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Abstract. We discuss a control problem involving a stochastic Burgers equation with

a random diffusion coefficient. Numerical schemes are developed, involving the finite

element method for the spatial discretisation and the sparse grid stochastic collocation

method in the random parameter space. We also use these schemes to compute closed-

loop suboptimal state feedback control. Several numerical experiments are performed,

to demonstrate the efficiency and plausibility of our approximation methods for the

stochastic Burgers equation and the related control problem.
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1. Introduction

In the study of turbulence phenomena, the Burgers equation provides a simplified and

interesting model. For a better understanding of the important problem of the control of

turbulence, it has been suggested that involving this equation can be the first step towards

application to fluid mechanics problems. Following this strategy, our aim is to study control

problems for this equation and to develop computational tools which are powerful enough

so that they can be used for the Navier-Stokes equations.

We consider the stochastic Burgers equation with a random coefficient and its dis-

tributed control problem, where we want to find an optimal control f ∗(t) which minimises

the cost functional

J( f ) = E

�∫ ∞

0

�

||u(t)||2
L2(D)

+ β || f (t)||2
L2(D)

�

d t

�

, (1.1)
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subject to

∂

∂ t
u(ω, t, x)− ∂

∂ x

�

a(ω, x)
∂

∂ x
u(ω, t, x)

�

− u(ω, t, x)
∂

∂ x
u(ω, t, x)

= f (ω, t, x) in (0,∞)×D , (1.2)

u|{0}×D = u0(x) , u|(0,T]×∂ D = 0 ,

where D is [0,1] and β > 0 is a weight. The diffusion coefficient a(ω, x) and the force

term f (ω, t, x) are random processes on the spatial domain and temporal-spatial domain,

respectively. Here u0(x) is considered to be a deterministic data function and E denotes an

expected value, which is defined as the Lebesque integral in a complete probability space

(Ω,F ,P)where Ω is any set,F is aσ-algebra of subsets ofΩ and P is a probability measure

on F [11,20].

Control problems of the deterministic Burgers equation have been studied by many au-

thors [1,3,4,17,19,21,26,27], and stochastic control problems with additive white noise

in Refs. [9,12]. Here we focus on the case of a random process acting on a diffusion coeffi-

cient [13,14]. Although the Burgers equation is often considered as the prototype for fluid

flow, this equation can also be used as a reasonable mathematical model in other physical

contexts such as traffic flow, supersonic flow about airfoils, acoustic transmission, and tur-

bulence in hydrodynamic flows. In brief, the Burgers equation can be regarded as a suitable

model for nonlinear wave propagation problems subject to dissipation [15]. Depending on

the model problem, this dissipation may result from viscosity, heat conduction, mass diffu-

sion, thermal radiation, chemical reaction, etc.. Thus we also take the viewpoint that the

Burgers equation is a variation of the linear heat equation, and an heterogeneous body can

be modelled with a variable thermal conductivity coefficient (diffusion coefficient) depen-

dent on spatial position. Moreover, when there is a lack of information or uncertainty in

the input data, this coefficient can be represented as a random field with estimated statis-

tics.

Our goal here is to develop numerical schemes for a feedback control in minimising a

cost function (1.1) subject to the stochastic Burgers equation (1.2). We adopt the finite

element method in the spatial discretisation, and sparse grid stochastic collocation in a pa-

rameter space where random variables are involved. Later, we illustrate that the sparse

grid collocation method is efficient in the optimal choice between the number of nodes and

the error in a high-dimensional parameter space to obtain appropriate statistical informa-

tion. For the optimal control of the Burgers equation, we introduce a feedback law for a

linearised equation (i.e. a linear parabolic equation), obtained from a closed-loop system

relating the linear quadratic regulator (LQR) theory and the linear quadratic estimation

(LQE) problem. The feedback control law from the linearised problem produces the de-

sired extent of stability for the closed-loop nonlinear system, although from the viewpoint

of control theory this kind of strategy is actually suboptimal.

In Section 2, we introduce some function spaces, notations and assumptions needed

throughout this article. In Section 3, we present a variational formulation for the stochastic

burgers equation in order to apply the finite element approximation, and then employ a

computable discretisation of the spatial domain in the stochastic sense. We briefly describe
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how the sparse grid stochastic collocation is constructed under the Smolyak formula in

Section 4. In Section 5, we consider a stochastic optimal control problem constrained by a

stochastic Burgers equation, formulate a stochastic control problem using the suboptimal

state feedback control for stochastic version, and explain how that strategy is used to solve

the control problem approximately. Finally, we provide some computational experiments to

demonstrate our arguments in Section 6, followed by our concluding remarks in Section 7.

2. Preliminaries

As usual, let the function space H1
0(D) be the subspace of H1(D) consisting of functions

vanishing at the boundary of D equipped with the norm ||v||H1
0(D)
=
�∫

D
|vx |2d x
�1/2

. We

also define a Hilbert space

L2(0,∞; H1
0(D)) =

�

w(t) ∈ H1
0(D)

�

�

�

�

∫ ∞

0

||w(t)||2
H1

0(D)
d t <∞
�

equipped with the norm

||w||L2(0,∞;H1
0(D))

=

�∫ ∞

0

||w(t)||2
H1

0
(D)

d t

�1/2

=

�∫ ∞

0

∫

D

|wx(t, x)|2d xd t

�1/2

.

