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1. Introduction

Let P̃α,α1,··· ,αn
(Dt) be the differential operator,

P̃α,α1,··· ,αm
(Dt) = Dα

t
+

m
∑

j=1

d j D
α j

t , (1.1)

where d j, j = 1, · · · , m are positive numbers, 0< αm ≤ · · · ≤ α1 < α < 1,

Dr
t
u(t) :=

1

Γ (1− r)

∫ t

0

(t − s)−ru′(s)ds, 0< r < 1, (1.2)

is the Caputo fractional derivative of order r with respect to variable t — cf. Ref. [17], and

Γ the Γ -function.

Fractional differential equations often arise in applications [3,12,18]. It is not always

possible to find an analytic solution of such equations, hence numerical methods have to

∗Corresponding author. Email addresses: gfd25562�163.
om (J. Zhou), daxu�hunnu.edu.
n (D. Xu),

hongbin
hen�
suft.edu.
n (H. Chen)

http://www.global-sci.org/eajam 181 c©2018 Global-Science Press



182 J. Zhou, D. Xu and H. Chen

be used. In this work, we apply a weak Galerkin finite element method to initial bound-

ary value problem for multi-term time-fractional diffusion equation with one-dimensional

space variable

P̃α,α1,...,αm
(Dt)u(x , t) =

∂ 2u(x , t)

∂ x2
+ f (x , t),

u(0, t) = 0, u(L, t) = 0,

u(x , 0) =ψ(x),

x ∈ (0, L), t ∈ (0, T ], (1.3)

where f (x , t) is a sufficiently smooth function.

Time fractional diffusion equations are studied in [8,13]. For numerical solution various

methods have been proposed — e.g. Liu et al. [8] employed a finite difference method

and developed a fractional predictor-corrector method, Zhao et al. [22] constructed a finite

element method in space and finite difference method in time, Lopez-Marcos [5] and Lubich

[7] investigated the spectral and finite element methods.

Weak Galerkin finite element method was initially introduced by Wang and Ye [19] to

solve the second order elliptic problems. The main idea behind this method consists in

the replacement of classical derivatives in standard variational equations by weak ones.

This allows using of totally discontinuous finite elements with inferior values not related

to the boundaries — cf. Ref. [16]. Nowadays, the method is widely recognised — e.g.

Zhang et al. [21] applied it to elliptic problems with one-dimensional space variable, Chen

and Zhang [1] to one-dimensional Burgers’ equation, Li and Wang to parabolic equations

[6], Mu et al. to Stokes [14] and Maxwell equations [15]. However, to the best of our

knowledge, so far the weak Galerkin finite element method has not been employed in multi-

term time-fractional diffusion equations. Here, we use the weak Galerkin finite element

method in space and the backward Euler method in time. The corresponding integral terms

are discretised by first-order convolution quadratures. We also prove the stability of the

method, its convergence in L2-norm, and derive error estimates.

The paper is organized as follows. In Section 2, we describe the weak Galerkin finite

element method and write down a fully discrete weak Galerkin finite element equations.

Section 3 is devoted to the stability and convergence of the method. In Section 4, we present

results of numerical experiments and discuss their correlation with theoretical analysis. Our

conclusion is in Section 5.

2. Weak Galerkin Finite Element Method

Let I refer to the interval (0, L) and let Hs(I) and L2(I) be, respectively, the usual

Sobolev space and the space of square summable functions on I . The norms in Hs(I) and

L2(I) are denoted by ‖ · ‖s = ‖ · ‖Hs(I) and ‖ · ‖, while (·, ·) is the inner product in L2(I).

Moreover, we also consider the space H1
0(I) = {v : v ∈ H1(I), v(0) = 0}.

