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Abstract. A two-server service network has been studied from the principal-agent

perspective. In the model, services are rendered by two independent facilities coor-

dinated by an agency, which seeks to devise a strategy to suitably allocate customers
to the facilities and to simultaneously determine compensation levels. Two possible

allocation schemes were compared — viz. the common queue and separate queue

schemes. The separate queue allocation scheme was shown to give more compe-
tition incentives to the independent facilities and to also induce higher service ca-

pacity. In this paper, we investigate the general case of a multiple-server queueing
model, and again find that the separate queue allocation scheme creates more com-

petition incentives for servers and induces higher service capacities. In particular,

if there are no severe diseconomies associated with increasing service capacity, it
gives a lower expected sojourn time in equilibrium when the compensation level is

sufficiently high.

AMS subject classifications: 60K25, 68M20, 91A80

Key words: Capacity allocation, competition, incentive theory, Markovian queueing systems,

Nash equilibrium, principal agent.

1. Introduction

Finding the optimal strategy and control policy for a queueing system is a traditional

optimal control problem that is well studied in the literature — e.g. see [2,11–14,19].
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An optimal control problem usually involves making decisions on such system param-

eters as service capacity, the waiting time or the sojourn time spent in the system, and

the number of servers in the system under a specified cost structure (convex or con-

cave). Service capacity is often an important competitive factor in system design —

e.g. in telecommunication networks [6], data transmission systems [13], or Vendor-

Managed Inventory (VMI) [3,18] and other supply chain management [10]. In partic-

ular, current developments in supply chain management emphasize the coordination

and integration of inventory and transportation logistics [4,20]. VMI is a supply chain

initiative where the distributor is responsible for all decisions regarding the selection

of the retailers or agents, which creates a competitive environment for them in the

market [16].

Kalai et al. [13] studied the service capacities of two servers competing for market

share, assuming a Markovian queueing system. Markovian queueing systems are popu-

lar tools for modeling service systems, since they are more mathematically tractable

than non-Markovian queueing systems [6, 7]. Game theory [17] is a popular and

promising analytical approach [1, 5, 8, 10]. Kalai et al. [13] classified the relevant

Nash equilibria into three different cases concerning the cost function and revenue per

customer, with a finite waiting time and a unique symmetric equilibrium in one case.

Although their model is simple, it included two important concepts. The first is the

“competitive game of servers”, and the second is “market share of a server in a multi-

server facility”. Furthermore, when the marginal cost of providing service is “high”,

they found there is a unique symmetric equilibrium and that the total service capacity

is less than the mean demand rate. In such a case, each server actually behaves as if it

were a monopolist, so there is no desirable competition. On the other hand, when the

marginal cost of servicing is “low”, a unique symmetric equilibrium exists and the total

service capacity is greater than the mean demand rate.

In [14], a service network where a coordinating agency is responsible for satisfying

the customers’ total waiting and service time is studied. Two facilities (two servers)

are considered, and two types of allocation policy — viz. a common queue with two

servers, and two separate single-server queues. In some cases, the separate queue

allocation scheme was found to have advantages over the common queue allocation

scheme. In this paper, we extend the model in [13] to allow more than two servers,

and are particularly interested in where the total service capacity exceeds the mean

demand rate. Our analysis indicates that with multiple servers the separate queue

allocation scheme gives more service incentives and induces higher service capacities.

Moreover, when there are no severe diseconomies associated with increasing service

capacity, the separate queue allocation scheme gives a lower expected sojourn time in

equilibrium.

The remainder of this paper is structured as follows. In Section 2, we briefly review

the two-server queueing system in [13] and the service system in [14]. The multiple-

server common-queue model and our analysis of system performance is presented in

Section 3. In Section 4, we discuss the multiple-server separate queue system and
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analyse the system performance. The effect of the number of servers on the system

equilibrium is discussed in Section 5. A numerical demonstration is given in Section 6

for the case of a 3-server queueing system; and then in Section 7, we compare server

competition incentives to increase capacities under the two schemes and the resulting

expected sojourn times. Concluding remarks and comment on further research are

made in Section 8.

2. Review of the Two-Server Model

We briefly review the model studied by Gilbert and Weng [14], for a system where

two independently operating servers are coordinated by one central agency. Customers

arrive according to a Poisson process of rate λ, and each server i determines its own

service capacity µi to maximize its individual profit. Service time is assumed to follow

an exponential distribution with mean 1/µi, and the cost to operate at service capacity

µ is c(µ). This operating cost function is assumed to be an increasing and strictly convex

function (i.e. both c′(µ) and c′′(µ) are positive), such as for example c(µ) = µ2.

The goal of the coordinating agency is to maintain the expected sojourn time below

a given level W at minimal cost. The coordinating agency determines a fixed amount R
to compensate the servers for each unit of service rendered, and also chooses between

two allocation systems — viz. the common queue and separate queue systems. The first

allocates customers to a single First-In-First-Out (FIFO) queue, where any customer

arriving when both servers are idle is assigned to either server with equal likelihood.

The second maintains a separate queue for each server, where arriving customers are

assigned such that the expected sojourn time (i.e. the total waiting and service time)

is identical for each server. In the following subsections, we specifically discuss the

queueing models in [13,14].

