�

−
1

ρ−
p2û−(r)+

1

ρ−
r2(k−)2û−(r) =

1

ρ−
F̂2(r) , a < r < b , (4.7)

û+(a)− û−(a) = 0;
1

ρ+
∂r û+(a)−

1

ρ−
∂r û−(a) = 0 , (4.8)

û+(0) = 0, for p 6= 0; ∂r û−(b)− Tpû−(b) = 0 , (4.9)

where F̂1 = F1 − L+p u∗+ and F̂2 = F1 − L−p u∗−. Then denoting

u(r) :=

(

û+(r) , 0< r < a ,

û−(r), a < r < b ,

f (r) :=

(

F̂1(r) , 0< r < a ,

F̂2(r), a < r < b ,

ρ :=

(

ρ+ , 0< r < a ,

ρ− , a < r < b ,

kp(r) :=

(

r2(k+)2 − p2 , 0< r < a ,

r2(k−)2 − p2 , a < r < b ,

we can re-state Eqs. (4.6)–(4.9) as

Dr

�

1

ρ
Dru(r)

�

+
1

ρ
kp(r)u(r) =

1

ρ
f , 0< r < a , a < r < b , (4.10)

u(a−)− u(a+) = 0 ,
1

ρ−
∂ru(a−)−

1

ρ+
∂ru(a+) = 0 , (4.11)

u(0) = 0 for p 6= 0 , ∂ru(b)− Tpu(b) = 0 . (4.12)

Now let PN be the polynomial space of degree at most N , and define the two-domain

spectral-element spaces

XN := {u ∈ C(0, b) : u|(0,a),u|(a,b) ∈ PN} ,

X 0
N := {u ∈ XN : u(0) = 0} .

The two-domain spectral-element method for Eqs. (4.10)–(4.12) with p 6= 0 is then applied

to find uN ∈ X 0
N such that

−
�

1

ρ
DruN ,∂r(r vN )

�

+
1

ρ−
b2TpuN (b)v̄N (b)+

�

1

ρ
kpuN , vN

�

=

�

1

ρ
IN f , vN

�

,

∀vN ∈ X 0
N , (4.13)
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where IN is the interpolation operator based on Legendre-Gauss-Lobatto quadratures in

[0, a] and [a, b]. For p = 0, we only have to replace X 0
N by XN in (4.13). The jump in the

wave number is located at the interface of the two domains, and it is well-known that the

above spectral-element method converges exponentially fast provided f is smooth in each

subdomain.

We next construct a set of basis functions for X 0
N , by writing

(

x1 = 2r/a− 1 , 0< r < a ,

x2 = [2r − (a+ b)]/(b− a) , a < r < b .

Thus the basis functions associated with the endpoints of the two-subintervals (0, a) and

(a, b) are

ϕ0(r) :=







−
1

2
(x1− 1) , 0< r < a ,

0 , a < r < b ,

ϕN (r) :=







1

2
(x1+ 1) , 0< r < a ,

−
1

2
(x2− 1) , a < r < b ,

ϕ2N (r) :=







0 , 0< r < a ,
1

2
(x2 + 1) , a < r < b .

If L j denotes the Legendre polynomial of order j, we then define the interior basis functions

in [0, a] as

ϕ j(r) :=

(

L j−1(x1)− L j+1(x1) , 0< r < a , j = 1, · · · , N − 1 ,

0 , a < r < b ,

and in [a, b] as

ϕN+ j(r) :=

(

0 , 0< r < a ,

L j−1(x2)− L j+1(x2) , a < r < b , j = 1, · · · , N − 1 .

By construction we have

X 0
N = span{ϕ j : j = 1,2, · · · , 2N} ,
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and we set

uN =

2N
∑

i=1

ûiϕi , ū= (û1, û1, · · · , û2N )
T ,

Ak j = a(ϕ j,ϕk) , A= (Ak j)1≤k, j≤2N ,

fi = (IN f ,ϕi) , f̄ = ( f1, f2, · · · , f2N )
T ,

such that Eq. (4.13) reduces to the linear system

Aū= f̄ . (4.14)

(For the case p = 0, this system needs to be augmented with one more equation.) It is

clear that A has two block-diagonal sub-matrices of order N − 1, and the N -th row and

column correspond to the interface basis function ϕN . Furthermore, the two sub-matrices

are sparse, so the linear system can be solved easily and efficiently by a block-Gaussian

elimination process involving O(N) operations.