Let us rewrite the problem (1.3) in the weak variational form — cf. Theorem 2.2 and

Theorem 2.3 in Ref. [5]. Multiplying the equation (1.3) by v ∈ H1
0
(I) and integrating the
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products arising, we obtain

�

P̃α,α1,··· ,αm
(Dt)u, v

�

+ (ux , vx) = ( f , v), ∀v ∈ H1
0(I), 0< t ≤ T,

u(x , 0) =ψ(x), x ∈ I . (2.1)

By Ĩa we denote a closed interval [xa, xb] and by Ia = (xa, xb) the interior of Ĩa. Weak

functions v on Ĩa are defined as v = {v0, va, vb}, where v0 := v|Ia
, va := v(xa) and vb :=

v(xb). Note that, in general, the values of v0 at xa and xb are not connected with va and

vb. The space of all such functions is denoted by W (Ia)— i.e.

W (Ia) :=
�

v = {v0, va, vb} : v0 ∈ L2(Ia), |va|+ |vb| <∞
	

.

Moreover, let r be a non-negative integer and Pr(Ia) the set of all polynomials on Ia of

degree at most r.

Proposition 2.1 (cf. Zhang & Tang [21]). For any fixed element v ∈ W (Ia) and for any

q ∈ Pr(Ia) there exists a unique solution u ∈ Pr(Ia) of the equation

∫

Ia

uvqd x = −

∫

Ia

v0q′d x + vbq(xb)− vaq(xa), (2.2)

which does not depend on the choice of q.

This unique solution u of equation (2.2) is denoted by dw,r and called the discrete weak

derivative of v. Thus Proposition 2.1 means that if v ∈ H1(Ia), then dw,r v is the L2 projection

of vx onto subspace Pr(Ia).

Now we can introduce a weak Galerkin finite element method for the problem (1.3).

For M ∈ N, we set h = L/M and consider the partition Ih = {x j|x j = ( j−1)h, 1≤ j ≤ M+1}
of the interval [0, L] into the subintervals Ii = (x i, x i+1), i = 1,2, · · · , M . For any k ∈ N,

the discrete weak function space W (Ih, k) on Ih is defined by

W (Ih, k) :=
�

v : v|Ii
∈W (Ii , k), i = 1,2, · · · , M

	

, (2.3)

where

W (Ii , k) :=
�

v = {v0, vi, vi+1} : v0 ∈ Pk(Ii), |vi|+ |vi+1| <∞
	

. (2.4)

According to the definition, for weak functions v = {v0, vi, vi+1} ∈ W (Ii , k), the one-sided

limits of the function v0 at the points x i and x i+1 not necessarily coincide with vi = v(x i) and

vi+1 = v(x i+1. Let Ĩi,− := [x i−1, x i] and Ĩi,+ := [x i , x i+1]. For a function v = {v0, vi , vi+1} ∈
W (Ii , k), let v| Ĩi,−

= {(v0)−, (vi−1)−, (vi)−} and v| Ĩi,+
= {(v0)+, (vi)+, (vi+1)+}, then the jump

of v ∈W (Ih, k) at the point x i is

[v]xi
= (vi)− − (vi)+.

Thus if [v]xi
= 0 then v is continuous at the point x i. Now we consider the weak finite

element spaces

Sh :=
�

v : v ∈W (Ih, k), [v]xi
= 0, i = 2, · · · , M

	

, (2.5)
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and

S0
h

:= {v : v ∈ Sh, v1 = 0, vM+1 = 0}. (2.6)

The discrete inner L2-product on the space W (Ih, k) is defined by

(u, v)h =

M
∑

i=1

(u, v)Ii
=

M
∑

i=1

∫

Ii

uvd x ,

so that the corresponding norm of u ∈ W (Ih, k) is ‖u‖2
h
= (u,u)h. The semi-discrete weak

Galerkin finite element scheme for problem (1.3) is based on the variational formulation

of the problem (2.1) and consists in finding an element uh(t) ∈ S0
h

satisfying the equations

�

P̃α,α1,...,αm
(Dt)uh,0, v0

�

+ (dw,ruh, dw,r v) = ( f , v0) for all v ∈ S0
h
, (2.7)

uh(x , 0) = Ehψ(x), x ∈ I , (2.8)

with an operator Eh introduced in the next section. Recall that for α ∈ (0,1), the Riemann-

Liouville integral I (α) is defined by

I (α)u(t) =
1

Γ (α)

∫ t

0

(t − s)α−1u(s)ds, (2.9)

so that

Dα
t
u(t) = I (1−α)ut(t). (2.10)

Let N ∈ N. Setting τ := T/N and Ωτ := {(tn−1, tn)|tn = nτ, 0 ≤ n ≤ N}, we consider

the time discretisation of the problem (1.3) at the time moment t = tn. If un
h
= un

h
(x) ∈

Sh denotes an approximation for u(x , tn) at the point t = tn, n = 0,1, · · · , N , then the

derivative ut of u at the point tn is obtained by the backward Euler method — viz.