2.1. The common queue model

The service system studied in [13] consists of two independently operating servers

coordinated by one central agency. Customers arrive according to a Poisson process of

rate λ, and the service times are assumed to follow the exponential distribution. Each

server i operates independently and determines its own service capacity µi to maximize

its profit. The servers share the same cost function c(µ) to operate at service capacity

µ, and the coordinating agency determines a fixed amount R to compensate them for

each unit of service rendered. The queueing system is a two-server FIFO queue, where

a customer arriving when both servers are idle is assigned to either server with equal

likelihood. No server is allowed to be idle when there is at least one customer in the

queue, and a customer arriving when one server is idle and the other is busy is assigned

to the idle server. Let us now briefly present the main results obtained by [13] for this

two-server queueing model.
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2.1.1. The market share

The market share of Server i is equal to the mean number of customers per time unit

who enter service with Server i, so the fraction of all customers served by Server i ∈
{1, 2} is given by

αi(µ1, µ2) =
λµ2

i + µ1µ2(µ1 + µ2)

λ(µ1 + µ2)2 + 2µ1µ2(µ1 + µ2 − λ)
. (2.1)

2.1.2. The profit function

Under the respective market shares given by (2.1), the profit function πc
i (µ1, µ2) that

defines the expected profit per time unit earned by Server i ∈ {1, 2} is

πc
i (µ1, µ2) =

{

Rλαi(µ1, µ2)− c(µi) if µ1 + µ2 > λ
Rµi − c(µi) if µ1 + µ2 ≤ λ ,

(2.2)

where c(µ) is the cost per time unit of providing service at capacity µ and R is the

amount of compensation the server receives for each customer served.

2.1.3. The equilibrium

Kalai et al. [13] considered the situation to be a two-person strategic game, and found

that finite waiting times exist at equilibrium if and only if

c′
(

λ

2

)

<
R

2
. (2.3)

Moreover, if this condition is satisfied a unique equilibrium exists, where both servers

select the same service capacity µc = µ1 = µ2 such that

c′(µc) =
Rλ2

2µc(2µc + λ)
.

2.2. The separate queue model

Gilbert and Weng [14] studied the separate queue model. To achieve the same

expected sojourn time for both servers, the fraction of customers assigned to Server

i ∈ {1, 2} is

βi(µ1, µ2) =
µi − µj + λ

2λ
for µj − λ ≤ µi ≤ µj + λ , (2.4)

where j ∈ {1, 2} and i 6= j. If µi falls outside of the bounds in (2.4), there is no possible

allocation of customers to the two servers such that the expected sojourn times are

equal. With βi(µ1, µ2) defined in (2.4), the profit for Server i ∈ {1, 2} is

πs
i (µ1, µ2) =

{

Rλβi(µ1, µ2)− c(µi) if µ1 + µ2 > λ
Rµi − c(µi) if µ1 + µ2 ≤ λ.

(2.5)

The following result determines the Nash equilibrium of the service capacities.
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Proposition 2.1. (Gilbert and Weng [14])

Consider the separate queue system in which Server i ∈ {1, 2} faces the profit function in

(2.5).

(a) At equilibrium, the expected sojourn time W is finite if and only if R/2 > c′(λ/2).

(b) If R/2 > c′(λ/2), there is a unique equilibrium where µ1 = µ2 = µs and µs satisfies

c′(µs) = R/2.

For any given value of R > 2c′(λ/2), Gilbert and Weng [14] concluded that the equilib-

rium service capacities are higher under the separate queue system than in the common

queue system. This can be interpreted as the consequence of the more intensive com-

petition between the servers for market share in the separate queue system. Further,

Gilbert and Weng [14] compared the cost the coordinating agency incurs to maintain

the expected sojourn time below a given level in the two systems. They found the sep-

arate queue allocation scheme is to be favored when there are no severe diseconomies

associated with increasing service capacity. In particular, when the cost function is

quadratic (i.e. c(µ) = aµ2 where a > 0), the coordinating agency incurs lower costs

with the separate queue than with common queue allocation.

3. The Common Queue Model with Multiple Servers

3.1. The n-server queueing system

We now extend from the two-server system in [13] and [14] to consider a multiple

n-server system. It is assumed that customer arrival follows a Poisson process, and in

the common queue model the arriving customers wait in a single FIFO queue if all of

the servers are busy. No server is allowed to be idle when there is at least one customer

in the queue; and if a customer arrives when more than one server is idle, the customer

is assigned to any of the idle servers with equal probability. Once a server completes

serving a customer, the first customer in the queue (if any) is assigned to that server,

where each server i may choose its own service capacity µi and its service time follows

the exponential distribution with mean 1/µi. It is assumed that the service capacity

chosen is not observed by the coordinating agency, and therefore cannot be contracted.

The servers are compensated by an amount R for each customer served, and each

server incurs a cost of rate c(µ) at service capacity µ.

3.1.1. Market share

We first derive the market share of each server. When
∑n

i=1 µi ≤ λ, a steady-state

probability distribution does not exist and each server receives customers at its service

capacity. Otherwise,
∑n

i=1 µi > λ and all customers are served, where each server re-

ceives only a fraction of the arriving customers at a rate lower than its service capacity.

The server’s profit is thus affected by the fraction of all of the customers it serves —
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i.e. its market share. The market share can be obtained by finding the expected value of

the server’s rate of receiving customers in different states of the system over the steady-

state probabilities, and then dividing by the arrival rate λ. The following proposition

illustrates this result.

Proposition 3.1. (Ching et al. [8])

Suppose that
∑n

i=1 µi > λ. Then the market share αi(µ1, µ2, . . . , µn) of Server i is given

by

µi









n−1
∑

k=0

k!λn−k−1





∑

j1<j2<...<jk,jp 6=i∀p

µj1µj2 . . . µjk



+ λn−1(
ρ

1− ρ
)









n
∑

k=1

k!λn−k





∑

j1<j2<...<jk

µj1µj2 . . . µjk



+
λn

1− ρ

. (3.1)

The following two propositions, involving the partial derivatives of the market share

αi with respect to µi, prove useful in characterizing the servers’ decisions and deter-

mining the Nash equilibrium of the system in considering it to be an n-player strategic

game.

Proposition 3.2. (Ching et al. [8])

Suppose that
∑n

i=1 µi > λ. Then

∂αi(µ1, µ2, . . . , µn)

∂µi
> 0. (3.2)

Furthermore, when µi → ∞ we have

∂αi(µ1, . . . , µn)

∂µi
→ 0.