We use a variational formulation to determine a finite element method to approximate

Eq. (1.2) later. Before that, we make several assumptions for the conditions on the random

coefficient a(ω, x) and random force f (ω, t, x) [7,10,18].

Assumption 2.1. The random process a : Ω× D → R is bounded and uniformly coercive

almost surely — i.e.

∃ amin, amax ∈ (0,∞) : P ( amin ≤ a(ω, x) ≤ amax ∀ x ∈ D ) = 1 . (2.1)

The random process f : Ω× [0, T ]× D→ R has bounded second moment — i.e.

E

�∫ ∞

0

∫

D

| f |2d xd t

�

<∞ .

Let Yn : (Ω,F , P)→ (Γn,B(Γ )) for n= 1,2, · · ·d be random variables and let Γn = Yn(Ω) ⊂
R be the image of Yn. For a parameter space Γ =

∏d

n=1 Γn ⊂ Rd , we assume that the

random variables (Y1, · · ·Yd) are independent and have a joint probability density function

ρ : Γ → R+ expressed in terms of the probability density functions ρn of Yn — viz. ρ =
∏d

n=1ρn [11]. Thus for any Borel measurable function g, we may define the expected

value E[g(Y1, · · · , Yd)] =
∫

Γ
g(y1, · · · , yn)ρ d y.

Assumption 2.2. The coefficients a and the force f have the forms

a(ω, x) = a(Y1(ω), · · · , Yd(ω), x) on Ω× D , (2.2)
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and

f (ω, t, x) = f (Y1(ω), · · · , Yd(ω), t, x) on Ω× [0,∞)× D , (2.3)

where d ∈ N+ and {Yn}dn=1 are real random variables with zero mean.

Now we introduce a stochastic Hilbert space

L2
P
(Ω; H1

0(D)) =

n

v : Ω→ H1
0(D) | E
h

||v||2
H1

0(D)

i

<∞
o

with the norm ||v||L2
P
(Ω;H1

0
(D)) = E[||v||2H1

0
(D)
], and similarly another stochastic Hilbert space

L2
P
(Ω; L2(0,∞; H1

0(D))) =

n

w : Ω→ L2(0,∞; H1
0(D)) | E
h

||w||2
L2(0,∞;H1

0
(D))

i

<∞
o

with the norm ||w||2
L2
P
(Ω;L2(0,∞;H1

0(D)))
= E[||w||2

L2(0,∞;H1
0(D))
]. If we consider the tensor prod-

uct space L2
P
(Ω)⊗H1

0
(D) with tensor inner product

(v, v̂)L2
P
(Ω)⊗H1

0(D)
=

∫

Ω

∫

D

vx(ω, x)v̂x(ω, x) d x dP,

then we have the isomorphism L2
P
(Ω)⊗H1

0 (D)≃ L2
P
(Ω; H1

0(D)); refer to [7]. Moreover, the

same argument with tensor inner product

(w, ŵ)L2
P
(Ω)⊗L2(0,∞;H1

0(D))
=

∫

Ω

∫ ∞

0

∫

D

wx(ω, t, x)ŵx (ω, t, x) d x d t dP

applies to L2
P
(Ω)⊗ L2(0,∞; H1

0 (D))≃ L2
P
(Ω; L2(0,∞; H1

0(D))).

3. Finite Element Approximation

A variational formulation of Eq. (1.2) is as follows.

Find u ∈ L2
P
(Ω)⊗ L2(0,∞; H1

0
(D)) such that

















E

�∫

D

ut vd x

�

+E

�∫

D

aux v′d x

�

+E

�∫

D

uux vd x

�

= E

�∫

D

f vd x

�

∀ v ∈ L2
P
(Ω)⊗H1

0
(D) ,

u(0, x) = u0(x) in D ,

where the derivative notations mean differentiation with respect to (t, x)∈(0,∞)×D.

We restrict our attention to the case that random variables Yn are bounded, or equiva-

lently Γn is a bounded set. Since we have a finite set of random variables, the problem has

a deterministic equivalent as follows.
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Find u ∈ L2
ρ(Γ )⊗ L2(0,∞; H1

0
(D)) such that

















∫

Γ

ρ

∫

D

ut vd xd y +

∫

Γ

ρ

∫

D

aux v′d xd y +

∫

Γ

ρ

∫

D

uux vd xd y

=

∫

Γ

ρ

∫

D

f vd xd y ∀ v ∈ L2
ρ(Γ )⊗H1

0
(D),

u(0, x) = u0(x) in D,

(3.1)

where the spaces L2
ρ(Γ ) ⊗ H1

0(D) and L2
ρ(Γ ) ⊗ L2(0,∞; H1

0(D)) are analogues of L2
P
(Ω)⊗

H1
0(D) and L2

P
(Ω)⊗ L2(0,∞; H1

0(D)) replaced by (Γ ,B(Γ ),ρ d y).

For convenience, we consider the solution u as a function of u : Γ → L2(0,∞; H1
0(D))

and use the notation u(y) whenever we would like to emphasise the dependence on the

parameter y. Then problem (3.1) is equivalent to the following setting.

Find u(y) ∈ L2(0,∞; H1
0(D)) such that

















∫

D

ut(y)φd xd y +

∫

D

a(y)ux (y)φ
′d xd y +

∫

D

u(y)ux (y)φ d x d y

=

∫

D

f (y)φ d x d y ∀φ ∈ H1
0
(D) , ρ-a.e. in Γ ,

u(0, x) = u0(x) in D .