(uh)t(tn) ≈ δtu
n
h
=

1

τ
(un

h
− un−1

h
), x ∈ [0, L], n≥ 1. (2.11)

Moreover, the integral I (α)ϕ(tn) is approximated according to the Lubich [9–11, 20] first

order convolution quadrature formula

H(α)
n
(ϕ) = τα

n
∑

p=1

c
(α)
n−pϕ

p = τα
n−1
∑

p=0

c(α)
p
ϕn−p, (2.12)

where the weights c(α)p are determined by the generating function

(1− z)−α =

∞
∑

p=0

c(α)p zp. (2.13)
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The fully discrete weak Galerkin finite element method for problem (1.3) consists in finding

an element un
h
∈ Sh (un

h
= {un

h,0
,un

h,i
,un

h,i+1
} on each Ii , i = 1,2, · · · , M) which satisfies the

equations

n−1
∑

p=0

c̃p(δtu
n−p

h,0
, v0) + (dw,ru

n
h
, dw,r v)h = ( f

n, v0), ∀v ∈ S0
h
, (2.14)

un
h
(0) = un

h
(L) = 0, 1≤ n≤ N , (2.15)

u0
h
= Ehu0(x), x ∈ [0, L], (2.16)

where

c̃p = τ
1−αc(1−α)p +

m
∑

j=1

d jτ
1−α j c

(1−α j )

p , (2.17)

and the operator Eh is defined in next section.

3. Analysis of Weak Galerkin Finite Element Scheme

3.1. Stability

Let us start with auxiliary results needed in stability analysis.

Lemma 3.1. If {c(α)p }
∞
p=0 is the sequence defined by (2.13), then

�

�

�

�

�

n−1
∑

p=1

c
(α)
p−1

p

�

�

�

�

�

≤ C , (3.1)

where the constant C does not depend on n.

The proof directly follows from the relation

c(α)
p
=

pα−1

Γ (α)
+O(pα−2), p→∞, (3.2)

cf. formula (4.6) in Ref. [9].

Lemma 3.2. If

0< αm ≤ · · · ≤ α1 < α < 1, m ∈ N, (3.3)

then the coefficients c̃p of (2.17) satisfy the inequality

c̃n ≤ c̃n−1 ≤ · · · ≤ c̃1 ≤ c̃0, n= 1,2, · · · . (3.4)

Proof. Indeed, if α ∈ (0,1), then c
(α)
0
= 1 and for any p ≥ 1,

c(α)
p
= (−1)p

�

−α
p

�

=
α(α+ 1)(α+ 2) · · · (α+ p− 1)

p!
. (3.5)
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Therefore,

c(α)
p
=

�

1−
1−α

p

�

c
(α)
p−1

, p ≥ 1, (3.6)

and taking into account the positivity of the coefficients d j , we obtain

c̃p−1 − c̃p = τ
1−α

�

c
(1−α)
p−1
− c(1−α)

p

�

+

m
∑

j=1

d jτ
1−α j

�

c
(1−α j)

p−1
− c
(1−α j)

p

�

= τ1−αα
c
(1−α)
p−1

p
+

m
∑

j=1

d jτ
1−α jα j

c
(1−α j)

p−1

p

≤ α

 

τ1−α +

m
∑

j=1

d jτ
1−α j

!

c
(1−αm)

p−1

p
= αc̃0

c
(1−αm)

p−1

p
, (3.7)

so that the inequalities (3.4) follow.

