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1. Introduction

Generalised saddle point problems arise in constrained quadratic programming, con-

strained least squares problems, mixed finite-element approximations of elliptic PDEs, com-

putational fluid dynamics, and Stokes problems [1, 6, 9, 10, 22]. Let m, n be integers such

that m ≥ n> 0. We consider the generalised saddle point problem

�

A B

B⊺ −C

��

x

y

�

=

�

b

q

�

, (1.1)

where A∈ Rm×m and C ∈ Rn×n are respectively symmetric positive definite and symmetric

positive semi-definite matrices, B⊺ is the transpose of a full column rank matrix B ∈ Rm×n,

and b ∈ Rm, q ∈ Rn are given vectors. In the special case C = 0, the problem (1.1) obviously

is reduced to the augmented system of linear equations

�

A B

B⊺ 0

��

x

y

�

=

�

b

q

�

. (1.2)

Various iteration methods have been used to solve such problems — e.g. Uzawa-type

methods [8, 11, 12, 19, 25], Hermitian and skew-Hermitian splitting (HSS) iteration [2–

5], preconditioned Krylov subspace methods [1,21], restrictively preconditioned conjugate
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gradient methods [6,23] and the successive overrelaxation (SOR) method [24], while Benzi

et al. [10] reviewed existing approaches. For the augmented linear system (1.2), Golub et

al. [16] proposed an SOR-like method, which was then further developed [7,13,14]. For the

generalised saddle point problem (1.1), Cao [12] discussed the convergence of a nonlinear

Uzawa algorithm; Bai & Wang [8] studied parameterised inexact Uzawa methods (PIU),

Zhou & Zhang [25] proposed a generalisation of the parameterised inexact Uzawa methods

(GPIU), and Huang & Ma [18] developed a new GSOR method. Refs. [8,18,25] deal with

symmetric positive definite matrices C , Miao & Cao [19] discussed the GPIU method [25]

for symmetric positive semidefinite matrices C under the conditions ker(C) ∩ ker(B⊺) = 0

with the rank p of C such that 0< p < n.

Recently, Njeru & Guo [20] have considered an accelerated SOR-like method (ASOR)

for the augmented linear system (1.2). Here we apply the ASOR method to the generalised

saddle point problem (1.1) when C is a symmetric positive semidefinite matrix, consider

properties of the eigenpairs of the iteration matrix, and establish sufficient convergence

conditions for this method. In Section 2, we introduce the ASOR method for the problem

(1.2), and discuss convergence for the generalised saddle point problem (1.1) in Section 3.

Numerical experiments presented in Section 4 illustrate the efficiency of the method.

2. The ASOR Method

Let us rewrite the augmented linear system (1.2) as

�

A B

−B⊺ 0

��

x

y

�

=

�

b

−q

�

with the coefficient matrix

A =

�

A B

−B⊺ 0

�

= D− L − U ,

where

D =

�

αA 0

0 Q

�

, L =

�

−A 0

B⊺ 1
2Q

�

, U =

�

αA −B

0 1
2Q

�

,

involve a positive number α and a symmetric positive definite matrix Q ∈ Rn×n.

Let ω be a positive number. In the ASOR method we seek the solution of the problem

(1.2) by the iteration scheme

x(k+1) =
α

α+ω
x(k) −

ω

α+ω
A−1(By(k) − b) ,

y(k+1) = y(k) +
2ω

2−ω
Q−1(B⊺x(k+1) − q) ,
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with the iteration matrix

Mα,ω =





α

α+ω
Im

−ω
α+ωA−1B

2αω

(α+ω)(2−ω)
Q−1B⊺ In −

2ω2

(α+ω)(2−ω)Q
−1B⊺A−1B



 .

As mentioned, this method was proposed by Njeru & Guo [20], and was compared in the

numerical experiments with SOR-like [16], GSOR [7] and GSSOR [13] methods. It was

shown that the method converges if and only if 0<ω < 2 and ω2µmax/(2−ω)< 2α+ω,

where µmax is the largest eigenvalue of the matrix Q−1B⊺A−1B.

3. The ASOR Method for the Generalised Saddle Point Problem and Its

Convergence

In this section, we study the ASOR method for the generalised saddle problem (1.1)

and provide sufficient conditions for its convergence.