(3.2)

If we fix the point y ∈ Γ , then Eq. (3.2) becomes a deterministic partial differential equation,

so that some usual relevant approximation method can be applied — e.g. the finite element

method.

Given y ∈ Γ (so the problem turns into a deterministic problem), a typical finite ele-

ment approximation of (3.2) is as follows. First choose an N -dimensional conforming finite

element subspace V h ⊂ H1
0(D), and then seek uh(t, ·) ∈ V h such that

















∫

D

uh
t (y)φ

hd xd y +

∫

D

a(y)uh
x (y)(φ

h)′d xd y +

∫

D

uh(y)uh
x (y)φ

hd xd y

=

∫

D

f (y)φhd xd y ∀ φh ∈ V h, ρ-a.e. in Γ ,

u(0, x) = u0(x) in D ,

(3.3)

where uh
0(x) ∈ V h

0 is an approximation (e.g. a projection) of u0(x). If {φi(x)}Ni=1
is a basis

of the finite dimensional space V h, we write

uh(y, t, x) =

N
∑

i=1

ui(y, t)φi(x) (3.4)

and take φh(x) ∈ V h in (3.3) to be each of the basis functionsφi . According to the Galerkin

method, on substituting (3.4) into (3.3) we obtain the related matrices and nonlinear tensor

as follows.
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If (·, ·) denotes the inner product of L2(D)-space and ay(u, v) the bilinear form
∫

D
a(y)u′v′dx

for u, v ∈ H1
0
(D), then we write mi j = (φi ,φ j), si j,y = ay(φ

′
i
,φ
′
j
), ri jk = (φiφ

′
k
,φ j),

f j = ( f ,φ j), and u
j

0
= (u0,φ j) for i, j = 1, · · ·N . We then set the matrices M = (mi j)

and Sy = (si j,y ), the nonlinear tensor R = (ri jk), the vector ~f = ( f1, · · · fN ), and an

initial condition ~u0 = (u
1
0
, · · · ,uN

0
)T . With ~u(y, t) = (u1(y, t), · · · ,uN (y, t))T and ~u(0) =

(u1(y, 0), · · · ,uN (y, 0))T unknown vectors, the system (3.3) can then be written in the ma-

trix form 





M
d~u

d t
+ Sy ~u+ (~u)

TR~u = ~f ,

M~u(0) = ~u0 .

ρ-a.e. y in Γ , (3.5)

Recall that Sy and ~f are random, hence (3.5) is a system of stochastic nonlinear ordinary

differential equations that consists of N equations and N unknowns. Since M is an invert-

ible matrix, under the assumptions (2.1), (2.2) and (2.3) this can be rewritten as a system

of first order stochastic nonlinear ordinary differential equations subject to the initial con-

dition — viz.

d~u

d t
= M−1
� −Sy~u− (~u)TR~u+ ~f

�

, ~u0 = M−1~u0 , ρ-a.e. y in Γ . (3.6)

Given y in Γ , the terms on the right-hand side are continuously differentiable with respect

to t, so there exists only one solution to the system for a given realisation of the random

variables. (The system has a zero equilibrium solution if the boundary conditions take

zeros.) Thus we can obtain the numerical solution of Eq. (1.2) via ODE schemes; and in

Section 5 the system (3.6) is applied to the feedback control design, where the approximate

solution obtained is used to compare with a control solution combined with the Smolyak

method introduced in the next section.

4. Stochastic Collocation and the Smolyak Formula

In practice, we are usually interested in the r-th statistical moment, involving multi-

dimensional integration in a random parameter space. For instance, as mentioned in Sec-

tion 2 the rth statistical moment of any Borel measurable function g must be

E[g r(Y1, · · · , Yd)] =

∫

Γ1

· · ·
∫

Γd

g r(y1, · · · , yd)ρ(y1, · · · , yd)d y1, · · · , d yd ,

where each Γn ⊂ R for n = 1,2, · · · , d and ρ is a joint probability density function. The

Monte Carlo (MC) method is very simple and easy to implement but converges very slowly,

so we prefer to take advantage of a quadrature rule in multi-dimensional space combined

by a tensor product. However, a disadvantage of simple full tensor product quadrature is

that the number of points required to construct interpolation increases exponentially as

the dimension of stochastic space is increased, called the curse of dimensionality. Smolyak

introduced an impressive algorithm, which provides much fewer points than the full tensor
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Figure 1: Full tensor produ
t grids using Clenshaw-Curtis abs
issas (left). Isotropi
 Smolyak sparse grids

using Clenshaw-Curtis abs
issas with level 5 (right).

product formula in multi-dimensional space, imparting an interpolation strategy with a

reduced number of abscissas required while maintaining the approximation quality of the

interpolation up to a logarithmic scale. Fig. 1 shows full tensor prouduct grids and isotropic

Smolyak sparse grids using Clenshaw-Curtis abscissas. This algorithm provides a linear

combination of tensor products chosen such that the interpolation property is conserved

for higher dimensions. Detailed explanations of the stochastic collocation idea and the

Smolyak procedure can be found in Refs. [2,5,16,18,22–25,28,29].

