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Abstract. In this paper, we propose a new projection method for solving a general min-

imization problems with two L1-regularization terms for image denoising. It is related

to the split Bregman method, but it avoids solving PDEs in the iteration. We employ

the fast iterative shrinkage-thresholding algorithm (FISTA) to speed up the proposed

method to a convergence rate O(k−2). We also show the convergence of the algorithms.

Finally, we apply the methods to the anisotropic Lysaker, Lundervold and Tai (LLT)

model and demonstrate their efficiency.
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1. Introduction

Image denoising is a fundamental task in image processing, which aims to recover

a noise-free image u from a noise polluted image f . In general, it can be modeled by

f = u+η, where η is the unknown noise component. Among various methods for finding

such a decomposition, the variational approach is to restore u by solving the minimization

problem (see, e.g., [2,14]):

min
u∈X

�

R(u) +λF (u− f )
	

, (1.1)

where the functionals F (·) and R(·) are respectively the data fidelity and regularization

terms defined on a suitable functional space X , and λ > 0 is a parameter to balance two
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terms. The popular total variation (TV) regularized L2-model, known as the Rudin-Osher-

Fatemi (ROF) model [35], takes the form

min
u∈BV (Ω)

n

∫

Ω

|Du|+
λ

2

∫

Ω

|u− f |2 dΩ
o

, (1.2)

where Ω is a bounded domain in R2 with the Lipschitz boundary, BV (Ω) is the space of

functions with bounded variation, and
∫

Ω
|Du| is the total variation of u (see, e.g., [1]). An

important variant of the ROF model is as follows (see, e.g., [22,24,26]):

min
u

n

∫

Ω

�

|ux |+ |uy |
�

dΩ+
λ

2

∫

Ω

|u− f |2 dΩ
o

. (1.3)

The models (1.2) and (1.3) are known as the isotropic and anisotropic ROF model, respec-

tively. They function well for noise removal, and simultaneously preserve discontinuities

and edges, so they have been extensively used for a variety of image restoration problems

(see, e.g., [14,33]).

However, as pointed out in [5, 11], the ROF model induces the so-called “staircase

effect", as its cost functional is borderline convex (with a linear growth with respect to

the image gradients), and it oftentimes produces piecewise constant artificial architects.

Some models using higher-order derivative information have been proposed to overcome

this drawback (see, e.g., [13, 27, 37, 46]). For instance, Lysaker, Lundervold and Tai [27]

suggested the model (termed as the anisotropic LLT model):

min
u

n

F(u) :=

∫

Ω

�

|ux x |+ |uy y |
�

dΩ+
β

2

∫

Ω

|u− f |2 dΩ
o

, β > 0. (1.4)

The use of second-order derivatives damps oscillations faster than the total variation regu-

larized model, so (1.4) can reduce the “staircase effect", and produce better approximation

to the natural image [27,46].

Over the past decade, many methods have been developed for the ROF model (1.1).

These algorithms typically include (i) the primal approaches, such as artificial time march-

ing algorithms [26,27,35], fixed point iterative algorithm [41], and the multigrid method

[16]; (ii) the dual methods [9,10,12,15,30,32,38], and (iii) the primal-dual approaches

[6,20,42], the augmented Lagrangian method [40,44], and the split Bregman type meth-

ods [8,21,29,34,39,45]. Moreover, fast graph-cut algorithms [9,18] have been developed

for (1.3).

However, to the best of our knowledge, there are very few discussions on efficient

minimization of the anisotropic LLT model (1.4). In this paper, we shall put this model in

a more general setting and develop fast algorithms for the minimization problem:

min
u

n

E(u) :=

∫

Ω

�

|Λ1u|+ |Λ2u|
�

dΩ+
γ

2

∫

Ω

|u− f |2dΩ
o

, (1.5)

where Λ1 and Λ2 are two bounded linear operators over the admissible function space, and

γ is a positive constant. Motivated by the split Bregman method for the ROF model [22],
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we shall propose a new projection scheme and the resultant algorithm enjoys the advan-

tages: (i) it inherits the strengths of the split Bregman method; (ii) it avoids solving PDEs,

so it saves computational time and memory; (iii) it possesses a convergence rate O(k−2),

where k is the number of iterations. We shall also provide ample numerical experiments

to demonstrate the effectiveness of the proposed algorithm.

The rest of the paper is organized as follows. In Section 2, we propose the iterative

algorithms for the general model (1.5), and analyze it convergence. In Section 3, we

implement the algorithms for the anisotropic LLT model (1.4). The final section is devoted

to the numerical experiments and concluding remarks.

2. Formulation of the Algorithms

In this section, we describe the iterative algorithms for the general model (1.5). Our

starting point is to reformulate (1.5) as

min
d1,d2,u

n

|d1|L1(Ω) + |d2|L1(Ω) +
γ

2
‖u− f ‖2

L2(Ω)

o

,

subject to d1 = Λ1u and d2 = Λ2u, (2.1)

where we used | · |L1(Ω) and ‖ · ‖L2(Ω) to denote the normal of space Lp(Ω) with p = 1,2,

respectively. Indeed, as with the algorithms for ROF model (cf. [22,39,40,43]), it is essen-

tial to decompose the original problem into some subproblems that are easier to be solved.