Theorem 3.1. Any solution un
h

of the equations (2.14)-(2.16) satisfies the inequality

‖un
h,0
‖ ≤ C

�

‖u0
h,0
‖+

τ

c̃0

‖ f n‖
�

, (3.8)

where here, and in what follows, C means a constant independent of h and n.

Proof. Substitution of v = un
h

into (2.14) yields

n−1
∑

p=0

c̃p(δtu
n−p

h,0
,un

h,0
) + ‖dw,ru

n
h
‖2

h
= ( f n,un

h,0
). (3.9)

Using the relation (2.11), we rewrite the first term in the left-hand side of (3.9) as

n−1
∑

p=0

c̃p(δtu
n−p

h,0
,un

h,0
) =

1

τ

n−1
∑

p=0

c̃p(u
n−p

h,0
− u

n−p−1

h,0
,un

h,0
)

=
c̃0

τ
‖un

h,0
‖2 +

1

τ

n−1
∑

p=1

(c̃p − c̃p−1)(u
n−p

h,0
,un

h,0
)−

c̃n−1

τ
(u0

h,0
,un

h,0
). (3.10)

Now we substitute (3.10) into (3.9) and use the Cauchy-Schwarz inequality, obtaining

c̃0‖u
n
h,0
‖2 ≤

n−1
∑

p=1

(c̃p−1 − c̃p)(u
n−p

h,0
,un

h,0
) + c̃n−1(u

0
h,0

,un
h,0
) +τ( f n,un

h,0
)

≤
n−1
∑

p=1

(c̃p−1 − c̃p)‖u
n−p

h,0
‖‖un

h,0
‖+ c̃n−1‖u

0
h,0
‖‖un

h,0
‖+τ‖ f n‖‖un

h,0
‖. (3.11)
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By (3.7), the norm of the element un
h,0

can be estimated as

‖un
h,0
‖ ≤ α

n−1
∑

p=1

c
(1−αm)

p−1

p
‖un−p

h,0
‖+ ‖u0

h,0
‖+

τ

c̃0

‖ f n‖, (3.12)

and the discrete Gronwall inequality [2, Page 139] implies

‖un
h,0‖ ≤ ex p

 

α

n−1
∑

p=1

c
(1−αm)

p−1

p

!

�

‖u0
h,0‖+

τ

c̃0

‖ f n‖
�

, (3.13)

which together with the inequality (3.1) completes the proof.

3.2. Convergence

Here we study the convergence of the discrete weak Galerkin finite method (2.14)-

(2.16) in L2-norm. Considering the spaces Sh and Pr(Ii), we set r = k + 1 in (2.2) and

define a projection operator Qh : H1(I)→W (Ih, k) by

Qhu|Ii
=
�

Qh,0u, (Qhu)i , (Qhu)i+1

	

, i = 1,2, · · · , N .

where Qh,0 is an L2-projection from L2(Ii) to Pk(Ii), and (Qhu)i := u(x i), (Qhu)i+1 :=

u(x i+1). It is known [21] that

‖Qh,0u− u‖L2(Ii)
≤ Chs‖u‖s,Ii

, 0≤ s ≤ k+ 1. (3.14)

Thus if u ∈ H1
0(I), then Qhu ∈ S0

h
and (3.14) shows that Qhu is a good approximation for

functions from H1
0
(I) ∩ Hs+1(I), s ≥ 0. Following [4], we introduce an elliptic projector

Eh : H1
0
(I)∩H2(I)→ S0

h
by

(dw,r Ehu, dw,rχ) = (−ux x ,χ0), ∀χ ∈ S0
h
, (3.15)

where Ehu|Ii
= {Eh,0u, (Ehu)i , (Ehu)i+1}, i = 1,2, · · · , M , and u ∈ H1

0(I)∩H2(I) is the exact

solution of the problem (1.3).