To summarise, the procedure for solving the problem (2.4)–(2.8) consists of the fol-

lowing steps:

(i) reduce the problem (2.4)–(2.8) to an equivalent problem (2.12)–(2.16) in a bounded

domain;

(ii) transform the equivalent problem (2.12)–(2.16) with a general interface S into an

equivalent problem (3.2)–(3.6) with a circular interface;

(iii) insert the Taylor expansions (3.7) into (3.2)–(3.6), to derive the sequence of prob-

lems (3.10)–(3.14);

(iv) introduce the Fourier expansions for all functions in (3.10)–(3.14), to obtain the

sequence of one-dimensional problems (3.15)–(3.19);

(v) solve (3.15)-(3.19) using the spectral-element method, for each n (0 ≤ n ≤ M) and

p (−Nθ ≤ p ≤ Nθ ); and

(vi) sum up the finite term Taylor expansion (3.7), using a Padé approximation to enlarge

the radius of convergence [2]— cf. the Remark 4.1 in Ref. [5] for more detail.

The numerical analysis of the spectral-element method (4.13) used for Eqs. (4.10)–(4.12)

can be carried out in a fashion similar to Ref. [22], and the complete error analysis for the

transformed field expansion algorithm presented here follows from the general framework

established in Ref. [14].
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Figure 2: Exa
t solutions for Example 5.1: left, (k+, k−) = (12.5, 6.25); right, (k+, k−) = (102.5, 51.25).
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Figure 3: The dis
rete L2 errors for Example 5.1: left, (k+, k−) = (12.5, 6.25); right, (k+, k−) =
(102.5, 51.25).

5. Numerical Results and Discussion

We now present some numerical experiments to demonstrate the stability and accuracy

of our algorithm. We define

E2(u) =

∫ b

0

|u|2dr =

∫ a

0

|u|2dr +

∫ b

a

|u|2dr

=
1

2

∫ 1

−1

�

�

�

�

u

�

1

2
(t + 1)

�
�

�

�

�

2

d t +
b− a

2

∫ 1

−1

�

�

�

�

u

�

b− a

2
t +

a+ b

2

�
�

�

�

�

2

d t ,

E2
N (u) =

1

2

N
∑

i=0

�

�

�

�

u

�

1

2
(t i + 1)

�
�

�

�

�

2

ωi +
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2

N
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i=0

�

�

�

�

u

�

b− a

2
t i +

a+ b

2

�
�

�

�

�

2

ωi ,

where t i is Legendre-Gauss-Lobatto point, and we first consider the simple case where

the obstacle is a circular domain in order to investigate the numerical convergence by

comparing the results with the known exact solution.
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Example 5.1. We fix a = 3, b = 6 and p = 0, and consider the wave numbers (k+, k−) =

(12.5,6.25) and (k+, k−) = (102.5,51.25). We set ρ− = 1 and ρ+ = a, and note the

following exact solution of (4.10)–(4.12):

u(r) :=

(

Tp(r
2 − a2) + 1 , 0< r < a ,

eTp(r−a) , a < r < b ,

where Tp is given in (4.5).

The real parts of the above exact solutions are plotted in Fig. 2, and the discrete L2 errors

vs. the number of Legendre modes N in each subdomain are plotted in Fig. 3. We observe

that the error converges exponentially with N as expected, and that relatively few points

are needed to resolve highly oscillatory solutions. However, the error appears to saturate

at about 10−9 for the first case, and 10−7 for the second case. This is because the prob-

lem (4.6)–(4.9) is not positive definite, which leads to relatively large condition numbers

for the linear system (4.14), particularly for large wave numbers. We recall that for pos-

itive definite problems, for example k± < 0 in (4.6)–(4.9), the spectral-element method

described in the last section would be well-conditioned [18,20].

We now proceed to consider three examples where the obstacles are not circular. In all

three we take the incident wave to be exp(irk− cos(θ)), Nθ to be the number of Fourier

modes in our algorithm, Nr the number of Legendre mode in each of the two-subdomains,

and M the number of terms in the Taylor expansion. We also write en,2 for the L2 norm of

the n-th term in the Taylor expansion. We found numerically that Nθ = 35, Nr = 60 and

M = 35 are sufficient to obtain at least six-digit accuracy, so we fixed Nθ = 35, Nr = 60

and M = 35.

Example 5.2. We fix ǫ = 0.1 , a = 1 , b = 2 , f (θ) = cos(4θ) , and take ρ+/ρ− = 2 and

wave numbers (k+, k−) = (16.5,8.25).

The shape of the obstacle and the real part of the computed solution are plotted in Fig. 4,

and the convergence history of the Taylor expansion is presented in Fig. 5.

Example 5.3. We fix ǫ = 0.3 , a = 2 , b = 4 , f (θ) = cos(4θ) , and take ρ+/ρ− = 2 and

wave numbers (k+, k−) = (6.5,3.25).

The shape of the obstacle and the real part of the computed solution are plotted in Fig. 6,

and the convergence history of the Taylor expansion is presented in Fig. 7.