Typical techniques for dealing with the constraint formulation include the split Bregman it-

eration [22], the augmented Lagrangian method [40], and the Douglas-Rachford splitting

method [39], etc.

In what follows, we approximate (2.1) by using the penalty method:

min
u,d1,d2

n

|d1|L1(Ω)+|d2|L1(Ω)+
γ

2
‖u− f ‖2

L2(Ω)
+
τ1

2
‖d1−Λ1u‖2

L2(Ω)
+
τ2

2
‖d2−Λ2u‖2

L2(Ω)

o

, (2.2)

where τ1,τ2 > 0 are two penalty constants.

2.1. Algorithm based on split Bregman iteration

Using the notion of the Bregman iteration (see, e.g., [22]), we resolve the problem

(2.2) by solving the following three subproblems (as summarized in Algorithm 2.1):































�

uk+1, dk+1
1 , dk+1

2

�

:=arg min
u,d1,d2

n

|d1|L1(Ω)+ |d2|L1(Ω) +
γ

2
‖u− f ‖2

L2(Ω)

+
τ1

2
‖d1 −Λ1u− bk

1‖
2
L2(Ω)

+
τ2

2
‖d2 −Λ2u− bk

2‖
2
L2(Ω)

o

,

bk+1
1 :=bk

1 +Λ1uk+1− dk+1
1 ,

bk+1
2 :=bk

2 +Λ2uk+1− dk+1
2 .

(2.3)
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Algorithm 2.1. The split Bregman method (SBM) for solving (2.1).(I) Set u0 = f , d0
1 = 0, d0

2 = 0, b0
1 = 0 b0

2 = 0 and k = 0;(II) Compute (uk+1, dk+1
1

, dk+1
2

, bk+1
1

, bk+1
2
) by

uk+1 := arg min
u

nγ

2
‖u− f ‖2

L2(Ω)
+
τ1

2
‖d1 −Λ1u− bk

1‖
2
L2(Ω)

+
τ2

2
‖d2 −Λ2u− bk

2‖
2
L2(Ω)

o

,

dk+1
1 := arg min

d1

n

|d1|L1(Ω) +
τ1

2
‖d1 −Λ1uk+1− bk

1‖
2
L2(Ω)

o

,

dk+1
2 := arg min

d2

n

|d2|L1(Ω) +
τ2

2
‖d1 −Λ2uk+1− bk

2‖
2
L2(Ω)

o

,

bk+1
1 := bk

1 +Λ1uk+1 − dk+1
1 ,

bk+1
2 := bk

2 +Λ2uk+1 − dk+1
2 ;(III) If the stop 
riterion is not satis�ed, set k := k+ 1 and go to Step II.

It is clear that the first subproblem in Step II of Algorithm 2.1 can be solved easily

from the optimality condition. The solutions of the second and third subproblems can be

obtained by

dk+1
1 = Sτ1

(Λ1uk+1+ bk
1), dk+1

2 = Sτ2
(Λ2uk+1+ bk

2), (2.4)

where Sτ is the shrinkage operator defined by

Sτ(c) :=
c

|c|L1(Ω)

max
�

|c|L1(Ω)−τ
−1, 0

	

. (2.5)

Here, we adopt the convention: 0 · (0/0) = 0 (cf. [42]).

In fact, the above split Bregman-based method can be regarded as a special case of

the Douglas-Rachford splitting algorithm [19], as observed by Setzer and Teuber [39]. To

analyze Algorithm 2.1, we recall the convergence of the (generalized) Douglas-Rachford

splitting algorithm given by Combettes [17].

Lemma 2.1. Let X be a Hilbert space, and let A, B : X → 2X be two maximal monotone

operators. Define JµA = (I + A/µ)−1, for any µ > 0. Assume that a solution v∗ of

0 ∈ A(v)+ B(v)

exists. Then for any initial guesses t0, v0 and µ > 0, the following Douglas-Rachford splitting

iteration

(

tk+1 := JµA(2vk− tk) + tk − vk,

vk+1 := JµB(t
k+1), k ≥ 0,

(2.6)

converges weakly to an element t∗. Moreover, there holds v∗ := JµB(t
∗) satisfying 0 ∈ A(v∗)+

B(v∗). In particular, if X is finite dimensional, the sequence {vk} converges to v∗.
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With the aid of Lemma 2.1, we are able to show the convergence of Algorithm 2.1, as

stated in Theorems 2.1 and 2.2, whose proofs are given in Appendix A and Appendix B,

respectively.

Theorem 2.1. The sequence {(uk+1, dk+1
1 , dk+1

2 , bk+1
1 , bk+1

2 )} generated by Algorithm 2.1 is

convergent.

Theorem 2.2. Assume that (u∗, d∗1 , d∗2 , b∗1, b∗2) is the limit point of the sequence {(uk, dk
1 , dk

2 ,

bk
1, bk

2)} generated by Algorithm 2.1. Then u∗ is the solution of the constrained optimization

problem (1.5).