4.1. Stochastic collocation method

The idea of the collocation method is to approximate the function u(y; t, x) for all y ∈ Γ
and for all (t, x) ∈ (0, T ] × [0,1]. Let Pp(Γ ) ⊂ L2

ρ(Γ ) denote the span of tensor product

polynomials with degree at most p= (p1 · · · pd)— i.e. Pp(Γ ) =
⊗d

n=1Ppn
(Γn) with

Ppn
(Γn) = span(ym

n
, m = 0 · · · pn) , n= 1, · · ·d ,

where L2
ρ(Γ ) =
�

v :
∫

Γ
|v(y)|2ρ(y)d y <∞	. We write the dimension of Pp(Γ ) as dp =

∏d

n=1
(pn+1). Stochastic collocation entails the sampling of the solution u(yk) on a suitable

set of points yk ∈ Γ . An interpolation of the u is then

up(y; ·, ·) =
∑

k

u(yk, ·, ·)lp

k
(y) ,

and the approximated rth statistical moment is

E[ur ](t, x) ≈
∑

k

ur(yk, t, x)

∫

Γ

l
p

k
(y)ρ(y)d y . (4.1)

In practice, we use the fully discrete solution by some numerical schemes rather than the

exact solution.
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Remark 4.1. We only discretise a solution in the random parameter space here by the col-

location method. This is possible since we already have an information about a probability

density function of random input data of the stochastic PDE. It is still left to decide numer-

ical schemes for the domain (0, T ]× [0,1]. We will choose the finite element method for

spatial discretisation and the backward Euler method for temporal discretisation later.

In the next subsection, we show the construction of the interpolation through a full

tensor product, regardless of the interpolation nodes.

4.2. Smolyak formula

We introduce an index i ∈ N+, and for each value of i let {y i
1, · · · , y i

mi
} ⊂ [−1,1] be

a sequence of abscissas for Lagrange interpolation on [−1,1]. Let W = W (0,∞; D) be a

Banach space of functions v : [0,∞)×D→ R. For u ∈ C0(Γn; W )with d = 1, we introduce a

sequence of one-dimensional Lagrange interpolation operators U
i : C0(Γ ; W )→ Vmi

(Γ ; W )

such that

U
i(u)(y) =

mi∑

j=1

u(y i
j)l

i
j(y) ∀ u ∈ C0(Γ ; W ) , (4.2)

where l i
j
∈ Pmi−1(Γ ) are Lagrange polynomials of degree pi = m1 − 1 — i.e.

l i
j(y) =

mi∏

k=1,k 6=l

(y − y i
k
)

(y i
j
− y i

k
)

and

Vmi
(Γ ; W ) =

¨

v ∈ C0(Γn; W ) : v(y, x , t) =

mi∑

k=1

ṽk(x , t)l i
k
(y), {ṽk}mi

k=1
∈W

«

.

The formula (4.2) exactly reproduces all polynomials of degree less than mi. In the multi-

variate case d > 1, for each u ∈ C0(Γn; W ) and multi-index i = (i1, · · · , id) ∈ Nd
+ we define

the full tensor product interpolation formulas

I d
i u(y) =
�

U
i1 ⊗ · · · ⊗U

id
�

(u)(y)

=

mi1∑

j1=1

· · ·
mid∑

jd=1

u
�

y
mi1

j1=1
· · · ymid

jd=1

��

l
mi1

j1=1
⊗ · · · ⊗ l

mid

jd=1

�

. (4.3)

Clearly, the above product needs
∏N

n=1 min
function evaluations.

Let us now describe the Smolyak isotropic formulas A (q, d), for which detailed ex-

planation and analysis is found in Refs. [5, 22, 23]. The question is how to render tensor

products with a relatively small number of nodes, and choose the linear combination in

order to preserve an interpolation property in going from one dimension to many dimen-

sions. The Smolyak formulas that provide this are just linear combinations of the product

formulas (4.3). With U
0 = 0, for i ∈ N+ we define

∆
i =U

i −U
i−1 .
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Moreover, given an integer q ∈ N+ that is hereafter called the level, for i ∈ Nd
+

with |i| =
i1 + · · ·+ id the Smolyak algorithm is

A (q, d) =
∑

|i|≤q

�

∆
i1 ⊗ · · · ⊗∆id
�

. (4.4)

Equivalently, the algorithm (4.4) can be written as [29]

A (q, d) =
∑

q−d+1≤|i|≤q

(−1)q−|i|
�

d − 1

q− |i|
�

�

U
i1 ⊗ · · · ⊗U

id
�

.

To compute A (q, d)(u), we only need to know function values on the sparse grid

H (q, d) =
⋃

q−d+1≤|i|≤q

�

Y
i1 ⊗ · · · ⊗Y

id
�

,

where Y
i = {y i

1, · · · , y i
mi
} ⊂ [−1,1] denotes the set of nodes used by U

i . If the sets are

nested (i.e. Y
i ⊂ Y

i+1), then H (q, d) ⊂H (q+ 1, d) and

H (q, d) =
⋃

|i|=q

�

Y
i1 ⊗ · · · ⊗Y

id
�

.

It is notable that the Smolyak algorithm, as presented in this Section, is isotropic since all

directions are treated equally.

By comparing (4.2) and (4.2), we observe that the Smolyak approximation employing

nested points requires fewer function evaluations than the corresponding formula for non-

nested points. In the next subsection, we introduce three particular sets of abscissa, nested

and non-nested.

4.3. Interpolation abscissas

Clenshaw-Curtis abscissas. We first consider the Smolyak algorithm based on polynomial

interpolation at the extrema of Chebyshev polynomials. For any choice of mi > 1, the nodes

are given by

y i
j = − cos

�

π( j − 1)

mi − 1

�

, j = 1, · · · , mi ,

and in addition we define y i
i
= 0 if m1 = 1. With this choice the set of points is nested, and

thereby the numbers mi of points which are used in the formulas U
i are

m1 = 1 and mi = 2i−1 + 1 for i > 1 .