Proposition 3.3. (Ching et al. [8])

Suppose that
∑n

i=1 µi > λ. Then

∂2αi(µ1, µ2, . . . , µn)

∂µ2
i

< 0. (3.3)

Propositions 3.2 and 3.3 imply that market share αi is increasing and concave with

respect to µi (i = 1, 2, . . . , n).

3.2. The profit function

In deriving the server profit function, there are two cases to be considered —

viz. when
∑n

i=1 µi > λ, Server i receives customers at a rate of λαi(µ1, µ2, . . . , µn);
but when

∑n
i=1 µi ≤ λ, Server i receives customer at a rate of µi. In both cases, Server
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i incurs a cost of c(µi), so the rate of profit of Server i takes a similar form to that

in [13] as follows:

πc
i (µ1, µ2, . . . , µn) =























Rλαi(µ1, µ2, . . . , µn)− c(µi) if

n
∑

i=1

µi > λ

Rµi − c(µi) if

n
∑

i=1

µi ≤ λ.

(3.4)

When servers choose their service capacities, there is a tradeoff between increasing

revenue and minimizing cost. From Propositions 3.2 and 3.3, it is straightforward to

obtain the following proposition on the properties of the profit function πi with respect

to µi.

Proposition 3.4. (Ching et al. [8])

For i = 1, 2, . . . , n, for each fixed λ > 0 and µj > 0 for j 6= i the function πc
i (µ1, µ2, . . . , µn)

is continuous and strictly concave in µi.

3.3. The equilibrium of the system

Servers’ decisions on service capacities affect their respective profits, which we

model as an n-player strategic game where each server i simultaneously chooses its

service capacity µi to maximize its profit πi. We then discuss the Nash equilibrium

of the system. Similar to the two-server case in [13], we find there is a unique equi-

librium where all servers choose the same service capacities, when the marginal cost

is low enough. We first consider how the profit of Server i changes with its service

capacity, when all of the other servers choose the same service capacity.

Proposition 3.5. (Ching et al. [8])

For µc > λ/n,

∂

∂µi
αi(µ1, µ2, . . . , µn)

∣

∣

∣

∣

µ1=µ2=...=µn=µc

=
λ

n2µ2
c















1−
λn−1

n−1
∑

k=0

(k + 1)!

(

n− 1
k

)

λn−k−1µk
c















(3.5)

which is decreasing in µc. Also, we have

lim
µc→(λ/n)+

∂

∂µi
αi(µ1, µ2, . . . , µn)

∣

∣

∣

∣

µ1=µ2=...=µn=µc

=
n− 1

nλ

and

lim
µc→∞

∂

∂µi
αi(µ1, µ2, . . . , µn)

∣

∣

∣

∣

µ1=µ2=...=µn=µc

= 0.
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It is notable that for µc > λ/n Proposition 3.5 implies

∂

∂µi
αi(µ1, µ2, . . . , µn)

∣

∣

∣

∣

µ1=µ2=...=µn=µc

<
n− 1

nλ
.

The following proposition gives the Nash equilibrium of the game, which represents

the decision of the servers on their service capacities in the long-run.

Proposition 3.6. (Ching et al. [8])

If (n− 1)R/n > c′(λ/n), there is a unique equilibrium where

µ1 = µ2 = . . . = µn = µc (3.6)

and µc is the unique solution that satisfies µc > λ/n and

Rλ
∂

∂µi
αi(µ1, µ2, . . . , µn)

∣

∣

∣

∣

µ1=µ2=...=µn=µc

= c′(µc) (3.7)

— i.e.

R

(

λ

nµc

)2















1−
λn−1

n−1
∑

k=0

(k + 1)!

(

n− 1
k

)

λn−k−1µk
c















= c′(µc). (3.8)

If (n − 1)R/n ≤ c′(λ/n), then the system has no equilibrium where the expected waiting

time is finite.

This proposition indicates that, given the arrival rate of customers λ, the number of

servers n and the revenue per customer R, all servers choose the same service capacity

given by Equation (3.8) in the long-run if the condition

(n− 1)R

n
> c′

(

λ

n

)

(3.9)

is satisfied. Proposition 3.6 is important and useful for determining the minimum value

of compensation per customer R such that the system has a finite waiting time equilib-

rium.

4. The Separate Queueing Network Model

4.1. The n-separate-queue system

We now extend from the separate queueing system studied in [14] to consider n
M/M/1/∞ FIFO queues. It is assumed that customer arrival is a Poisson process. Each

server i may choose its own service capacity µi, and service time follows an exponential
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distribution with mean 1/µi. The coordinating agency allocates a fraction of the arriv-

ing customers to each of the queues such that each customer has the same expected

sojourn time, independent of the server to which the customer is assigned. It is also

assumed that the arrival of customers to each of the queues is a Poisson process. As

before with the common queue system, the service capacity chosen is not observed by

the coordinating agency and therefore cannot be contracted. The servers are compen-

sated by an amount R for each customer served, and each of them incurs a cost c(µ) to

operate at the service rate µ, where c(.) is assumed to be increasing and strictly convex.

4.2. The allocation of customers

In this subsection we derive an expression for βi(µ1, µ2, . . . , µn), the proportion of

the arriving customers allocated to Server i, such that the expected sojourn time for

customers in each queue is the same. The sojourn time Wi of a customer in queue

i depends on the rate of arrival to queue i, i.e. λβi(µ1, µ2, . . . , µn) where µi is the

service capacity of Server i. By using the standard results of an M/M/1/∞ in queueing

theory [6], we have

Wi =
1

µi − βi(µ1, µ2, . . . , µn)λ
.

Proposition 4.1. If for all i = 1, 2, . . . , n

1

n− 1





n
∑

j=1,j 6=i

µj − λ



 ≤ µi ≤
1

n− 1

n
∑

j=1,j 6=i

µj + λ , (4.1)

then the proportion of arriving customers allocated to Server i to achieve identical expected

sojourn times for all servers is

βi(µ1, µ2, . . . , µn) =
1

nλ



(n− 1)µi −

n
∑

j=1,j 6=i

µj + λ



 . (4.2)

Proof. To achieve the same expected sojourn time for the n servers, we must have

W1 = W2 = . . . = Wn — i.e.