The following properties are a direct consequence of Theorem 2.2.

Corollary 2.1. Assume that u∗ is the solution of (1.5) and {uk} is generated by Algorithm

2.1. Then the following properties for Algorithm 2.1 hold:

lim
k→+∞

‖uk − u∗‖L2(Ω) = 0, lim
k→+∞

Λ1uk = Λ1u∗ and lim
k→+∞

Λ2uk = Λ2u∗.

2.2. A new projection scheme

The split Bregman method has been widely applied to signal processing and image

restoration problems [7,8,21–23,28,31], but it usually requires to solve PDEs in the inner

loop that increases computational time and memory requirement. In this subsection, we

propose a projection method based on the relationship between the projection operator

and the shrinkage operator. This leads to efficient algorithms that enjoy the advantages of

the split Bregman method without solving PDEs.

Definition 2.1. Let X , Y be two Hilbert spaces. The projection operator PBτ
(·) : X → Y

onto the closed disc Bτ :=
�

c ∈ X : ‖c‖L1(Ω) ≤ τ
−1
	

is defined by

PBτ
(c) =

c

‖c‖L1(Ω)

min
�

‖c‖L1(Ω),τ
−1
�

, (2.7)

where τ > 0.

In view of the definitions (2.5) and (2.7), we have the following identity:

PBτ
(c) + Sτ(c) = c, ∀c ∈ X , ∀τ > 0. (2.8)

This relation plays an important role in the construction of the fast algorithms below.

Firstly, we change Step II of Algorithm 2.1 as






































dk+1
1 := arg min

d1

n

|d1|L1(Ω) +
τ1

2
‖d1 −Λ1uk − bk

1‖
2
L2(Ω)

o

,

dk+1
2 := arg min

d2

n

|d2|L1(Ω) +
τ2

2
‖d2 −Λ2uk − bk

2‖
2
L2(Ω)

o

,

bk+1
1 := bk

1 +Λ1uk − dk+1
1 ,

bk+1
2

:= bk
2 +Λ2uk − dk+1

2
,

uk+1 := arg min
u

nγ

2
‖u− f ‖2

L2(Ω)
+
τ1

2
‖dk+1

1 −Λ1u− bk
1‖

2
L2(Ω)

+
τ2

2
‖dk+1

2 −Λ2u− bk
2‖

2
L2(Ω)

o

.
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Using the optimality conditions yields






























dk+1
1
= Sτ1

(bk
1 +Λ1uk),

dk+1
2 = Sτ2

(bk
2 +Λ2uk),

bk+1
1
= bk

1 +Λ1uk − dk+1
1

,

bk+1
2 = bk

2 +Λ2uk − dk+1
2 ,

uk+1 = f −
τ1

γ
Λ∗1(Λ1uk+1− dk+1

1
+ bk

1)−
τ2

γ
Λ∗2(Λ2uk+1− dk+1

2
+ bk

2).

(2.9)

Notice that the last step requires to solve a PDE for uk+1. To utilize the identity (2.8), we

apply a Jacobi iteration to solve (2.9):

uk+1 = f −
τ1

γ
Λ∗1
�

Λ1uk − dk+1
1 + bk

1

�

−
τ2

γ
Λ∗2
�

Λ2uk − dk+1
2 + bk

2

�

. (2.10)

Accordingly, it follows from (2.8) that (2.9) can be reformulated as a compact form














bk+1
1 = PBτ1

(bk
1 +Λ1uk),

bk+1
2 = PBτ2

(bk
2 +Λ2uk),

uk+1 = f −
τ1

γ
Λ∗1 bk+1

1
−
τ2

γ
Λ∗2 bk+1

2
.

(2.11)

This leads to the new projection method for (2.1).

Algorithm 2.2. Proje
tion method (PM) for solving (2.1)(I) Set u0 = f , b0
1 = 0, b0

2 = 0 and k = 0;(II) Compute (uk+1, bk+1
1

, bk+1
2
) by (2.11);(III) If the stop 
riterion is not satis�ed, set k := k+ 1 and go to Step II.

Remark 2.1. Although a Jacobi iteration is used to approximate (2.9), we find that several

iterations provide very satisfactory results and in most applications, only one iteration may

work well. Notice that Step II in Algorithm 2.2 is easy to compute as it only involves a

projection operator and an operator multiplication, so no need to solve PDEs. We see that

this is based on replacing Λiu
k− dk+1

i
+ bk

i in Algorithm 2.1 by bk+1
i

for i = 1,2. In fact, it

was also observed by Zhao and Jia [24]. However, their method did not give the relation

between the split Bregman method and the projection method. On the other hand, by

comparing Algorithm 2.2 with the gradient descent projection algorithm as in [9], it is

not difficult to find that 1

γ
b∗ as a limit generated by Algorithm 2.2 can be regarded as the

solution of the dual problem of (2.1).

We next consider the convergence of Algorithm 2.2. Let X and Y be Hilbert spaces.