Lemma 3.3 (cf. Gao & Mu [4]). If u ∈ Hk+1(I) is the exact solution of the problem (1.3),

then

‖Qh,0u− Eh,0u‖ ≤ Chk+1‖u‖k+1. (3.16)

By R(α)(ϕ)(tn) we denote the residue

R(α)(ϕ)(tn) := I (α)ϕ(tn)−H(α)n (ϕ), (3.17)

where H(α)
n
(ϕ) is defined in (2.12).
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Lemma 3.4 (cf. Refs. [9,20]). Let ϕ = ϕ(t) be a real two times continuously differentiable

function on the interval (0, T ), T <∞. If ϕt t is integrable on (0, T ), then for any tn ∈ (0, T ]

the inequality

�

�R(α)(ϕ)(tn)
�

� ≤ Cτtα−1
n
|ϕ(0)|+Cτ

∫ tn−1

0

(tn−s)α−1|ϕt(s)| ds+Cτα
∫ tn

tn−1

|ϕt(s)| ds, (3.18)

holds.

Theorem 3.2. Assume that the problem (1.3) and equations (2.14)−(2.16) are solvable, and

u(x , t) and un
h

are their corresponding solutions. If u ∈ H2(0, T ; Hk+1(I)), then

‖un − un
h,0
‖ ≤C

�

hk+1

�

‖u(0)‖k+1 +

∫ tn

0

‖ut‖k+1d t

�

+τ

�

‖ut(0)‖+

∫ tn

tn−1

‖ut t‖d t +

∫ tn

0

‖ut t‖d t

�

+τ

∫ tn−1

0

(tn− t)−α

 

‖ut t‖+
m
∑

j=1

d j‖ut t‖

!

d t

!

. (3.19)

Proof. Writing the difference un − un
h,0

in the form

un − un
h,0
= ρn +µn + en,

where ρn = un−Qh,0un, µn = Qh,0un− Eh,0un and en = Eh,0un−un
h,0

, we recall that ρn and

µn are, respectively, estimated in (3.14) and Lemma 3.3, so that

‖ρn‖ ≤ Chk+1‖un‖k+1 ≤ Chk+1

�

‖u(0)‖k+1 +

∫ tn

0

‖ut‖k+1d t

�

, (3.20)

‖µn‖ ≤ Chk+1‖un‖k+1 ≤ Chk+1

�

‖u(0)‖k+1 +

∫ tn

0

‖ut‖k+1d t

�

. (3.21)

In order to estimate the term en, we write

n−1
∑

p=0

c̃p(δt e
n−p, v0) + (dw,r en, dw,r v)h

=

n−1
∑

p=0

c̃p(δt Ehun−p, v0)−
n−1
∑

p=0

c̃p(δtu
n−p

h
, v0) + (dw,r Ehun, dw,r v)h − (dw,ru

n
h
, dw,r v)h, (3.22)
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and use the relations (2.14) and (3.15) to obtain

n−1
∑

p=0

c̃p(δt e
n−p, v0) + (dw,r en, dw,r v)h

=

n−1
∑

p=0

c̃p(δt Ehun−p, v0)−
�

ux x (tn), v0

�

− ( f n, v0)

=

n−1
∑

p=0

c̃p(δt Ehun−p, v0)−
�

P̃α,α1,...,αm
(Dt)u(tn), v0

�

=

n−1
∑

p=0

c̃p(δt Ehun−p, v0)−

 

I (1−α)ut(tn) +

m
∑

j=1

d j I
(1−α j )ut(tn), v0

!

. (3.23)

The identity ρn +µn = un − En
h,0

implies that

n−1
∑

p=0

c̃p(δt e
n−p, v0) + (dw,r en, dw,r v)h

=

n−1
∑

p=0

c̃p

�

δtu
n−p − ut(tn−p), v0

�

−
n−1
∑

p=0

c̃p(δtρ
n−p, v0)−

n−1
∑

p=0

c̃p(δtµ
n−p, v0)

−

 

I (1−α)ut(tn) +

m
∑

j=1

d j I
(1−α j )ut(tn)−

n−1
∑

p=0

c̃put(tn−p), v0

!