1

µ1 − β1(µ1, µ2, . . . , µn)λ
=

1

µ2 − β2(µ1, µ2, . . . , µn)λ
= . . . =

1

µn − βn(µ1, µ2, . . . , µn)λ

or µ1−β1(µ1, µ2, . . . , µn)λ = µ2−β2(µ1, µ2, . . . , µn)λ = . . . = µn−βn(µ1, µ2, . . . , µn)λ.

Moreover, we have

β1(µ1, µ2, . . . , µn) + β2(µ1, µ2, . . . , µn) + . . . + βn(µ1, µ2, . . . , µn) = 1. (4.3)
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Rearranging and combining these equations where (4.3) is also multiplied by λ, we

have


















λ −λ 0 · · · 0
λ 0 −λ 0 0
λ 0 0 −λ 0 0
...

. . .
. . .

λ 0 0 0 0 −λ
λ λ λ · · · λ λ





























β1(µ1, µ2, . . . , µn)
β2(µ1, µ2, . . . , µn)
...

βn(µ1, µ2, . . . , µn)











=



















µ1 − µ2

µ1 − µ3

µ1 − µ4
...

µ1 − µn

λ



















. (4.4)

Multiplying this equation on the left by the inverse of the first matrix on its left-hand

side then yields the solution as follows:











β1(µ1, µ2, . . . , µn)
β2(µ1, µ2, . . . , µn)

...

βn(µ1, µ2, . . . , µn)











=
1

nλ















1 1 · · · 1 1
−(n− 1) 1 · · · 1 1

1 −(n− 1) · · · 1 1
. . .

1 1 · · · −(n− 1) 1

































µ1 − µ2

µ1 − µ3

µ1 − µ4
...

µ1 − µn

λ



















— i.e.

βi(µ1, µ2, . . . , µn) =
1

nλ



(n− 1)µi −

n
∑

j=1,j 6=i

µj + λ





for
∑n

j=1,j 6=i µj − λ

n− 1
≤ µi ≤

∑n
j=1,j 6=i µj

n− 1
+ λ.

Here we note that it is sufficient to require only the first inequality in (4.1). Suppose

we have
∑n

j=1,j 6=i µj − λ

n− 1
≤ µi for all i. (4.5)

Then for any l, on summing these inequalities over all i 6= l we have

(n − 1)µl + (n− 2)
∑n

j=1,j 6=l µj − (n− 1)λ

n− 1
≤

n
∑

i=1,i 6=l

µi (4.6)

or

µl ≤

∑n
i=1,i 6=l µi

n− 1
+ λ. (4.7)

Thus it is sufficient to require
∑n

j=1,j 6=i µj − λ

n− 1
≤ µi for all i. (4.8)
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Proposition 4.2. If the constraint (4.8) is not satisfied, then it is impossible to make the

expected sojourn time of all servers equal if every server is to receive a positive fraction of

the customers.

Proof. Suppose (4.8) is not satisfied. Then for some i

µi <

∑n
j=1,j 6=i µj − λ

n− 1
. (4.9)

Let S0 = {1, 2, . . . , n} and k0 = |S| = n. In the (l + 1)-th iteration, while

µi <

∑n
j∈Sl,j 6=i µj − λ

kl − 1
(4.10)

for some i ∈ Sl we remove the smallest i ∈ Sl that satisfies inequality (4.10) to form

Sl+1 and let kl+1 = |Sl+1|. We repeat this process until we have Sm where every i ∈ Sm

satisfies

µi ≥

∑n
j∈Sm,j 6=i µj − λ

km − 1
. (4.11)

In other words, we repeatedly eliminate servers which are too slow, until it is possible

to allocate customers to the remaining servers such that the expected sojourn times are

equal. We further note that for i = 0, 1, 2, . . . ,m

∑n
j∈Si

µj − λ

ki
<

∑n
j∈Sm

µj − λ

km
, (4.12)

since we always remove the server with the smallest value of µj. Then for all i 6∈ S we

have

µi <

∑n
j∈Sm

µj − λ

km
. (4.13)

We consider only the km servers with indices in Sm, and allocate customers to them

such that the sojourn times are the same. Since we have

µi ≥

∑n
j∈Sm,j 6=i µj − λ

km − 1

for all i ∈ Sm, we allocate a fraction

βi(µ1, µ2, . . . , µn) =
1

kmλ



(km − 1)µi −
n
∑

j∈Sm,j 6=i

µj + λ





of customers to Server i where i ∈ Sm. The expected sojourn time of each of these km
servers is then

1

µi − [(km − 1)µi −
∑

j,∈Sm,j 6=i µj + λ]/km
=

km
∑

j∈Sm
µj − λ

<
1

µl
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for any l 6∈ Sm, where the inequality follows from (4.13). We see that for any l 6∈ Sm

the expected service time of Server l is longer than the expected sojourn time of the

servers with indices in S. It is therefore impossible to equalize the expected sojourn

time of Server l with the other servers, and we set βl(µ1, µ2, . . . , µn) = 0 for any servers

l 6∈ S.

We note that the service capacities of some servers are so low that it is possible to

allocate all the customers to other servers and still achieve an expected sojourn time

less than the expected service time of the slower servers. Thus it is undesirable to

allocate any customers to those slow servers.

Similar to the case of the common server queue, the rate of profit of Server i is

πs
i (µ1, µ2, . . . , µn) =























Rλβi(µ1, µ2, . . . , µn)− c(µi) if

n
∑

i=1

µi > λ

Rµi − c(µi) if

n
∑

i=1

µi ≤ λ.

(4.14)

We model the situation as an n-player strategic game, where each Server i chooses

service capacity µi to maximize its profit as given by (4.14). We give the following

result on the equilibrium service capacities.

Proposition 4.3. Consider the separate queue system in which Server i ∈ 1, 2, . . . , n faces

the profit function in (4.14).