Recall that the Lipschitz condition L(Λ) of the operator Λ : X → Y is defined by

‖Λu−Λv‖L2(Ω) ≤ L(Λ)‖u− v‖L2(Ω)

for every u, v ∈ X .
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Theorem 2.3. Assume that τ1 ∈ (0, 1

γL(Λ1Λ
∗
1)
) and τ2 ∈ (0, 1

γL(Λ2Λ
∗
2)
), then the sequence

{(uk, bk
1 , bk

2)} generated by Algorithm 2.2 converges to a limit point (u∗, b∗1, b∗2). Furthermore,

u∗ is the solution of (1.5).

The proof of this theorem is given in Appendix C.

It is known that the above projection scheme converges like O(k−1). Recently, an im-

proved version of the first-order method (called FISTA) with the convergence rate O(k−2)

proposed by Beck and Teboulle [4] has been extended to solve the ROF model [36]. This

method can be actually viewed as an extension of the classical gradient algorithm. Moti-

vated by this, we improve the above projection method as follows.

Algorithm 2.3. Fast proje
tion method (FPM) for solving (2.1):(I) Set u0 = f , b0
1 = 0, b0

2 = 0, d0
1 = 0, d0

2 = 0, t0 = 1 and k = 0;(II) Compute (uk+1, bk+1
1

, bk+1
2
) by

dk
1 = PBτ1

(bk
1 +Λ1uk),

dk
2 = PBτ2

(bk
2 +Λ2uk),

tk+1 =
1

2

�

1+
Æ

1+ 4t2
k

�,
bk+1

1 = dk
1 +

tk − 1

tk+1

(dk
1 − dk−1

1 ),
bk+1

2 = dk
2 +

tk − 1

tk+1

(dk
2 − dk−1

2 ),
uk+1 = f −

τ1

γ
Λ∗1 bk+1

1 −
τ2

γ
Λ∗2 bk+1

2 ;(III) If the stop 
riterion is not met, set k := k+ 1 and go to Step II.
Remark 2.2. Difference to Algorithm 2.3, there was also an improvement for Algorithm 2.2

based on the relaxed iterative method in [25]. Though this relaxed version was observed

to be faster than Algorithm 2.3, there are not some analysis of its convergence rate. So here

we propose Algorithm 2.3 to improve the convergence rate of Algorithm 2.2 and make it

obtain O(k−2).

In order to prove the convergence of Algorithm 2.3, we first consider the dual formu-

lation of (1.5).

Theorem 2.4. The solution of (1.5) is given by

u= f −
1

γ
(Λ∗1p1 +Λ

∗
2p2),

where p = (p1, p2) satisfies

min
‖p‖L∞≤1

‖Λ1p1 +Λ2p2 − γ f ‖2
L2(Ω)

. (2.12)
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The proof of this theorem is provided in Appendix D.

Setting F(p) = ‖Λ1p1 +Λ2p2 − γ f ‖2
L2(Ω)

and

g(p) =XK(p) =

¨

0 if p ∈ K = {p : ‖p‖L1 ≤ 1},

+∞ otherwise,

we can rewrite (2.12) as

min
p

�

F(p) + g(p)
	

. (2.13)

It is obvious that F(p) is a smooth convex function of C1,1-type and satisfies the following

Lipschitz condition

‖∇F(p)−∇F(q)‖L2(Ω) ≤ L‖p− q‖L2(Ω), ∀p,q ∈ R2,

where L is the Lipschtiz constant. Therefore, based on the problem (2.13), we can de-

duce that the problem (1.5) falls into the framework of the model proposed by Beck

and Teboulle [4]. This implies that Algorithm 2.3 can be looked at as the fast iterative

shrinkage-thresholding algorithm (FISTA), so we have the following result.

Theorem 2.5. Assume that (u∗, b∗1, b∗2) is the optimal solution of the problem (2.1). If τ1 ∈
(0, 1

γL(Λ1Λ
∗
1)
) and τ2 ∈ (0, 1

γL(Λ2Λ
∗
2)
), then the sequence {(uk, bk

1 , bk
2)} generated by Algorithm

2.3 converges to (u∗, b∗1, b∗2). Furthermore, Algorithm 2.3 has a convergence rate O(k−2) and

u∗ is the solution of (1.5).

3. Implementation on the Anisotropic LLT Model

As an important application, we apply the algorithms introduced in the previous section

to the anisotropic LLT model (1.4). We first introduce some notations. Assume that Ω is

a square domain in R2 and Ω is divided uniformly into N2 sub-square domains Ωi, j(i, j =

1, · · ·, N). Let x i, j = (i, j) be the left-down vertex of Ωi, j. Let ui, j be the approximation of u

at x i, j. Define the differential operators as in [27]:

Dxui, j := [ui+1, j − ui, j],

Dx xui, j :=
h

Dx(ui, j)− Dx(ui−1, j)
i

,

Dyui, j := [ui, j+1 − ui, j],

Dy yui, j :=
h

Dx(ui, j)− Dx(ui, j−1)
i

.