It is important to choose m1 = 1 if we are interested in optimal approximation in relatively

large d , because in all other cases the number of points used by A (q, d) increases too fast

with d .
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Gauss-Legendre abscissas. We also consider the Smolyak formulas based on polynomial

interpolation at the zeros of the orthogonal polynomials with respect to a weight ρ. If

the random variable follows U(−1,1), we choose a uniform density in [−1,1] as a weight

ρ. Since the Legendre polynomials are orthogonal to the uniform density, the zeros of the

Legendre polynomials naturally lead to the Gauss-Legendre abscissas that have a maximum

degree of precision of 2mi − 1. However, the Gauss-Legendre abscissas are not nested.

Remark 4.2. The convergence properties of the stochastic collocation techniques require

the regularity of the solution with respect to the parameter space Γ . One can find the

regularity condition of the random input data for the elliptic problem in Refs. [24] and

[25]. In general, such a condition should be verified for each particular application of the

stochastic PDE, and here we probe the convergence of our problem through computational

experiments.

5. Distributed Feedback Control of the Stochastic Burgers Equation

5.1. Linear quadratic regulator design

We now design distributed feedback control of the problem (1.1) subject to (1.2). Using

the argument in Section 2, we can re-state our problem as follows. Find an optimal control

f ∗(t) ∈ L2
ρ(Γ )⊗ L2(0,∞; L2(D)) which minimises the cost functional

J( f ) =

∫

Γ

ρ

∫ ∞

0

�

||u(t)||2
L2(D)

+ β || f (t)||2
L2(D)

�

d t d y (5.1)

subject to (3.2). Under the assumption (2.3), we replace the forcing term f with the special

form b(x)z(y, t) in the system (5.1) and (3.2), where z(y, t) is a control input and b(x) is

a given function used to distribute the control over the domain. Given ρ-a.e. y in Γ , we

may however consider the cost functional

Jy (z(y)) =

∫ ∞

0

�

||u(y, t)||2
L2(D)

+ R|z(y, t)|2
�

d t , (5.2)

where R = β ||b||2
L2(D)

and it is notable that J(z) =
∫

Γ
Jy (z(y))ρ d y. This observation im-

plies that if we find an optimal minimiser z∗(y, t) to Jy subject to (3.2) at each parameter

value y, which then becomes a deterministic problem, we can minimise (5.1) too. Subse-

quently, we prefer to focus on solving (5.2) rather than (5.1), subject to (3.2).

Discretising (5.2) and (3.2) with the techniques developed in Section 3 and 4, we arrive

at the following problem. Find an optimal control z∗(t)which minimises the cost functional

Jk(z) =

∫ ∞

0

�

~u(yk, t)T Q~u(yk, t) + R|z(yk, t)|2� d t (5.3)

subject to

d

d t
~u(t) = Ak~u(t) + G(~u(t)) + Bz(t), ~u(0) = ~u0 , t > 0, yk ∈ Γ , (5.4)
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where the yk ∈ Γ are determined by the Smolyak formula. The original cost functional is

then approximated by

J(z) =

∫

Γ

Jy (z(y))ρd y ≈
∑

k

wkJk (z(yk)) ,

where wk =
∫

Γ
l
p

k
(y)ρ(y)d y.

According to (3.6), we say Q = M , Ak = −M−1Syk
and G(~u) = −M−1(~u)TR~u. For

simplicity, we take ~u0 = M−1~u0. Since we assume that f (y, x , t) = b(x)z(y, t), for each

finite element basis function f j = ( f ,φ j) = z(y, t)(b(x),φ j ) such that B j = (b(x),φ j),

j = 1, · · · , N and B = (B1, · · · , BN )
T we bring out R= βBT B. It is notable that Syk

depends

on yk, so Ak is also a function on Γ .

Now, we turn to closed-loop control in state feedback form, where we utilize suboptimal

control strategies to construct a suboptimal feedback synthesis. Assuming that the nonlin-

ear term in the Burgers equation is small, a suboptimal feedback control z∗ can be obtained

by using well-known linear quadratic regulator theory [3,8,21,26,27]. The optimal control

z∗(t) can be found by

z∗(t) = −R−1BT Pk~u(t) = −Kk~u(t) , (5.5)

where Kk is called the feedback operator and Pk is the symmetric positive definite solution

of the algebraic Riccati equation

PkAk + AT
k
Pk − PkBR−1BT Pk +Q = 0 .

5.2. Linear feedback controllers with state estimate feedback

A simple classical feedback control design is the linear quadratic regulator (LQR), which

assumes that the full state is ‘feedback’ into the system through the control, bur knowledge

of the full state is not possible for many complicated physical systems. As a realistic alter-

native, a compensator design provides a state estimate based on state measurements to be

used in the feedback control law.