3.1. The ASOR method for the problem (1.1)

Analogously to Section 2, we rewrite the problem (1.2) as

A z :=

�

A B

−B⊺ C

��

x

y

�

=

�

b

−q

�

, (3.1)

and represent the matrix A in the formA = D − L − U , where

D =

�

αA 0

0 Q

�

, L =

�

−A 0

B⊺ 1
2Q

�

, U =

�

αA −B

0 1
2Q− C

�

, (3.2)

with a positive number α and a symmetric positive definite matrix Q ∈ Rn×n.

Letω be a positive number. The ASOR scheme for the generalised saddle problem (3.1)

is
�
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�
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�
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�
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,

with the iteration matrix

Mα,ω = (D −ωL)−1((1−ω)D +ωU)

=
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Consequently, the ASOR iteration scheme for the problem (1.1) is

x(k+1) = x(k) +
ω

α+ω
A−1(b− Ax(k)− By(k)) ,

y(k+1) = y(k) +
2ω

2−ω
Q−1(B⊺x(k+1) − Cy(k)− q) . (3.3)

Let us consider the matrix

Hα,ω =
1

ω
(D −ωL) =





α+ω

ω
A 0

−B⊺
2−ω

2ω
Q



 .

Recalling symmetry and positive definiteness of matrices A and Q, we note that D −ωL is

invertible if and only if α+ω 6= 0 and ω 6= 2. Now let us write

A =Hα,ω −Nα,ω,

where

Nα,ω =





α

ω
A −B

0
2−ω
2ω

Q− C



 .

It is readily seen that

Mα,ω =H
−1
α,ωNα,ω , (3.4)

so the ASOR method converges if and only if the spectral radius ρ(Mα,ω) of the matrix

Mα,ω satisfies the inequality

ρ(Mα,ω) < 1 .

3.2. Convergence of the ASOR method for the problem (1.1).

Here we present sufficient conditions for the convergence of the ASOR method applied

to the generalised saddle point problem (1.1). To do so, we consider the eigenpairs of the

iteration matrixMα,ω.

Theorem 3.1. Assume that A∈ Rm×m, Q ∈ Rn×n are symmetric positive definite matrices, B ∈
Rm×n is a full column rank matrix, and w := (u∗,v∗)∗ ∈ Cm+n is an eigenvector corresponding

to the eigenvalue λ of the iteration matrixMα,ω. Then λ(α+ω) = α or

λ2 +

�

2ω2γ

(2−ω)(α+ω)
−

2α+ω

α+ω
+

2ω

2−ω
η

�

λ+

�

1−
2ω

2−ω
η

�
�

α

α+ω

�

= 0 , (3.5)

where

η := η(v) =
v∗Cv

v∗Qv
, γ := γ(v) =

v∗B⊺A−1Bv

v∗Qv
. (3.6)
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Proof. The relation (3.4) implies

Nα,ωw= λHα,ωw ,

or




α

ω
A −B

0
2−ω
2ω

Q− C





�

u

v

�

= λ





α+ω

ω
A 0

−B⊺
2−ω
2ω

Q





�

u

v

�

,

which leads to the system of equations

(α−λα−λω)Au =ωB v ,
�

(1−λ)(2−ω)Q− 2ωC
�

v= −2ωλB⊺ u . (3.7)

We note that λ 6= 1 and u 6= 0. Indeed, assuming λ= 1 we obtain

−Au= B v , Cv= B⊺u ,

and simple transformations show that

(C + B⊺A−1B)v = 0 .

Now C + B⊺A−1B is a symmetric positive definite matrix, therefore the solution v of this

homogeneous equation is trivial, and consequently the vector u = −A−1Bv = 0 also. This

contradicts the assumption that w is an eigenvector ofMα,ω, hence λ 6= 1. The result u 6= 0

can be proven similarly.

If α− λα− λω = 0, then everything is proven. Assuming α− λα− λω 6= 0 and using

the first equation in (3.7), we write u as

u =
ω

α−λα−λω
A−1B v ,

and substitute into the second equation to obtain

�

(1−λ)(2−ω)Q− 2ωC
�

v= −
2ω2λ

α−λα−λω
B⊺A−1B v .