Setting Λ1 = Dx x and Λ2 = Dy y , the anisotropic LLT model (1.4) becomes a special case

of (1.5).
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Algorithm 3.1. The split Bregman method (SBM) for solving the Anisotropi
 LLT Model
(1.4):(I) Initialization: Set u0 = f , d0

x x = d0
y y = b0

x x = b0
y y = 0. Let k := 0;(II) Compute (uk+1, dk+1

x x , dk+1
y y , bk+1

x x , bk+1
y y ) by

uk+1 = Gk(β ,τ1,τ2,uk, dk
x x , dk

y y , bk
x x , bk

y y , f ),
dk+1

x x = shrink(Dx xuk+1− bk
x x ,τ−1),

dk+1
y y = shrink(Dy yuk+1 − bk

y y ,τ−1),
bk+1

x x = bk
x x + Dx x uk+1− dk+1

x x ,
bk+1

y y = bk
y y + Dy yuk+1− dk+1

y y ,where Gk(·) for i, j = 1,2, · · · , N takes for form
Gk

i, j(·) =
τ1

β + 6τ1+ 6τ2

�

− uk
i+2, j + 4uk

i+1, j + 4uk
i−1, j − uk

i−2, j + dk
x x ,i−1, j

− 2dk
x x ,i, j + dk

x x ,i+1, j − bk
x x ,i−1, j + 2bk

x x ,i, j − bk
x x ,i+1, j

�

+
τ2

β + 6τ1+ 6τ2

�

− uk
i, j+2 + 4uk

i, j+1 + 4uk
i, j−1 − uk

i, j−2 + dk
y y,i, j−1 − 2dk

y y,i, j

+ dy y,i, j+1 − bk
y y,i, j−1 + 2bk

y y,i, j − bk
y y,i, j+1

�

+
β

β + 6τ1+ 6τ2

fi, j;(III) If the stopping 
riterion is not satis�ed, the set k := k+ 1 and go to Step II.
In fact, the first term of Step II in Algorithm 3.1 can be deduced from the first term of

Step II in Algorithm 2.1 by using the Gauss-Seidel iteration to solve the optimality condition

for u, which can be written as

(β I +τ1DT
x x Dx x +τ2DT

y y Dy y)u
k+1 = β f +τ1DT

x x(d
k
1 − bk

1) +τ2DT
y y(d

k
2 − bk

2).

To avoid solving equations, we apply the projection method to solve the anisotropic LLT

model (1.4) as follows.

Algorithm 3.2. Proje
tion Method (PM) for solving the Anisotropi
 LLT Model (1.4)(I) Initialization: Set u1 = f , d
0

x x = d
0

y y . Let k:=1;(II) Compute (uk+1, d
k

x x , d
k

y y ) by
d

k

x x := PBτ1
(Dx xuk + d

k−1

x x ),
d

k

y y := PBτ2
(Dy yuk + d

k−1

y y ),
uk+1 := f −

τ1

β
DT

x x d
k

x x −
τ2

β
DT

y y d
k

y y ;(III) If the stopping 
riterion not satis�ed, set k := k+ 1 and go to Step II.
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In contrast to Algorithm 3.1, we can directly obtain uk+1 by using the variables d̄k
x x and

d̄k
y y in Algorithm 3.2. Moreover, the auxiliary variables bk+1

x x and bk+1
y y are not included in

Algorithm 3.2, so Algorithm 3.2 is more economic than Algorithm 3.1.

Applying Algorithm 2.3 to the anisotropic LLT model leads to the following algorithm.

Algorithm 3.3. Fast Proje
tion Method(FPM) for solving the Anisotropi
 LLT Model
(1.4).(I) Initialization: Set u1 = f , d̃0

x x = d̃0
y y , t0 = 1. Let k:=1;(II) Compute (uk+1, d̃k

x x , d̃k
y y) by

d̃k
x x := PBτ1

(Dx xuk + d̃k−1
x x ),

d̃k
y y := PBτ2

(Dy yuk + d̃k−1
y y ),

tk+1 :=
1

2

�

1+
Æ

1+ 4t2
k

�,
bk+1

1 := d̃k
1 +

tk − 1

tk+1

(d̃k
1 − d̃k−1

1 ),
bk+1

2
:= d̃k

2 +
tk − 1

tk+1

(d̃k
2 − d̃k−1

2 ),
uk+1 := f −

τ1

β
DT

x x bk+1
1
−
τ2

β
DT

y y bk+1
2

;(III) If the stopping 
riterion not satis�ed, set k := k+ 1 and go to (II).
We point out that the second-order differential operators Dx x and Dy y satisfy

‖Dx x u‖ℓ2 ≤ 16‖u‖ℓ2 and ‖Dy yu‖ℓ2 ≤ 16‖u‖ℓ2 .

Therefore, we derive from Theorem 2.5 the following convergence results.

Corollary 3.1. For the anisotropic LLT model, then the following assertions hold.

(1) The sequence {(uk, dk
x x , dk

y y , bk
x x , bk

y y)} generated by Algorithm 3.1 is convergent.

(2) Assume that τ1 ∈ (0, 1

16β
) and τ2 ∈ (0, 1

16β
). Then the sequence {(uk, d̄k

x x , d̄k
y y )} gener-

ated by Algorithm 3.2 is convergent.