We may not assume that we know the full state, but instead we can assume a state

measurement of the form

w(t) = Cu(t) ,

whereC ∈L (L2(D),Rm). Taking advantage of the same discretising schemes in Section 3,

the matrix C ∈ L (RN ,Rm) approximatingC is obtained. Then we reformulate the problem

— viz. find an optimal control z∗(yk, t) which minimises the cost functional (5.3) subject

to






d

d t
~u(t) = Ak~u(t) + G(~u(t)) + Bz(t) , ~u(0) = ~u0 ,

~w(t) = C~u(t) ,

t > 0 , yk ∈ Γ . (5.6)

We can apply theory and results to show that a stabilising compensator based controller

can be applied to the system [3]. The observer design is mainly needed in order to provide
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the feedback control law with estimated state variables, so the control law and the observer

are combined into a complete system called a compensator. This technique needs a limited

measurement of the state as a condition. According to the given state measurement in

(5.6), a state estimate denoted by ~uc(t) is computed by solving the observer equation

d

d t
~uc(t) = Ak~uc(t) + G(~uc(t)) + Bz(t) + L [ ~w(t)− C~uc(t) ] , ~uc(0) = ~uc0

. (5.7)

In the usual manner, he functional gain operator Kk and estimator gain operator Lk can be a

linear quadratic regulator (LQR) and a Kalman estimator (LQE), respectively, The feedback

control law is again given by the same formula in (5.5):

z∗(t) = −R−1BT Pk~uc(t) = −Kk~uc(t) ,

where Kk is the functional gain operator. To describe how to obtain Lk, let Pk be the non-

negative definite solution of

AkP + PAT
k
− PkC T R−1C Pk +Q = 0 .

If the solution Pk exists, we can define

Lk = PkC T , (5.8)

so from (5.7) and (5.8) we obtain the closed loop compensator as













d

d t
~u(t) = Ak~u(t)− BKk~uc(t) + G(~u(t)) ,

d

d t
~uc(t) = LkC~u(t) + (Ak − LkC − BKk)~uc(t) + G(~uc(t)) ,

~u(0) = ~u0 , ~uc(0) = ~uc0
,

(5.9)

for a given parameter value yk ∈ Γ derived from the Smolyak formula.

6. Computational Results

We set the stochastic coefficient a(ω, x) where x ∈ D = [0,1] in problem (1.2) as

a(ω, x) =amin +δ exp
�

(Y1(ω) cos(πx) + Y2(ω) sin(πx))e−1/8

+ (Y3(ω) cos(2πx) + Y4(ω) sin(2πx))e−1/4
	

, (6.1)

where amin = 1/100, δ = 0.05 and the real random variables Y1, · · · , Y4 are independent

and identically distributed with E[Yi] = 0 and E[YiYj] = δi j for i, j = 1, · · · , 4. The random

variables Y1, · · · , Y4 are also uniformly distributed in the interval [−p3,
p

3]. Then we

obtain the joint probability density function ρ of (Y1, · · · , Y4) as (2
p

3)−4 in this case. Using

the sparse grid collocation method with the Clenshaw-Curtis or the Gauss-Legendre points,

we implement our computation. Fig. 2 shows the mean and variance of a(ω, x).
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Figure 2: The mean (left) and the varian
e (right) of a(ω, x).

Table 1: Numbers of points for CC and GL abs
issas with dimension 4.

Level level 0 level 1 level 2 level 3 level 4 level 5 level 6

♯ of points for CC 1 9 41 137 401 1105 2929

♯ of points for GL 1 9 57 289 1268 4994

For the spatial discretisation, we choose a typical continuous piecewise linear basis

consisting of a conforming finite element subspace. In all computations, we implemented

the same spatial discretisation with grid size h = 1/64, and the temporal discretisation in

the backward Euler method with ∆t = 1/100.

The mean and the variance of the solutions were investigated at the final time T = 1,

computed over the Clenshaw-Curtis (CC) and the Gauss-Legendre (GL) sparse grid abscis-

sas. The number of points of each grids are shown in Table 1. We observe that the number

of points in the CC abscissas is relatively smaller than those of the GL abscissas at the same

level. For comparison, we also solved (1.2) by the Monte Carlo (MC) method. To compute

the statistical data of the random solutions by the MC simulation, we need to make an av-

erage of many realisations — e.g. the rth statistical moments E[ur] of the random solution

was estimated by the MC ensemble average

E[ur](t, x) ≈ ur
MC(t, x) =

1

M

M
∑

m=1

�

�u(ym, t, x)
�

�
r
,

where u(ym, t, x) is a realisation from random sampling and M is the total number of

realisations.

Fig. 3 presents the means (first column) and the variances (second column) of the

solutions for the stochastic Burgers equation. The first row shows the results from the MC

method with 12000 realisations, and In the second row and the third row from the CC gird

and the GL grid approximations with Smolyak rule of 4 dimension with level 4, respectively
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Figure 3: The means (�rst 
olumn) and varian
es (se
ond 
olumn) of the solutions of the sto
hasti


Burgers equation. The MC method with 12, 000 realisations is used in the �rst row. Both the CC grid

in the se
ond row and the GL grid in the third row are used with level 4.

— i.e.

E[u(t, x)] ≈
∑

k

wku(yk, t, x) and Var[u(t, x)] ≈
∑

k

wk

�

�u(yk, t, x)−E[u(t, x)]
�

�
2
,

where yk and wk are points and weights in the CC gird and the GL grid respectively. We also

compared the convergence of the rth statistical moments obtained by the MC method and



Distributed Control of the Stochastic Burgers Equation 103

# of points
10

0
10

1
10

2
10

3
10

4

E
K

L

T
,r

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Convergence of CC grid

 E
CC

T,1

 E
CC

T,2

 E
CC

T,3

E
CC

T,4

E
MC

T,1

 E
MC

T,2

 E
MC

T,3

 E
MC

T,4

# of points
10

0
10

1
10

2
10

3
10

4

E
K

L

T
,r

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

Convergence of GL grid

 E
GL

T,1

 E
GL

T,2

 E
GL

T,3

E
GL

T,4

E
MC

T,1

 E
MC

T,2

 E
MC

T,3

 E
MC

T,4

Figure 4: Convergen
es of the solutions 
omputed over the CC gird (left) and over the GL gird (right).