Example 5.4. We fix ǫ = 0.6 , a = 2 , b = 4 , f (θ) = cos(4θ) , and take ρ+/ρ− = 2 and

wave numbers (k+, k−) = (2.5,1.25).

The shape of the obstacle and the real part of the computed solution are plotted in Fig. 8,

and the convergence history of the Taylor expansion is presented in Fig. 9.

From these three examples, we observe that the algorithm is quite robust with respect

to the size of the perturbation, and that cases with low to moderate wave numbers can be

well resolved with relatively few unknowns.
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Figure 4: Example 5.2: left, the shape of the obsta
le; right, the real part of the numeri
al solution.
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Figure 5: Convergen
e history of the Taylor expansion for Example 5.2.
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Figure 6: Example 5.3: left, the shape of the obsta
le; right, the real part of the numeri
al solution.
6. Concluding Remarks

We have developed an efficient and robust method for solving for the acoustic scat-

tering by an obstacle in an homogeneous compressible fluid. This involves an improved
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Figure 8: Example 5.4: left, the shape of the obsta
le; right, the real part of the numeri
al solution.
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Figure 9: Convergen
e history of the Taylor expansion for Example 5.4.
boundary perturbation method with a transformed field expansion, coupled with a spectral-

element method. The resulting algorithm is semi-direct and consists of a sequence of one-

dimensional problems, which can be solved by a two-domain spectral-element method.

The algorithm is shown to be very efficient and stable for a range of small to moderate
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wave numbers. Although we have only considered two-dimensional obstacles in this ar-

ticle, the method can be extended to three dimensions as in Ref. [4], by using spherical

harmonic transforms instead of Fourier transforms.

Acknowledgments

This work is partially supported by the Chinese NSF grant 91130002.

A. Detailed Formulae for the Change of Variables and Recursion in Section 3

With straightforward but tedious calculations, one can obtain the following formulae

for F1 and F2 in Eqs. (3.2)–(3.3):

−a2F1 =2agD2
r′

ũ++ g2D2
r′

ũ++ a∂θ ′(g∂θ ′ ũ
+)

− ar ′∂θ ′(∂θ ′ g∂r′ ũ
+) + ag∂ 2

θ ′
ũ+ + g∂θ ′(g∂θ ′ ũ

+)

− gr ′∂θ ′(∂θ ′ g∂r′ ũ
+)− ar ′∂θ ′ g∂r′∂θ ′ ũ

+ − gr ′∂θ ′ g∂r′∂θ ′ ũ
+

+ (∂θ ′ g)
2D2

r′
ũ+ − a∂θ ′ g∂θ ′ ũ

+ − g∂θ ′ g∂θ ′ũ
+

+ (∂θ ′ g)
2Dr′ ũ

+ +

4
∑

l=1

cl(g)(r
′)2(k+)2ũ+ ,

(A.1)

where

c1(g) = 4ag, c2(g) = 6g2 ,

c3(g) =
4

a
g3, c4(g) =

g4

a2
;

and

−d2F2 =dA∂r′Dr′ ũ
− + dDr′(A∂r′ ũ

−) + A∂r′(A∂r′ ũ
−)

− d g∂ 2
θ ′

ũ− − d∂θ ′(g∂θ ′ũ
−) + g∂θ ′(g∂θ ′ ũ

−)− dB∂r′∂θ ′ ũ
−

+ B∂r′(g∂θ ′ũ
−)− d∂θ ′(B∂r′ ũ

−) + g∂θ ′(B∂r′ ũ
−) + B∂r′(B∂r′ ũ

−)

+ d(∂θ ′ g)∂θ ′ũ
− − g(∂θ ′ g)∂θ ′ ũ

− − (∂θ ′ g)B∂r′ ũ
− +

4
∑

j=1

c̃ j(g)(k
−)2ũ− ,

(A.2)

where

c̃1(g) = −2d g(r ′)2 + 2dAr ′, c̃2(g) = g2(r ′)2 − 4gAr ′+ A2,

c̃3(g) =
2

d
Ag2r ′−

2

d
gA2, c̃4(g) =

1

d
g2A2 .
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Similarly, we can derive the following formulae for F1n, F2n, Qn and Jn in Eqs. (3.10)–

(3.14):

−a2F1n = 2a f D2
r′

ũ+n−1 + f 2D2
r′

ũ+n−2 + a∂θ ′( f ∂θ ′ ũ
+
n−1)

− ar ′∂θ ′(∂θ ′ f ∂r′ ũ
+
n−1) + a f ∂ 2

θ ′
ũ+n−1 + f ∂θ ′( f ∂θ ′ ũ

+
n−2)