(3) Assume that τ1 ∈ (0, 1

16β
) and τ2 ∈ (0, 1

16β
). Then the sequence {(uk, d̃k

x x , d̃k
y y )} gener-

ated by Algorithm 3.3 is convergent.

Furthermore, if u∗ is the limit point corresponding to the iteration sequence for the above three

algorithms, then u∗ is the solution of the anisotropic LLT model (1.4).

4. Numerical Results and Discussions

This section is devoted to numerical experiments and a comparison study with an

aim to show the performance of the proposed algorithms. We shall see that the use of
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anisotropic LLT model can considerably reduce the staircase effect, compared with the ROF

model. We shall demonstrate that the split Bregram-based method with a new projection

scheme is very efficient for the anisotropic LLT model.

For comparison, we recall the dual method in Steidl [38] for (1.4), as summarized

below.

Algorithm 4.1. Dual Method (DM) for solving the Anisotropi
 LLT Model (1.4).(I) Set u0 = f , and p0
x x = p0

y y = 0;(II) While the stop 
riterion is not satis�ed, 
ompute the following iteration:


































uk = f −
1

β
(Dx x pk

x x + Dy y pk
y y ),

pk+1
x x =

pk
x x +

τ

β
(Dx xuk)

1+ τ
β
|Dx xuk|

,

pk+1
y y =

pk
y y +

τ

β
(Dy yuk)

1+ τ
β
|Dy yuk|

,for k = 1 to N . Here τ is a positive parameter.
As in Chambolle [10], it is easy to deduce that the above DM is convergent when

τ < 1

32
. In order to measure the quality of the restored image, we introduce the signal to

noise ratio (SNR) and the mean squared error (MSE) defined by

SNR= 10 · log10

 ∫

Ω
(u− ū)2dΩ

∫

Ω
(η− η̄)2dΩ

!

and MSE =
1

|Ω|

∫

Ω

(u− u0)
2dΩ,

where |Ω| =
∫

Ω
dΩ, ū = 1

|Ω|

∫

Ω
udΩ and η̄ = 1

|Ω|

∫

Ω
ηdΩ, η = u− u0 denotes the noise.

All results are generated by using MATLAB(R2009a), on a PC with an Intel Core i5 M520

2.40 GHz processor, with 4GB of RAM. Furthermore, it is noteworthy that in the following

computation, we take τ= τ1 = τ2 and choice the suitable values of τ and β by the trials.

Example 1: We process a synthetic image with 128×128 pixels to show that the anisotropic

LLT model can overcome the staircase effect. The noisy image is obtained by adding a

Gaussian white noise with the standard variance σ = 15. The restored images in Fig. 1

are obtained by using the dual algorithm for the anisotropic ROF model (1.3) as did by

Chambolle [9] and Algorithm 4.1 for the anisotropic LLT model (1.4), respectively. The

parameters are chosen with λ2 = 0.08, t = 0.125 for the anisotropic ROF model and

β = 0.137, τ = 0.01 for the anisotropic LLT model. Both of the algorithms will stop af-

ter 500 iterations. As we can see from Fig. 1(c), the image restored by the ROF model

has staircase effect. However, the image restored by the LLT model looks more natural as

shown in Fig. 1(d). In order to make a better comparison, we consider a profile line in

Fig. 2(a) which station is shown in Fig. 1(a). From Fig. 2, it is easy to find that the image

restored by the LLT model has much less staircase effect and looks more natural again.
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(a) Original image (b) Noisy image

(c) ROF model (d) LLT modelFigure 1: The related images: (b) SNR= 12.1869; (
) SNR= 22.7887; (d) SNR= 22.6160.
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(d) LLT modelFigure 2: The pro�les of related images in Fig. 1.
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Method β τ Time(s) MSE SNR

DM 0.35 0.01 2.2304 34.0610 18.9826

SBM 0.35 0.005 3.1356 34.0207 18.9862

PM 0.35 0.0167 1.0452 34.2403 18.9598

FPM 0.35 0.0167 1.4196 34.1533 18.9705

Example 2: In this example, we compare the speed of the three algorithms in Section

3 and Algorithm 4.1. We consider the noisy Lena image contaminated by a Gaussian

white noise with the standard variance σ = 10. The related parameters, the computations

time, MSE, and SNR achieved by each of algorithms are arranged in Table 1. After the

algorithms are implemented about 100 iterations, we output the restored images. We

notice from Table 1 that the images restored by these four algorithms almost have the

same MSE and SNR. However, it is not difficult to find that the curves of MSE and SNR in

Fig. 4 generated by FPM obviously change faster than those generated by other methods,

which implies that FPM outperforms other methods. On the other hand, we should also

Original Image Noisy ImageFigure 3: The related images: (b) SNR= 14.3766 and MSE = 99.8160.
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notice the computation times. As we expect, Algorithms 3.2 and 3.3 spend much less the

computation time. In fact, Algorithms 3.2 (PM) and 3.3 (FPM) only require 33.3% and

45.3% computation time of Algorithm 3.1 (SBM), respectively.