(a) At equilibrium, the expected sojourn time W is finite if and only if

(n− 1)R

n
> c′

(

λ

n

)

.

(b) If
(n− 1)R

n
> c′

(

λ

n

)

and c′(µ) is not bounded above by (n − 1)R/n, then there is a unique equilibrium with

µ1 = µ2 = . . . = µn = µs where µs satisfies

c′(µs) =
(n− 1)R

n
. (4.15)

Proof. One may first note that in equilibrium the condition (4.1) must be satisfied,

for otherwise at least one server i with capacity µi > 0 receives no customers. Server

i can then lower its service rate, for instance to µi/2, to increase its profit without

affecting the compensation as it does not serve any customers. Thus it is impossible to

have a Nash equilibrium where condition (4.1) is not satisfied, and therefore we need

only consider those cases where (4.1) is satisfied. The following is a generalization of

the proof for the two-server case given in [14].
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(a) Suppose W is infinite, so

µ1 + µ2 + . . .+ µn ≤ λ and πs
i (µ1, µ2, . . . , µn) = Rµi − c(µi).

To have an equilibrium, for i = 1, 2, . . . , n we must have

∂πs
i (µ1, µ2, . . . , µn)

∂µi
= R− c′(µi) = 0

— i.e. R = c′(µi). Since µ1 + µ2 + . . . + µn ≤ λ, we have µi ≤ λ/n for some i, and

hence R = c′(µi) ≤ c′(λ/n) by the convexity of c(.). Since (n − 1)R/n < R, we then

have (n− 1)R/n < c′(λ/n). Now suppose W is finite, so

µ1 + µ2 + . . . + µn > λ and πs
i (µ1, µ2, . . . , µn) = Rλβi(µ1, µ2, . . . , µn)− c(µi).

To have an equilibrium, for i = 1, 2, . . . , n we must have

∂πs
i (µ1, µ2, . . . , µn)

∂µi
= Rλ

∂βi(µ1, µ2, . . . , µn)

∂µi
− c′(µi) = 0 .

Substituting the partial derivative of βi(µ1, µ2, . . . , µn), for i = 1, 2, . . . , n we have

∂πs
i (µ1, µ2, . . . , µn)

∂µi
=

(n− 1)R

n
− c′(µi) = 0 (4.16)

— i.e. (n − 1)R/n = c′(µi). Since µ1 + µ2 + . . . + µn > λ, we have µi > λ/n for

some i and hence (n − 1)R/n = c′(µi) > c′(λ/n) by the convexity of c(.). Therefore

(n− 1)R/n > c′(λ/n).
(b) It is given that (n−1)R/n < c′(λ/n) and c′(µ) is not bounded above by (n−1)R/n.

Since c′(µ) is increasing, (4.15) holds for some µs. From part (a), if (n − 1)R/n <
c′(λ/n), then W is finite and µ1+µ2+. . .+µn > λ, and the equilibrium service capacities

must satisfy (4.16). Since c(.) is strictly convex, we must have µ1 = µ2 = . . . = µn = µs

where µs satisfies (4.16). Note that in this case condition (4.1) is satisfied.

5. Effect of the Number of Servers

We recall that the condition for the existence of a finite waiting-time equilibrium,

in both the common queue system and the separate queue system, is

R >
n

n− 1
· c′
(

λ

n

)

.

As n increases, (n − 1)R/n increases and c′(λ/n) decreases, therefore the minimum

value of R for which a finite waiting-time equilibrium exists decreases as n increases.

As the number of servers increases, competition becomes more intense. This decreases

the cost of the coordinating agency to achieve a finite-waiting time equilibrium. More-

over, for the separate queue system, when the above condition is satisfied we have

(n − 1)R/n = c′(µs), where the left-hand side is increasing with n. Hence the equi-

librium value of µs increases with n, since c(.) is convex. In other words, a rise in

the number of servers increases competition incentives and therefore induces higher

service capacities.
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6. A Numerical Example for a Three-Server Queueing System

In this section, we present a numerical example for a three-server service system

(i.e. for n = 3). We assume the cost function takes the form

c(µ) = µ2 , (6.1)

and that the condition for a stable queueing system holds — i.e.

µ1 + µ2 + µ3 > λ. (6.2)

We note that c′(µ) > 0 and c′′(µ) > 0 for µ > 0, so c(µ) is strictly increasing and strictly

convex.

6.1. Common queueing system

For the common queueing system we have

αi(µ1, µ2, µ3) =
µi

[

λ2 + λ(µj + µl) + 2µjµl +
λ3

µi+µj+µl−λ

]

λ2(µi + µj + µl) + 2λ(µiµj + µiµl + µjµl) + 6µiµjµl +
λ3(µi+µj+µl)
µi+µj+µl−λ

,

where j, l ∈ {1, 2, 3} and i, j, l are distinct. Now

∂

∂µi
αi(µ1, µ2, µ3)

∣

∣

∣

∣

µ1=µ2=µ3=µc

=
2λ(2λ + 3µc)

9µc(λ2 + 4µcλ+ 6µ2
c)
.

If 2R/3 > c′(λ/n) = 2λ/3 so R > λ, there is a unique equilibrium where

µ1 = µ2 = µ3 = µc

and µc is the unique solution satisfying

µc >
λ

3
, and

[

2λ2(2λ+ 3µc)

9µc(λ2 + 4µcλ+ 6µ2
c)

]

R = c′(µc) = 2µc

or 54µ4
c + 36λµ3

c + 9λ2µ2
c − 3Rλ2µc − 2Rλ3 = 0.

6.2. Separate queueing system

For the separate queueing system, if

µj + µl − λ

2
≤ µi ≤

µj + µl

2
+ λ

for all i, j, l ∈ {1, 2, 3} and i, j, l distinct, we have

βi(µ1, µ2, µ3) =
1

3λ
(2µi − µj + µl + λ) .
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In equilibrium, the expected sojourn time W is finite if and only if

2R

3
> c′

(

λ

n

)

=
2λ

3
,

or R > λ. If this condition is satisfied, there is a unique equilibrium where

µ1 = µ2 = µ3 = µs ,

with µs satisfying

c′(µs) = 2µs =
2R

3
, or µs =

R

3
.