The dashed lines in both graphs represent the MC simulations.

the sparse grid collocation method over the CC or GL grid, by defining the error measures

E
T,r

MC\CC or GL
:=

∫ T

0

�

�

�

�

�

�E

�

ur
MC\K L

�

−E [ur]

�

�

�

�

�

�

L2(0,1)
d t ,

where E[ur
MC
] and E[ur

CC or GL
] denote the rth statistical moments obtained by the MC

method and the CC or GL grid approximation, respectively. Again the final time T = 1

was chosen. Since we cannot find the explicit exact moments of the solution E [ur], we

set the moments of the solutions with Smolyak quadrature for 4 dimension with level 5

approximation over the CC or GL grid as the benchmark solutions at each comparison.

In Fig. 4, one can see the convergent rates of the CC grid (left) and the GL grid (right)

approximations versus the number of points of each grids represented in Table 1. As a

reference, the convergent rates of the MC simulations were computed and provided for

both graphs. It is well known that the MC moments tend to the exact stochastic moments

as the sample size increases, and its convergent rate is O (M−1/2) for the sample size M .

Fig. 4 confirms that the convergent rate of the MC method again. From this convergence

comparison between the MC method and the CC grid approximation or the MC method and

the GL grid approximation in the figures, we see that the sparse grid collocation method

converges faster than the MC method as the sample sizes increases.

So far, we have demonstrated the result from the uncontrolled solution of the stochas-

tic Burgers equation. We next tested the numerical tools for the optimal control prob-

lem, as suggested in Section 5. As mentioned, we have to solve (5.3) subject to (5.4)

at each random parameter values repeatedly. The control input operator is b(x) = x ,

B j =
∫

D
b(x)φ j(x)d x , j = 1, · · · , N , and B = (B1, · · · , BN )

T , where φ j(x) are continu-

ous piecewise linear functions. We set a control weight β = 64/13335 at (5.1), which

induces R = 0.1 at (5.2) and (5.3). Finally, we took the measurement operator C to be
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C u(t, x) = 8
∫ 5/6

3/4
u(t, x)d x for the state estimate feedback controller, so that the discre-

tised operator C becomes C j = 8
∫ 5/6

3/4
φ j(x)d x , j = 1, · · · , N and C = (C1, · · · , CN )

T where

φ j(x) are also finite element basis functions, and for the control system an initial condition

is needed for the state estimate. We used uc0
(x) = uc(0, x) = u0(x), which implies that the

initial condition for the state has no error. The parameter space Γ had dimension 4 in our

example, and grid nodes in Γ were selected under the CC grid rule of level 5.

Realisations of the uncontrolled solution and the controlled solution from one sample

point in the CC grid are depicted in Fig. 5. Fig. 6 shows the mean and the variance of

the controlled solutions approximated by the CC grid points and weights. We recall that

u(yk, t, x) is the solution of system (5.9) that minimises the functional Jk in (5.3). Fig. 7

shows how much the realised controlled solutions disperse from their means at x = 0.25

(the first column) and x = 0.75 (the second column), obtained from the MC method (the

first row, 1105 sample points) and the CC grid method with level 5 (the second row, 1105

points). The black lines of all the graphs represent the means of the controlled solutions.
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We also computed the means and variances of the functional gain operator K and the

estimator gain operator L (see Fig. 8 and Fig. 9), denoted by E[K], Var[K], E[L] and Var[L],

respectively. Lastly, we defined a norm

||u(t)||L2
P
(Ω;L2(D)) =

�

E

�∫

D

|u(t)|2d x

��1/2

,
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which is also the norm of L2
P
(Ω)⊗ L2(D) as considered in Section 2, and related that norm

to both the uncontrolled solutions and the controlled solutions along the time axis. The

expectation Ewas of course approximated here by the CC grid with level 5. Fig. 10 presents

the results, showing that the average norm of the controlled solutions evidently decays to

zero more quickly than the average norm of the uncontrolled solutions.

7. Conclusions

An efficient and practical method has been presented for the derivation of finite-dimen-

sional approximation of the stochastic Burgers equation with a random coefficient, and its

distributed control problem with the synthesis of a linear feedback controller for the nonlin-

ear parabolic PDE system. When solving a stochastic problem, numerical schemes for not

only the temporal-spatial domain but also random parameter space were provided — viz.

the finite element method combined with the backward Euler method and the sparse grid
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stochastic collocation method, respectively. It is notable that the dimension of the random

parameter space is usually greater than in the temporal-spatial domain. A sparse grid re-

duces the computational cost to obtain statistical moments in high dimensional parameter

space, and works satisfactorily for our nonlinear parabolic equation.

For the application of feedback control procedures to the stochastic Burgers equation,

we presented a suboptimal control and feedback procedure using the well-developed LQR

and LQE theories to build an uncoupled bundle of closed-loop systems. This strategy can be

extended to fairly general cost functions and time-dependent equations, including in partic-

ular stochastic equations. Although not strictly justified even in the deterministic equations,

our approach has shown good numerical performance. The associated application of the

linear feedback controller to the stochastic Burgers equation with random coefficient was

also very successful, and the sparse grid stochastic collocation method helps in computing

statistical moments and drawing a confidence interval with low cost.