Example 3: To analyze the convergence of the proposed algorithms in Section 3, we

consider the 256× 256 Peppers image as the test image. The noisy image is contaminated

by a Gaussian white noise with the standard variance σ = 20. Here, we take β = 0.135

and τ = 0.034. Algorithms are terminated after 1000 iterations. At this time, we have

SNRSBM = 15.2335, SNRPM = 15.2791 and SNRF PM = 15.2794 for restored images.

In order to understand the change of energy function (1.4), we plot energy function

curves corresponding to these three methods for the first 100 iterations. From Fig. 6(a),

we observe that the energy function (1.4) of FPM changes much faster than those of both

SBM and PM. To compare the accuracy F(uk)− F(u∗) of these three methods, we also plot

convergence curves of the accuracy in Fig. 6(b). It is clear that FPM is fastest and can reach

greatest accuracies amongst these three methods. Furthermore, the accuracy obtained by

PM at iteration 1000 only require about 500 iterations for FPM and 550 iterations for SBM.

The above comparison shows that FPM is the best among three methods.

Original image Noisy imageFigure 5: The related images: (b) SNR= 8.0657 and MSE = 401.8418.
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5. Concluding Remarks and Discussions

By using the relation between the projection operator and the shrink operator, we de-

duced a projection method from the split Brgeman method to solve the minimization prob-

lems including two L1-regularization terms. The proposed projection method compared

with the split Bregman method can avoid solving PDEs so that it saves computation time.

Furthermore, in order to make the projection method achieve the convergence rate O(k−2),

we employed the strategy of the fast iterative shrinkage/thresholding algorithm (FISTA)

to speed up the projection method. The convergence analysis of the proposed methods

were provided. Furthermore, we applied these methods to solve the anisotropic LLT model

and compared with various methods. The proposed algorithms have a great implication in

other image processing tasks such as image deblurring, zooming and inpainting. On the

other hand, the relaxed version in [25] encourages us to improve our proposed method

and choose the related relaxed parameters in the farther work.
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Appendix

A. Proof of Theorem 2.1

Based on the assumption, since the sequence {(uk+1, dk+1
1

, dk+1
2

, bk+1
1

, bk+1
2
)} is gener-

ated by Algorithm 2.1, then the optimality conditions of Step II in Algorithm 2.1 satisfy























0= γ(uk+1− f )−τ1Λ
∗
1(d

k
1 −Λ1uk+1− bk

1)−τ2Λ
∗
2(d

k
2 −Λ2uk+1− bk

2), (A.1a)

0 ∈ ∂ (|dk+1
1 |) +τ1(d

k+1
1 −Λ1uk+1− bk

1), (A.1b)

0 ∈ ∂ (|dk+1
2 |) +τ2(d

k+1
2 −Λ2uk+1− bk

2), (A.1c)

bk+1
1 = bk

1 +Λ1uk+1− dk+1
1 , (A.1d)

bk+1
2 = bk

2 +Λ2uk+1− dk+1
2 , (A.1e)

where Λ∗1 and Λ∗2 are the adjoint operators of Λ1 and Λ2, respectively. Set

Λ :=

�

Λ1

Λ2

�

, dk :=

�

dk
1

dk
2

�

, bk :=

�

bk
1

bk
2

�

, τ :=

�

τ1

τ2

�

,

then (A.1a) can be rewritten as

Λuk+1 =
τ

γ
ΛΛ∗(g + dk−Λuk+1 − bk),
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where τ
γ
Λ∗g := f . Adding g + dk−Λuk+1− bk to the two sides of the above equation, we

can get

bk − g − dk =
�

I +
τ

γ
ΛΛ∗

�

(bk +Λuk+1 − g − dk), (A.2)

where I denotes the identity operator. Set A(x) := ΛΛ∗(x − g) for x ∈ Ω and µ := τ

γ
, then

we can deduce that (I +µA)x = (I +µΛΛ∗)(x − g) + g, which implies that

JµAx := (I +µΛΛ∗)−1(x − g) + g

and JµA is firmly nonexpansive. Thus (A.2) can be rewritten as

Λuk+1 + bk = JµA(b
k − dk) + dk. (A.3)

Let vk := bk and tk := bk + dk, we can rewrite (A.3) as

tk+1 = JµA(2vk− tk)+ (tk − vk). (A.4)

It is clear that (A.4) corresponds to the first iteration of (2.6) in Lemma 2.1.

Now we consider the second iteration of (2.6). It is clear to find that Eqs. (A.1a) and

(A.1b) can be rewritten as

0 ∈ ∂ (|dk+1|)+τ(dk+1−Λuk+1− bk).

Set B−1 x = ∂ (|x |), then B as a set-valued mapping implies that

B y = x with x =







[0,+∞) if y = 1,

0 if |y| ≤ 1,

(−∞, 0] if y = −1

for y ∈ Ω. Hence we get

JB x = (I + B)−1 x = y with y =







1 if x > 1,

x if |x | ≤ 1,

−1 if x < −1.

Furthermore, we can obtain the following formula:

dk+1 ∈ τ−1B(Λuk+1 + bk − dk+1).