7. Comparison of Competition Incentives in the Two Queueing Systems

In this section, we consider the results of the common and separate queueing sys-

tems to compare how the independent servers choose their service capacities in each

case, given the same level of compensation R large enough for a finite-waiting time

equilibrium to exist.

Proposition 7.1. If (n − 1)R/n > c′(λ/n) for fixed R, then unique symmetric equilibria

exist for both the common queue and the separate queue systems. Further, if the equilib-

rium service capacity in each of these two systems is denoted by µc and µs respectively,

then µs > µc.

Proof. We have

c′(µs) =
(n− 1)R

n
> Rλ

∂

∂µi
αi(µ1, µ2, . . . , µn)

∣

∣

∣

∣

µ1=µ2=...=µn=µc

= c′(µc) ,

where the inequality follows from Proposition 3.5. Now since c(.) is strictly convex,

c′(µs) > c′(µc) implies µs > µc.

This proposition indicates that, for a given value of

R >
n

n− 1
· c′
(

λ

n

)

,

the equilibrium service capacity commonly chosen by the n servers in the separate

queue system is higher than in the common queue system. Thus the servers have

more incentives to work at a higher service capacity in a separate queue system than

in a common queue system. As pointed out by Gilbert and Weng [14] in the two-

server case, this can be interpreted as a consequence of more intensive competition for

customers in the separate queue system. In the separate queue system, an increase in

service capacity increases the server’s rate of receiving customers whether idle or busy.

On the other hand, an increase in service capacity in the common queue system only

raises the server’s rate of receiving customers when all servers are busy, since customers



394 S.-M. Choi, X. Huang, W.-K. Ching and M. Huang

are allocated to idle servers with equal probability. Proposition 7.1 shows this is also

true for an n-server system — i.e. competition in the separate queue system provides

more incentives for servers to work at a faster rate.

Nevertheless, a higher equilibrium service capacity in the separate queue system

does not always imply a lower expected sojourn time for customers. In the two-server

case, Gilbert and Weng [14] showed that the expected sojourn time under the separate

queue allocation policy is always lower than that under the common queue allocation

policy when c(µ) = aµ2 and R > c′(λ/2), but this does not hold when n > 2. For

example, in the 3-server case suppose c(µ) = µ2, λ = 1 and R = 1.001, so that µc =
0.3460 and µs = 0.3667 but Wc = 27.4826 < Ws = 30. From standard results for the

M/M/n/∞ queue in queueing theory, the expected sojourn time of the single n-server

queue is

Wc(µc) =
1

µc





anc
(n− 1)!(n − ac)2

×

(

n−1
∑

k=0

akc
k!

+
anc

(n− 1)!(n − ac)

)−1

+ 1



 , (7.1)

where ac = λ/µc. For each queue in the separate queue system, the arrival rate is λ/n
at equilibrium, so from standard M/M/1/∞ queue results the expected sojourn time is

Ws(µs) =
1

µs − λ/n
. (7.2)

As with Equation (7.1), the expression for the expected sojourn time of the n-server

common queue is rather complicated. In order to investigate cases where the expected

sojourn time Ws under the separate queue allocation policy is lower than the time Wc

under the common queue allocation policy, we give a necessary and sufficient condition

for Wc to be greater than Ws in the following lemma.

Lemma 7.1. A necessary and sufficient condition for Wc > Ws is

(

1−
nµc

λR
c′(µc)

)

·

(

µs − λ/n

µc − λ/n

)

> 1. (7.3)

Proof. Rearranging Equation (7.1), the expected sojourn time of the separate queue

system can be written as

Wc =
1

µc





λ

nµc − λ

(

n−1
∑

k=0

(k + 1)!

(

n− 1
k

)

(µc

λ

)k
)−1

+ 1



 . (7.4)

Also from equation (7.2), the expected sojourn time for the separate queue system is

Ws =
1

µs − λ/n
. (7.5)
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From equations (7.4) and (7.5),

Wc

Ws
=

1

µc





λ

nµc − λ

(

n−1
∑

k=0

(k + 1)!

(

n− 1
k

)

(
µc

λ
)k

)−1

+ 1



 /

(

1

µs − λ/n

)

=
µc − λ/n

µc





λ

nµc − λ

(

n−1
∑

k=0

(k + 1)!

(

n− 1
k

)

(
µc

λ
)k

)−1

+ 1



 ·
µs − λ/n

µc − λ/n

=





λ

nµc

(

n−1
∑

k=0

(k + 1)!

(

n− 1
k

)

(
µc

λ
)k

)−1

+ 1−
λ

nµc



 ·
µs − λ/n

µc − λ/n

=















1−
λ

nµc















1−
1

n−1
∑

k=0

(k + 1)!

(

n− 1
k

)

(
µc

λ
)k





























·
µs − λ/n

µc − λ/n

=
[

1−
nµc

λR
c′(µc)

]

·
µs − λ/n

µc − λ/n
,

where the last equality follows from Proposition 3.6. Therefore we have

Wc > Ws if and only if
(

1−
nµc

λR
c′(µc)

)

·
µs − λ/n

µc − λ/n
> 1.

To apply the condition in Proposition 7.1 with given values of R, λ and cost function

c(.), it should be noted that the equilibrium service capacities µc and µs must first

be computed. However, there is no need to calculate the values of Wc and Ws after

obtaining µc and µs. If we further assume that c′(.) is concave, a sufficient condition

for Wc > Ws can be derived from the condition in Proposition 7.1.