. (3.24)

Recalling the relations (2.12), (3.17) and (2.17), we rewrite the third line in (3.24) as

I (1−α)ut(tn) +

m
∑

j=1

d j I
(1−α j )ut(tn)−

n−1
∑

p=0

c̃put(tn−p)

=I (1−α)ut(tn)−H(1−α)n (ut) +

m
∑

j=1

d j

�

I (1−α j)ut(tn)−H
(1−α j)

n (ut)

�

=R(1−α)(ut)(tn) +

m
∑

j=1

d jR
(1−α j)(ut)(tn). (3.25)

Now Theorem 3.1, Lemma 3.2 and triangle inequality lead to the inequality

‖en‖ ≤ C

�

‖e0‖+
τ

c̃0

(Πn
4
+Πn

1
+Πn

2
+Πn

3
)

�

. (3.26)
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On the other hand, the terms Πn
l
, l = 1,2,3,4 can be estimated as follows

Π
n
1 =
















n−1
∑

p=0

c̃pδtρ
n−p
















=
















n
∑

p=1

c̃n−p

τ

∫ tp

tp−1

ρt d t
















≤
c̃0

τ

∫ tn

0

‖ρt‖d t, (3.27)

Π
n
2 =
















n−1
∑

p=0

c̃pδtµ
n−p
















=
















n
∑

p=1

c̃n−p

τ

∫ tp

tp−1

µt d t
















≤
c̃0

τ

∫ tn

0

‖µt‖d t, (3.28)

Π
n
3 =
















R(1−α)(ut)(tn) +

m
∑

j=1

d jR
(1−α j)(ut)(tn)
















≤




R(1−α)(ut)(tn)




+

m
∑

j=1

d j





R(1−α j)(ut)(tn)




 , (3.29)

Π
n
4 =
















n−1
∑

p=0

c̃p

�

δtu(tn−p)− ut(tn−p)
�
















≤ c̃0

n
∑

p=1





δtu(tp)− ut(tp)






=
c̃0

τ
















n
∑

p=1

∫ tp

tp−1

(t − tp−1)ut t d t
















≤ c̃0

n
∑

p=1

∫ tp

tp−1

‖ut t‖d t = c̃0

∫ tn

0

‖ut t‖d t, (3.30)

It follows from (3.18) and (3.20)− (3.21) that

Π
n
1 ≤Cτ−1 c̃0hk+1

∫ tn

0

‖ut‖k+1d t, Π
n
2 ≤ Cτ−1 c̃0hk+1

∫ tn

0

‖ut‖k+1d t, (3.31)

and

Π
n
3 ≤Cτ

 

t−αn +

m
∑

j=1

d j t
−α j

n

!

‖u0
t ‖+ C

 

τ1−α +

m
∑

j=1

d jτ
1−α j

!

∫ tn

tn−1

‖ut t‖d t

+ Cτ

 

∫ tn−1

0

(tn − t)−α‖ut t‖d t +

m
∑

j=1

d j

∫ tn−1

0

(tn − t)−α j‖ut t‖d t

!

. (3.32)

Besides, according to (2.16), we have

‖e0‖= ‖Eh,0u0 − u0
h,0
‖ = 0. (3.33)

The relations (3.30), (3.31)− (3.33) and (3.25) yield

‖en‖ ≤Cτ

�
∫ tn

tn−1

‖ut t‖d t +

∫ tn

0

‖ut t‖d t

�

+ C
τ

c̃0

 

t−αn +

m
∑

j=1

d j t
−α j

n

!

‖u0
t ‖

+ C
τ

c̃0

 

∫ tn−1

0

(tn − t)−α‖ut t‖d t +

m
∑

j=1

d j

∫ tn−1

0

(tn − t)−α j‖ut t‖d t

!

+ Chk+1

∫ tn

0

‖ut‖k+1d t. (3.34)
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Note that if 0< αm ≤ · · · ≤ α1 < α < 1, then

τ

c̃0

 

t−αn +

m
∑

j=1

d j t
−α j

n

!

=
τ

c̃0

 

n−ατ−α +

m
∑

j=1

d jn
−α jτ−α j

!

≤
τ

c̃0

n−αm

 

τ−α +

m
∑

j=1

d jτ
−α j

!