It is easily seen that v 6= 0 so that the term v∗Qv is nonzero (since Q is a positive definite

matrix), hence on multiplying the above equation by v∗/(v∗Qv) from the left we obtain

(α−λα−λω)
�

(λ− 1)(2−ω) + 2ωη
�

= 2ω2λγ ,

or

λ2 +

�

2ω2γ

(2−ω)(α+ω)
−

2α+ω

α+ω
+

2ω

2−ω
η

�

λ+

�

1−
2ω

2−ω
η

�
� α

α+ω

�

= 0 .

This completes the proof.
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Remark 3.1. If in addition to the assumptions of Theorem 3.1 the matrix C is symmetric

and positive semidefinite, then η = v∗Cv/(v∗Qv) ≥ 0. For η = 0 and λ(α+ω) 6= α, the

eigenvalue λ satisfies

λ2 +

�

2ω2γ

(2−ω)(α+ω)
−

2α+ω

α+ω

�

λ+
α

α+ω
= 0 . (3.8)

Remark 3.2. For the augmented system of linear equations (1.2), the parameter η is equal

to zero; and if λ(α+ω) 6= α, then λ satisfies the equation (3.8), consistent with Ref. [20].

Remark 3.3. In the special case C = δQ, δ > 0, one has η = δ and the representation

(3.2) can be written as

�

A B

−B⊺ C

�

=

�

αA 0

0 1
δC

�

−

�

−A 0

B⊺ 1
2δC

�

−

�

αA −B

0 ( 1
2δ − 1)C

�

.

To consider the ASOR method for the problem (1.1), we need an auxiliary result.

Lemma 3.1 (cf. Young [24]). If b and c are real numbers, then the roots of the quadratic

equation x2 − bx + c = 0 are less than one in modulus if and only if |c| < 1 and |b|< 1+ c.

We now proceed to derive convergence conditions for the ASOR method, on writing

ηmax :=maxη(v) , γmax :=maxγ(v) ,

where η(v) and γ(v) are defined in Eqs. (3.6).

Theorem 3.2. Let A∈ Rm×m, Q ∈ Rn×n be symmetric positive definite matrices and B ∈ Rm×n

be a full column rank matrix. If λ(α+ω) = α, or if λ(α+ω) 6= α and the parameters η, α

and ω satisfy one of the conditions

a) η = 0, 0<ω< 2 and
ω2γmax

2−ω
< 2α+ω

or

b) η > 0, 0<ω<
2

ηmax + 1
< 2 , and also the inequality

(γmax +ηmax + 1)ω2 + 2(α+ηmaxα− 1)ω− 4α < 0 (3.9)

holds, then the iteration method (3.3) converges.

Proof. Since α > 0 andω> 0, when λ(α+ω) = α, the eigenvalue satisfies the inequality

|λ|= α/(α+ω) < 1, so the iteration method converges.

For λ(α+ω) 6= α on the other hand, there are two cases to consider — viz. η = 0 and

η > 0. If η = 0, the related quadratic equation has the form (3.8), and the proof of the

convergence is similar to that of Theorem 1 in Ref. [20]. Now we consider the other case
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η > 0. In order to use Lemma 3.1 the coefficients of the equation (3.5) have to satisfy the

inequalities
�

�

�

�

�

1−
2ω

2−ω
η

�
� α

α+ω

�

�

�

�

�

< 1 , (3.10)

�

�

�

�

2ω2γ

(2−ω)(α+ω)
−

2α+ω

α+ω
+

2ω

2−ω
η

�

�

�

�

< 1+

�

1−
2ω

2−ω
η

�
� α

α+ω

�

. (3.11)

If �

�

�

�

1−
2ω

2−ω
η

�

�

�

�

< 1, (3.12)

then inequality (3.10) is fulfilled because 0 < α/(α +ω) < 1. This inequality (3.12) is

equivalent to

(η2 +η)ω2 − 2ηω < 0 . (3.13)

Since ω> 0, η > 0, the relation

ω<
2

1+η
< 2, (3.14)

implies the inequality (3.10). The inequality (3.11) is equivalent to

−1−
�

1−
2ω

2−ω
η

�
� α

α+ω

�

<
2ω2γ

(2−ω)(α+ω)
−

2α+ω

α+ω
+

2ω

2−ω
η

< 1+

�

1−
2ω

2−ω
η

�
�

α

α+ω

�

, (3.15)

so we rewrite the left-hand side as

2ω2γ+ 2ω2η

(2−ω)(α+ω)
> 0

to validate the last inequality for all parameters ω ∈ (0,2) since γ, α and η are positive.