Proposition 7.2. Suppose c′(µ) is concave, i.e. c′′(µ) is nonincreasing. Then a sufficient

condition for Wc > Ws is

c′(µc)µc

λR

[

λ

µc
+ (n− 1)

(

1− c′
(

λ

n

)/

(n− 1)R

n

)]

<
(n− 1)

n
. (7.6)

When c′(.) is linear, Wc > Ws if and only if the condition holds.

Proof. Given that c′(µ) is increasing, together with the additional assumption that

c′′(µ) is non-increasing, we know that c′(µ) is concave for µ > 0. In that case, since

λ/n < µc < µs by concavity we have

c′(µc) ≥

(

µs − µc

µs − λ/n

)

c′(λ/n) +

(

µc − λ/n

µs − λ/n

)

c′(µs) (7.7)
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such that
c′(µs)− c′(λ/n)

c′(µc)− c′(λ/n)
≤

µs − λ/n

µc − λ/n
.

(7.8)

Equality holds when c′(.) is linear. Combining with equation (7.6), we have

Wc

Ws
≥
[

1−
nµc

λR
c′(µc)

]

·
c′(µs)− c′(λ/n)

c′(µc)− c′(λ/n)

=
[

1−
nµc

λR
c′(µc)

]

·
(n − 1)R/n − c′(λ/n)

c′(µc)− c′(λ/n)

=

[

(n− 1)R/n − c′(µc)
(

(n−1)µc

λ − nµc

λR c′(λ/n)
)

− c′(λ/n)
]

c′(µc)− c′(λ/n)
· (7.9)

Again, equality holds if c′(.) is linear. Thus we have Wc > Ws if the condition

c′(µc) <
(n− 1)R

n
− c′(µc)

(

(n− 1)µc

λ
−

nµc

λR
c′(

λ

n
)

)

(7.10)

holds, which is equivalent to condition (7.6). When c′(.) is linear, this is a necessary

and sufficient condition for Wc > Ws.

Note that condition (7.10) does not involve the separate-queue equilibrium service

capacity µs. The condition is used to find the effect of the compensation level R on

the comparative advantage of the separate queue allocation policy over the common

queue allocation policy. In doing so, we first look at the effect of R on the left-hand

side of the condition — in particular, let us consider how the expression c′(µc)µc/(λR)
changes with R. Rearranging equation (3.8) in Proposition 3.6, we have

c′(µc)µc

λR
=

(

λ

n2µc

)















1−
λn−1

n−1
∑

k=0

(k + 1)!

(

n− 1
k

)

λn−k−1µk
c















. (7.11)

Recall that for any fixed value of λ, µc is increasing in R and thus λ/µc is decreasing in

R. Thus how the right-hand side of equation (7.11) changes with λ/µc will reflect how

c′(µc)µc/(λR) changes with R. The following proposition gives the result.

Proposition 7.3. Given 0 < ac < n and n ≥ 2, the expression

ac
n2















1−
1

n−1
∑

k=0

(k + 1)!

(

n− 1
k

)

a−k
c















is increasing in ac.
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Proof. Let us consider z = 1/ac and C(z) =
∑n−1

k=0(k + 1)!

(

n− 1
k

)

zk, and show

that 1
n2z

(1− 1
C(z)) is decreasing in z for z > 1/n and n ≥ 2. Note that

d

dz

[

1

n2z

(

1−
1

C(z)

)

.

]

=
1

n2

[

C ′(z)

z[C(z)]2
−

1

z2

(

1−
1

C(z)

)]

=
zC ′(z) + C(z)− [C(z)]2

n2z2[C(z)]2
.

Differentiating C(z) with respect to z, C ′(z) =
∑n−1

k=0(k + 1)!

(

n− 1
k

)

kzk−1, so we

have

zC ′(z) +C(z) =
n−1
∑

k=0

(k + 1)(k + 1)!

(

n− 1
k

)

zk .

But

[C(z)]2 =

[

n−1
∑

k=0

(k + 1)!

(

n− 1
k

)

zk

]2

>

n−1
∑

m=0

m
∑

k=0

(k + 1)!

(

n− 1
k

)

zk(m− k + 1)!

(

n− 1
m− k

)

zm−k

=

n−1
∑

m=0

(n− 1)!

(n−m− 1)!
zm

m
∑

k=0

(k + 1)(m− k + 1)
(n − 1)!

(n − k − 1)!

(n−m− 1)!

(n−m+ k − 1)!

=
n−1
∑

m=0

(n− 1)!

(n−m− 1)!
zm

m
∑

k=0

(k + 1)(m− k + 1)
k−1
∏

i=0

n− i− 1

n− (m− k)− i− 1

≥
n−1
∑

m=0

(n− 1)!

(n−m− 1)!
zm

m
∑

k=0

(k + 1)(m− k + 1)

=
n−1
∑

m=0

(n− 1)!

(n−m− 1)!
zm

m
∑

k=0

(km− k2 +m+ 1)

=

n−1
∑

m=0

(n− 1)!

(n−m− 1)!
zm

(m+ 1)

6

[

m2 + 5m+ 6
]

=
n−1
∑

m=0

(n− 1)!

(n−m− 1)!
zm(m+ 1)[m(m− 1)/6 + (m+ 1)]

≥

n−1
∑

m=0

(m+ 1)(m+ 1)!
(n− 1)!

(n −m− 1)!m!
zm=

n−1
∑

m=0

(m+ 1)(m + 1)!

(

n− 1
m

)

zm

=zC ′(z) + C(z) ,

so that
d

dz

[

1

n2z

(

1−
1

C(z)

)]

< 0 .
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Now we are ready to establish the main result concerning the expected sojourn

times. The following proposition shows that, when ac = λ/µc is sufficiently low, the

expected sojourn time is lower under the separate queue allocation policy than under

the common queue allocation policy.

Proposition 7.4. Suppose c′(µ) is concave, i.e. c′′(µ) is a non-increasing function. Let

ac = λ/µc. Also let al be the unique solution to

ac
n2















1−
1

n−1
∑

k=0

(k + 1)!

(

n− 1
k

)

a−k
c















=
n− 1

n(ac + n− 1)
.