= τn−αm ≤ τ, (3.35)

τ

c̃0

≤
τ

τ−αm(1+
m
∑

j=1

d j)

= Cτ1+αm ≤ Cτ, (3.36)

and the term en can be now estimated as follows

‖en‖ ≤Cτ

�
∫ tn

tn−1

‖ut t‖d t +

∫ tn

0

‖ut t‖d t

�

+ Cτ‖ut(0)‖+ Chk+1

∫ tn

0

‖ut‖k+1d t

+ Cτ

 

∫ tn−1

0

(tn − t)−α‖ut t‖d t +

m
∑

j=1

d j

∫ tn−1

0

(tn − t)−α j‖ut t‖d t

!

. (3.37)

Finally, using the triangle inequality

‖un − un
h,0
‖ ≤ ‖ρn‖+ ‖µn‖+ ‖en‖,

and (3.20)− (3.21), (3.37), we obtain the estimate (3.19).

4. Numerical Experiments

Example 4.1. As an example, we consider the problem (1.3) with the parameters: m= 1,

d j = 1, L = 1, T = 1. The right-hand side f and initial condition are

f (x , t) = 2(x − x2)

�

t2−α

Γ (3−α)
+

t2−α1

Γ (3−α1)
+ t2 + 1

�

,

ψ(x) = x − x2.

The exact solution of this problem is

u(x , t) = (x − x2)(t2 + 1), 0< x < 1, 0≤ t ≤ 1.

Let us also use the notation

E(h,τ) = ‖un − un
h,0
‖, Rx = log2

�

E(2h,τ)

E(h,τ)

�

, Rt = log2

�

E(h, 2τ)

E(h,τ)

�

.

Table 1 presents L2-errors and the convergence rates Rx of the weak Galerkin finite element

scheme (2.14) − (2.16) for α1 = 0.2 and various choices of α. For k = 0 and k = 1

the convergence rates are approximately equal to 1 and 2, consistent with Theorem 3.2.

The time convergence rates Rt for α1 = 0.2, presented in Table 2 are also consistent with

theoretical analysis.
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Table 1: L2
-errors and 
onvergen
e rate of the weak Galerkin �nite element method, N = 1024, α1 = 0.2.

α M
k = 0 k = 1

E Rx E Rx

0.25

8

16

32

64

2.82964e-02

1.42152e-02

7.11595e-03

3.55902e-03

∗
0.99318

0.99831

0.99958

1.59180e-03

3.97974e-04

9.95878e-05

2.52707e-05

∗
1.99991

1.99863

1.97850

0.5

8

16

32

64

2.82964e-02

1.42152e-02

7.11595e-03

3.55903e-03

∗
0.99318

0.99831

0.99957

1.59182e-03

3.98025e-04

9.97884e-05

2.60503e-05

∗
1.99974

1.99591

1.93757

0.75

8

16

32

64

2.82964e-02

1.42152e-02

7.11596e-03

3.55904e-03

∗
0.99318

0.99830

0.99957

1.59184e-03

3.98125e-04

1.00188e-04

2.75428e-05

∗
1.99940

1.99051

1.86297

Table 2: The L2
-norm errors and time 
onvergen
e orders when M = 5000 and α1 = 0.2.

α N
k = 0 k = 1

E Rt E Rt

0.25

4

8

16

32

1.28399e-03

6.09060e-04

2.98566e-04

1.52399e-04

∗
1.07595

1.02854

0.97020

1.28300e-03

6.07174e-04

2.94890e-04

1.45252e-04

∗
1.07934

1.04193

1.02161

0.5

4

8

16

32

2.16668e-03

1.03873e-03

5.09430e-04

2.54941e-04

∗
1.06067

1.02786

0.99872

2.16609e-03

1.03762e-03

5.07284e-04

2.50734e-04

∗
1.06182

1.03241

1.01664

0.75

4

8

16

32

3.19865e-03

1.55744e-03

7.69151e-04

3.83992e-04

∗
1.03828

1.01784

1.00219

3.19825e-03

1.55671e-03

7.67731e-04

3.81212e-04

∗
1.03879

1.01982

1.01001

5. Conclusion

In this paper, we show the stability and convergence of the weak Galerkin finite element

method for multi-term time-fractional diffusion equations. Numerical results are consistent

with theoretical analysis.
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