The right-hand side of inequality (3.15) implies

2(γ+η+ 1)ω2 + 4(α+ηα− 1)ω− 8α

(2−ω)(α+ω)
< 0 ,

if

(γ+η+ 1)ω2 + 2(α+ηα− 1)ω− 4α < 0 .

Consequently, from the condition (3.9) we conclude that the coefficients of the equation

(3.5) satisfy all the conditions of Lemma 3.1 and the proof of Theorem 3.1 follows.

Remark 3.4. Theorem 3.2 shows that if η > 0, ω(1+ηmax) < 2 and

α >
2ω− (γmax +ηmax + 1)ω2

2ω+ 2ηmaxω− 4
,

then the iteration method (3.3) converges.
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4. Numerical Experiments

The results of numerical experiments conducted on a PC equipped with 2.30 GHz CPU

and 2GB RAM in the MATLAB 7.11.0 (R2010b) environment with the machine precision

ε≈ 2.22×10−16 are now discussed. In the tables below, IT means the number of iteration

steps, CPU the CPU time (seconds), and RES the residual defined by

RES :=

q

‖b− Ax(k)− By(k)‖2
2
+ ‖q− B⊺x(k) + Cy(k)‖2

2
q

‖b‖2
2
+ ‖q‖2

2

,

where ((x(k))⊺, (y(k))⊺)⊺ is the k-th iteration with the the starting point

�

(x(0))⊺, (y(0))⊺
�⊺
= (0,0, · · · , 0)⊺ ∈ Rm+n .

Example 4.1. We consider the incompressible steady state Stokes problem in the square

D := [−1,1]× [−1,1] [12]:
�

−ν∆u+ grad p= f ,

div u = 0,
(4.1)

where ∆ is the Laplace operator, ν denotes the viscosity of the fluid, p the pressure, and u

the fluid velocity. The boundary conditions assumed are ux = uy = 0 on the lines x = −1,

y = −1, x = 1 and ux = 1, uy = 0 on y = 1.

The problem (4.1) was discretised using uniform square grids and the Incompressible

Flow Iterative Solution Software (IFISS) developed by Elman et al. [15]. As finite elements,

the bilinear constant velocity-pressure Q1−P0 pair with β = 0.25 for local stabilisation was

used. The resulting linear system has the form

�

A B

−B⊺ C

��

x

y

�

=

�

b

−q

�

, (4.2)

where x and y are the velocity and the pressure on the grid, respectively.

We compare the ASOR, SOR-like [16], and NSOR [18]methods for the problem (1.1). The

iteration schemes are stopped when either RES < 10−9 or the iteration number 2500 is

reached. For all methods, Q is the approximate Schur complement matrix B⊺P−1B+C with

P = diag (A). Table 1 contains the optimal parameters obtained in experiments. Table 1 and

Fig. 1 show that for the problem (4.1) the ASOR method converges much faster than the

two others. We note that the ASOR method is similar to the parameterized inexact Uzawa

(PIU) method with the parameters ω′ = α/(α +ω) and τ′ = 2ω/(2 −ω) — cf. Ref. [8].

In our example, for both methods we used the same IT but slightly different CPUs, so the

PIU results are not included in Table 1. Indeed, we recall that Hadjidimos [17] noted the

equivalence of optimal relaxed block iterative methods for singular non-symmetric saddle

point problems.
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Figure 1: IT for the ASOR, SOR-like and NSOR methods with grids 8× 8 and 16× 16 in Example 4.1.

Table 1: IT, CPU and RES for the ASOR, SOR-like and NSOR methods in Example 4.1.

Grid: 8× 8 16× 16 32× 32

ASOR ωopt 0.40 0.23 0.13

αopt 0.13 0.21 0.30

IT 27 54 105

CPU 0.0312 0.236 4.4303

RES 5.421e-10 7.616e-10 9.413e-10

SOR-like ωopt 0.65 0.38 0.21

IT 35 76 151

CPU 0.0406 0.312 6.424

RES 4.115e-10 9.844e-10 9.474e-10

NSOR ωopt 0.69 0.89 0.96

αopt 1.67 1.37 0.95

IT 83 157 483

CPU 0.0696 0.516 15.9308

RES 6.891e-10 9.932e-10 9.947e-10

Example 4.2. We consider the generalised saddle point problem (1.1) with the following

coefficient matrices [18,25]:

A=

�

I ⊗ T + T ⊗ I 0

0 I ⊗ T + T ⊗ I

�

∈ R2p2×2p2

,

B =

�

I ⊗ F

F ⊗ I

�

∈ R2p2×p2

, C = I ∈ Rp2×p2

,

T =
1

h
· tridiag (−1,2,−1) ∈ Rp×p , F =

1

h
· tridiag (−1,1,0) ∈ Rp×p ,

where h= 1/(p+1) denotes the mesh size,⊗ the Kronecker product, and U = tridiag (a, b, c)

is the tridiagonal matrix with nonzero entries ui,i−1 = a, ui,i = b, ui,i+1 = c.

We set m = 2p2, n= p2, so the total number of unknowns is m+n= 3p2. Moreover, the

right-hand-side (b⊺,q⊺)⊺ ∈ Rm+n is the image of the vector ((x∗)
⊺, (y∗)

⊺)⊺ = (1,1, · · · , 1)⊺ ∈



An Accelerated SOR-Like Method for Generalised Saddle Point Problems 79

0 0.5 1 1.5 2
10

1

10
2

10
3

10
4

value of α

N
um

be
r 

of
 it

er
at

io
ns

(k
)(

lo
g1

0)

 

 
ω=0.8
ω=0.6
ω=0.4
ω=0.2

0 0.5 1 1.5 2
10

1

10
2

10
3

10
4

value of α

N
um

be
r 

of
 it

er
at

io
ns

(k
)(

lo
g1

0)

 

 
ω=0.8
ω=0.6
ω=0.4
ω=0.2

Figure 2: IT for the ASOR method with respe
t to α and ω for p = 16 and p = 32 in Example 4.2.
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Figure 3: Number of iterations for ASOR, PIU, SOR-like and NSOR methods (p = 16) in Example 4.2.

Rm+n under the mapping (1.1). The iteration is stopped when either

ERR=

q

‖x(k) − x∗‖
2
2
+ ‖y(k)− y∗‖

2
2

q

‖x(0) − x∗‖
2
2
+ ‖y(0) − y∗‖

2
2

< 10−9

or the iteration number 2500 is reached.

We compare the ASOR, PIU [8], SOR-like [16], and NSOR [18] methods for the prob-

lem (1.1). In this example, we set Q = C for (3.3), similarly to NSOR method in Ref. [18],

but in the PIU and SOR-like methods we follow the settings in Ref. [8] and put P = A and

Q = B⊺P−1B+C . For all methods, the experimental optimal parameters α andω are used.

The results presented in Table 2 and Figs. 2 and 3 show the efficiency of our method.
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Table 2: IT, CPU and RES for the ASOR, PIU, SOR-like and NSOR methods in Example 4.2.

p 16 24 32 40 48

m 512 1052 2048 3200 4608

n 256 576 1024 1600 2304

m+ n 768 1728 3072 4800 6912

ASOR ωopt 0.58 0.58 0.58 0.58 0.58

αopt 0.14 0.14 0.14 0.14 0.14

IT 12 12 12 13 13

CPU 0.0328 0.158 0.495 1.278 2.735

RES 4.905e-10 5.137e-10 4.833e-10 1.161e-10 1.135e-10

PIU ωopt 0.88 0.86 0.86 0.58 0.86

αopt 0.83 0.83 0.83 0.83 0.84

IT 14 15 16 16 16

CPU 0.0515 0.256 0.817 2.047 4.313

RES 5.262e-10 3.718e-10 1.081e-10 1.180e-10 2.688e-10

SOR-like ωopt 0.85 0.84 0.84 0.84 0.84

IT 15 16 16 16 16

CPU 0.0452 0.267 0.819 2.050 4.322

RES 6.199e-10 1.727e-10 2.915e-10 2.782e-10 2.688e-10

NSOR ωopt 1.58 1.64 1.72 1.78 1.80

αopt 0.24 0.19 0.16 0.13 0.10

IT 96 150 178 222 275

CPU 0.0515 0.429 1.420 4.065 9.850

RES 4.307e-10 3.244e-10 1.254e-10 2.487e-10 1.668e-10

Conclusion

We have applied the ASOR method [20] to the generalised saddle point problem (1.1)

with a symmetric positive semidefinite matrix, and provided sufficient conditions for its

convergence.
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