Acknowledgments

This work was supported by the National Research Foundation of Korea grant NRF-

2013R1A2A2A01068176 funded by the Korean government (MSIP).

References

[1] J.A. Atwell, J.T. Borggaard and B.B. King, Reduced order controller for Burgers’ equation with

a nonlinear observer, Int. J. Appl. Math. Comp. Sci. 11, 1311-1330 (2001).

[2] H.J. Bungartz and M. Griebel, Sparse grids, Acta Num. 13, 1-123 (2004).

[3] J.A. Burns and S. Kang, A control problem for Burgers’ equation with bounded input/output,

Nonlinear Dynamics 2, 235-262 (1991).

[4] A. Balogh and M, Krstic, Burgers equation with nonlinear boundary feedback: H1 stability,

well-posedness and simulation, Machematical Problems in Engineering 6, 189-200 (2000).

[5] V. Barthelmann, E. Novak and K. Ritter, High dimensional polynomial interpolation on sparse

grids, Adv. Comp. Math. 12, 273-288 (2000).

[6] I. Babuska, F. Nobile and R. Tempone, A stochastic collocation method for elliptic partial differ-

ential equations with random input data, SIAM J. Num. Anal. 45, 1005-1034 (2007).

[7] I. Babuska, R. Tempone and G.E. Zouraris, Galerkin Finite Element Approximations of Stochas-

tic Elliptic Partial Differential Equations, SIAM J. Num. Anal. 42, 800-825 (2005).

[8] C.T. Chen, Linear System Theory and Design, Holt, Rinehart and Winston, New York (1984).

[9] H. Choi, R. Temam, P. Moin and J. Kim, Feedback control for unsteady flow and its application

to the stochastic Burgers equation, J. Fluid Mech. 253, 509-543 (1993).

[10] P. Chen, A. Quarteroni and G. Rozza, A weighted reduced basis method for elliptic partial dif-

ferential equations with random input data, SIAM J. Num. Anal. 51, 3163-3185 (2013).

[11] R. Durrett, Probability: Theory and Examples, 2nd ed., Duxbury Press, Belmont CA (1964).

[12] G. Da Prato and A Debussche, Control of the stochastic Burgers model of turbulence, SIAM J.

Control Optim. 37, 1123-1149 (1999).

[13] M. El-Beltagy, M. Wafa and O. Galal, Upwind finite-volume solution of the stochastic Burgers

equation, Appl. Math. 3, 1818-1825 (2012).

[14] M. El-Beltagy and M. Wafa, Stochastic 2D incompressible Navier-Stokes solver using the vorticity

stream function formulation, J. Appl, Math. 2013, 1-14 (2013).



108 H.-C. Lee and Y. Nam

[15] C.A.J. Fletcher, Burgers Equation: A model for all reasons, Numerical Solutions of Partial Dif-

ferential Equations, J. Noye (Ed.), North-Holland (1982).

[16] M.D. Gunzburger and A. Labovsky, Effects of approximate deconvolution models on the solution

of the stochastic Navier-Stokes equations, J. Comp. Math. 29 131-140 (2011).

[17] M. Krstic, On global stabilization of Burgers equation by boundary control, Systems Control

Letts. 37, 123-141 (1999).

[18] N. Kim and H.-C. Lee, Sparse grid collocation method for an optimal control problem involving

a stochastic partial differential equation with random inputs, East Asian J. Appl. Math. 4, 166-

188 (2014).

[19] K. Kunisch and S. Volkwein, Control of the Burgers equation by a reduced-order approach using

proper orthogonal decomposition, J. Optim. Theory Appl. 102, 345-371 (1999).

[20] M. Loève, Probability Theory, 4th ed., Springer, New York (1977).

[21] H.-C. Lee and G.-R. Piao, Boundary feedback control of the Burgers equations by a reduced-order

approach using centroidal Voronoi tessellations, J. Sci. Comp. 43 369-387 (2010).

[22] E. Novak and K. Ritter, High dimensional integration of smooth functions over cubes, Num.

Math. 75, 79-97 (1996).

[23] E. Novak, K. Ritter, R. Schmitt and A. Steinbauer, On an interpolatory method for high dimen-

sional integration, J. Comp. Appl. Math. 112, 215-228 (1999).

[24] F. Nobile, R. Tempone and C.G. Webster, A sparse grid stochastic collocation method for elliptic

partial differential equations with random input data, SIAM J. Num. Anal. 46, 2309-2345

(2008).

[25] F. Nobile, R. Tempone and C.G. Webster, An anisotropic sparse grid stochastic collocation

method for elliptic partial differential equations with random input data, SIAM J. Num. Anal.

46, 2411-2442 (2008).

[26] G.-R. Piao and H.-C. Lee, Distributed feedback control of the Benjamin-Bona-Mahony-Burgers

equation by a reduced-order model, East Asian J. Appl. Math. 5, 61-74 (2015).

[27] G.-R. Piao, H.-C. Lee and J.-Y. Lee, Distributed feedback control of the Burgers equation by a

reduced-order approach using weighted centroidal Voronoi tessellation, J. KSIAM 13, 293-305

(2009).

[28] S.A. Smolyak, Quadrature and interpolation formulas for tensor products of certain classes of

functions, Dokl. Akad. Nauk SSSR 4, 240-243 (1963).
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