Then 1 < al < n, and whenever ac < al we have Wc > Ws.

Proof. Let ac = λ/µc. In equilibrium µc > λ/n, so that 0 < ac < n. From (7.11),

c′(µc)

acR
=

ac
n2















1−
1

n−1
∑

k=0

(k + 1)!

(

n− 1
k

)

a−k
c















.

Now consider the equation

ac
n2















1−
1

n−1
∑

k=0

(k + 1)!

(

n− 1
k

)

a−k
c















=
n− 1

n(ac + n− 1)
.

From Proposition 7.3, we know that the left-hand side is increasing in ac. On the other

hand, the right-hand-side is decreasing in ac. Moreover, when ac → n− the left-hand-

side approaches

(n− 1)/n2 > (n− 1)/[n(n + n− 1)].

When ac = 1, the left-hand side of this equation is less than 1/n2 while the right-hand

side is (n−1)/n2 > 1/n2, so the equation has a unique solution al such that 1 < al < n.

Now for any ac < al we have

c′(µc)

acR
=

ac
n2















1−
1

n−1
∑

k=0

(k + 1)!

(

n− 1
k

)

a−k
c















<
(n − 1)

n(ac + n− 1)
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From Proposition 7.2, we have Wc > Ws if

c′(µc)

acR

[

ac + (n− 1)

(

1− c′(
λ

n
)

/

(n− 1)R

n

)]

<
(n− 1)

n
.

Thus for ac < al we have

c′(µc)

acR

[

ac + (n − 1)

(

1− c′(
λ

n
)

/

(n− 1)R

n

)]

<
c′(µc)

acR
[ac + (n− 1)]

<
(n − 1)

n(ac + n− 1)
[ac + (n− 1)] ,

=
(n− 1)

n
,

so condition (7.6) is satisfied and Wc > Ws.

The following two propositions can easily be deduced from Proposition 7.4.

Proposition 7.5. Suppose c′(µ) is concave, i.e. c′′(µ) is non-increasing. Then for any fixed

λ there exists a constant Rl such that whenever R > Rl we have Wc > Ws.

Proof. Let µl = λ/ρ and take

Rl =
n2c′(µl)

a2l















1−
1

n−1
∑

k=0

(k + 1)!

(

n− 1
k

)

a−k
l















−1

,

whence the result from Proposition 7.4 and the fact that ac decreases with R.

Proposition 7.5 implies that when c′(µ) is concave and R is sufficiently large, the ex-

pected sojourn time is lower under the separate queue system than under the common

queue system. In other words, the stronger competition incentive effect of a separate

queue system more than offsets the risk-pooling benefits of a common queue system

with such cost functions when the compensation level is sufficiently high. With a higher

compensation level, the equilibrium service capacity is higher and the servers tend to

be idle longer. As noted earlier, by increasing its capacity a server only receives more

customers when the system is busy, under the common queue allocation policy. Thus

when the compensation level increases, the relative advantage of the separate queue

allocation policy becomes more significant.

Proposition 7.6. Suppose c′(µ) is concave, i.e. c′′(µ) is non-increasing. Let Rc(W ) and

Rs(W ) be the level of compensation required to maintain Wc = W and Ws = W , respec-

tively. Then for any fixed λ, there exists a constant Wl such that whenever W < Wl we

have Rc(W ) > Rs(W ).
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Proof. Let Wl = Wc(µl), where µl = λ/al and Wc(.) are as given in (7.1). Then

for any W < Wl, take µc such that Wc(µc) = W . Since Wc(.) is decreasing, we have

µc > µl and thus ac < al. By Proposition 7.4, with a compensation level of R = Rc(W )
we have Ws < Wc = W . Finally, because the expected sojourn time Ws decreases with

R, we know that W can be achieved with a small compensation level — i.e. Rs(W ) <
Rc(W ).

If the coordinating agency aims to maintain the expected sojourn time at a given level

W with minimum cost, the separate queue system is more advantageous when W
is sufficiently low. In other words, smaller permissible waiting times favor the sepa-

rate queue system. This generalises the observation in [14] for the two-server case —

viz. that the separate queue system has an increasing advantage of shorter customer

waiting times.

8. Concluding Remarks

In the earlier study of a two-server service system [14], a necessary and sufficient

condition was found for the separate queue allocation to be less costly than the com-

mon queue allocation, when the coordinating agency maintains expected sojourn times

under a given level. It was concluded that, with small permissible waiting times or no

severe diseconomies associated with increasing capacity, the separate queue allocation

scheme is favored.

We have investigated a multiple-server queueing model. Our analysis indicates that

with multiple servers the separate queue allocation scheme creates more competition

incentives for servers and therefore induces higher service capacities. In particular,

when there are no severe diseconomies associated with increasing service capacity, the

separate queue allocation scheme gives a lower expected sojourn time in equilibrium

when the permissible expected sojourn time is sufficiently low. We conclude that when

the operating cost function c′(.) is concave, with small permissible waiting times the

separate queue allocation scheme is favored.

Of interest is whether permissible waiting times and diseconomies associated with

increasing capacity have similar effects as in [14] when c′(.) is strictly convex. The

analysis for the multi-server model is more complicated however, as the desired service

capacity of the servers cannot be expressed explicitly in terms of the given constraint

on the expected sojourn time. In Propositions 7.4, 7.5 and 7.6, we require c′(.) to be

concave such that c′(.) does not increase too rapidly — indeed more strictly, that c′′(.)
is non-increasing. Since c′(.) represents the marginal cost to increase service capacity,

this can be interpreted as requiring no severe diseconomies associated with increasing

service capacity. This agrees with the conclusion in the two-server case [14], that with

no severe diseconomies associated with increasing service capacity the separate queue

system tends to be favored. We noted the condition that c′(.) be concave is sufficient

but not necessary in our analysis, and a future investigation may clarify whether similar

results can be established under a cost function c(.) where c′(.) is strictly convex.
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