By the fact that bk+1 = bk +Λuk+1− dk+1, the above formula can be rewritten as

bk +Λuk+1 ∈ (
1

τ
B+ I)bk+1.

Set vk+1 := bk+1 and tk+1 := bk +Λuk+1, then we get

vk+1 = Jτ−1B(t
k+1). (A.5)

Combining (A.4) with (A.5) and based on the maximal monotone operators A and B, it

follows from Lemma 2.1 and τ,µ > 0 that the assertion holds.
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B. Proof of Theorem 2.2

Based on the assumption, if (u∗, d∗1 , d∗2 , b∗1, b∗2) is the limit point of the sequence {(uk, dk
1 , dk

2 ,

bk
1, bk

2)} generated by Algorithm 2.1, it is easy to deduce that (u∗, d∗1 , d∗2 , b∗1, b∗2) satisfies














0= γ(u∗ − f )−τ1Λ
∗
1(d
∗
1 −Λ1u∗ − b∗1)−τ2Λ

∗
2(d
∗
2 −Λ2u∗ − b∗2),

0 ∈ ∂ (|d∗1|)+τ1(d
∗
1 −Λ1u∗ − b∗1),

0 ∈ ∂ (|d∗2|)+τ2(d
∗
2 −Λ2u∗ − b∗2),

b∗1 = b∗1 + d∗1 −Λ1u∗,

b∗2 = b∗2 + d∗2 −Λ2u∗.

(B.1)

Setting b∗1 = b∗1 + d∗1 −Λ1u∗ and b∗2 = b∗2 + d∗2 −Λ2u∗, we rewrite (B.1) as










0 = γ(u∗− f ) +τ1Λ
∗
1 b∗1 +τ2Λ

∗
2 b∗2,

0 ∈ ∂ (|Λ1u∗|)−τ1 b∗1,

0 ∈ ∂ (|Λ2u∗|)−τ2 b∗2.

By the fact that Λ1 and Λ2 are bounded linear operators, we can deduce that

0 ∈ γ(u∗ − f ) +Λ∗1∂ (|Λ1u∗|)+Λ∗2∂ (|Λ2u∗|),

which implies that u∗ is the solution of (1.5).

C. Proof of Theorem 2.3

We first notice that Step II of Algorithm 2.2 can be rewritten as






bk+1
1 = PBτ1

((I − τ1

γ
Λ1Λ

∗
1)b

k
1 +Λ1 f − τ1

γ
Λ1Λ

∗
2 bk

2),

bk+1
2 = PBτ2

((I − τ2

γ
Λ2Λ

∗
2)b

k
2 +Λ2 f − τ2

γ
Λ2Λ

∗
1 bk

1),

so we can deduce that the above iterative sequence {(bk
1, bk

2)} converges to a fixed point

(b∗1, b∗2) when τ1 ∈ (0, 1

γL(Λ1Λ
∗
1)
) and τ2 ∈ (0, 1

γL(Λ2Λ
∗
2)
) [3]. It follows from Step II of

Algorithm 2.2 that










b∗1 = PBτ1
(b∗1+Λ1u∗),

b∗2 = PBτ2
(b∗2+Λ2u∗),

u∗ = f − τ1

γ
Λ∗1 b∗1−

τ2

γ
Λ∗2 b∗2,

(C.1)

where u∗ is the limit of {uk}. So it is not difficult to see that (C.1) can be reformulated as










Λ∗1 b∗1 =
1

τ1
∂ (|Λ1u∗|),

Λ∗2 b∗2 =
1

τ2
∂ (|Λ2u∗|),

u∗ = f − τ1

γ
Λ∗1 b∗1−

τ2

γ
Λ∗2 b∗2,
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which imply

u∗ − f +
1

γ
(∂ (|Λ1u∗|) + ∂ (|Λ2u∗|)) = 0.

Using the uniqueness of the solution, we can deduce that u∗ is the solution of (1.5).

D. Proof of Theorem 2.4

Using the fact that

|x |L1(Ω) = max
‖p‖L∞(Ω)≤1

{(x , p)L2(Ω)},

it follows that (1.5) can be rewritten as

min
u

max
‖p‖L∞(Ω)≤1

γ

2
‖u− f ‖2

L2(Ω)
+ (Λ∗1p1,u)L2(Ω) + (Λ

∗
2p2,u)L2(Ω),

where Λ∗
i

is the adjoint operator of Λi for i = 1,2. Since the objective function is convex

for u and concave for p, by interchanging the order of the minimum and maximum, we

can get

max
||p||L∞(Ω)≤1

min
u

γ

2
||u− f ||2

L2(Ω)
+ (Λ∗1p1,u)L2(Ω) + (Λ

∗
2p2,u)L2(Ω), (D.1)

which implies that u as the function of p1 and p2 satisfies

u= f −
1

γ
(Λ∗1p1 +Λ

∗
2p2). (D.2)

By replacing the variable u in (D.1) by the expression (D.2) and omitting the constant

terms, it follows that p1 and p2 satisfy

min
‖p‖L∞(Ω)≤1

‖Λ1p1 +Λ2p2 − γ f ‖2
L2(Ω)

.
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