− f r ′∂θ ′(∂θ ′ f ∂r′ ũ
+
n−2)− ar ′∂θ ′ f ∂r′∂θ ′ ũ

+
n−1 − f r ′∂θ ′ f ∂r′∂θ ′ ũ

+
n−2

+ (∂θ ′ f )
2D2

r′
ũ+n−2 − a∂θ ′ f ∂θ ′ ũ

+
n−1 − f ∂θ ′ f ∂θ ′ũ

+
n−2

+ (∂θ ′ f )
2Dr′ ũ

+
n−2
+

4
∑

l=1

cl( f )(r
′)2(k+)2ũ+

n−l
,

(A.3)

and

−d2F2n = dÃ∂r′Dr′ ũ
−
n−1 + dDr′(Ã∂r′ ũ

−
n−1) + Ã∂r′(Ã∂r′ ũ

−
n−2)

− d f ∂ 2
θ ′

ũ−n−1 − d∂θ ′( f ∂θ ′ ũ
−
n−1) + f ∂θ ′( f ∂θ ′ ũ

−
n−2)− dB̃∂r′∂θ ′ũ

−
n−1

+ B̃∂r′( f ∂θ ′ ũ
−
n−2)− d∂θ ′(B̃∂r′ ũ

−
n−1) + f ∂θ ′(B̃∂r′ ũ

−
n−2) + B̃∂r′(B̃∂r′ ũ

−
n−2)

+ d(∂θ ′ f )∂θ ′ũ
−
n−1 − f (∂θ ′ f )∂θ ′ũ

−
n−2 − (∂θ ′ f )B̃∂r′ ũ

−
n−2 +

4
∑

j=1

d̃ j( f )(k
−)2ũ−

n− j
,

(A.4)

where

Ã= f (b− r ′), B̃ = (∂θ ′ f )(b− r ′).

d̃1( f ) = −2d f (r ′)2+ 2dÃr ′, d̃2( f ) = f 2(r ′)2!4 f Ãr ′+ Ã2 ,

d̃3( f ) =
2

d
Ãf 2r ′−

2

d
f Ã2, d̃4( f ) =

1

d
f 2Ã2 ;

− a3dQn = (2a2d f − a3 f )
∂ ũ+

n−1

∂ r ′
+
�

ad f 2− 2a2 f 2 + ad(∂θ ′ f )
2
� ∂ ũ+

n−2

∂ r ′

−
�

a f 3 + a f (∂θ ′ f )
2
� ∂ ũ+n−3

∂ r ′
− ad∂θ ′ f

∂ ũ+n−1

∂ θ ′
+ (a f ∂θ ′ f − d f ∂θ ′ f )

∂ ũ+n−2

∂ θ ′

+ f 2∂θ ′ f
∂ ũ+n−3

∂ θ ′
− δ
n

3a2d f
∂ ũ−n−1

∂ r ′
+
�

3ad f 2 − a2(∂θ ′ f )
2 + ab(∂θ ′ f )

2
� ∂ ũ−n−2

∂ r ′

+
�

d f 3− a f (∂θ ′ f )
2+ b f (∂θ ′ f )

2
� ∂ ũ−

n−3

∂ r ′
− ad∂θ ′ f

∂ ũ−
n−1

∂ θ ′
+ (a f ∂θ ′ f − d f ∂θ ′ f )

∂ ũ−
n−2

∂ θ ′

+ f 2∂θ ′ f
∂ ũ−n−3

∂ θ ′
+ a3dip(θ ′)

�

φ̃n −
f

d
φ̃n−1

�

+ 3a2d f ip(θ ′)

�

φ̃n−1 −
f

d
φ̃n−2

�
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+
�

3ad f 2 − a2(∂θ ′ f )
2 + ab(∂θ ′ f )

2
�

ip(θ ′)

�

φ̃n−2 −
f

d
φ̃n−3

�

+
�

d f 3− a f (∂θ ′ f )
2+ b f (∂θ ′ f )

2
�

ip(θ ′)

�

φ̃n−3 −
f

d
φ̃n−4

�

− adi∂θ ′ f
�

a∂θ ′p(θ
′)φ̃n−1 + (∂θ ′ f p(θ ′) + f ∂θ ′p(θ

′))φ̃n−2

�

+ i(a f ∂θ ′ f − d f ∂θ ′ f )
�

a∂θ ′p(θ
′)φ̃n−2 + (∂θ ′ f p(θ ′) + f ∂θ ′p(θ

′))φ̃n−3

�

+ i f 2∂θ ′ f
�

a∂θ ′p(θ
′)φ̃n−3 + (∂θ ′ f p(θ ′) + f ∂θ ′p(θ

′))φ̃n−4

�
o

(A.5)

and

dJn = − f T ũ−n−1(b,θ ′). (A.6)
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