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Abstract. Red blood cells can recover their resting shape after having been deformed
by shear flow. Their rims are always formed by the same part of the membranes, and
the cells are said to have shape memory. Modeled as two-dimensional elastic capsules,
their recovery motion and shape memory is studied, mainly focused on the effect of the
spontaneous shape. The fluid-structure interaction is modeled using immersed bound-
ary method. Based on the simulations, the resting shapes of capsules are obtained and
the area ratio of spontaneous shape is found to play an important role. After remove
of shear flow, all capsules can recover their resting shapes, while only capsules with
noncircular spontaneous shapes present shape memory. As the spontaneous shape
approaches a circle but still noncircular, the capsule spends more time on recovery
process. We consider how these capsules deform depending on the membrane bend-
ing energy, and find that the relaxation speed is positive correlated to the range of
values of dimensionless bending energy. These results may help to identify different
spontaneous shapes for capsules especially RBCs through future experiments.

AMS subject classifications: 74F10

Key words: Fluid-structure interaction, immersed boundary method, shape memory, sponta-
neous shape.

1 Introduction

The deformation of fluid-filled capsules and vesicles have been a subject of intense re-
search for many years. Such a structure shares some similar properties with red blood
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cells (RBCs) which are the primary constituent of blood. The flow-induced deformation
of an elastic capsule is a fundamental study for further understanding in medical and
industrial applications. For example, blood diseases like malaria and sickle cell anemia
can stiffen the cell membranes, leading to vascular embolism and hemolysis. The study is
also important in design of microcapsules for certain purpose. Experiments and numer-
ical simulations have shown that a single capsule or cell exhibits primarily two types of
motion in simple shear flow: tank-treading (TT) motion in which the membrane rotating
around the interior fluid while the cell forms a constant angle with the flow direction,
and tumbling (TB) motion that the cell rotates like a rigid body [15, 17, 24]. Further stud-
ies revealed the energy barrier for the transition between TT and TB motions [35,38]. The
dynamics of capsules and RBCs in various flow conditions have also been observed by
experiments or predicted by numerical methods [1, 11, 14].

Contrary to the deformation of capsules, the recovery motion from deformed states
to initial resting shapes draws less interests. Micropipette aspiration [13] and optical
tweezing [10] experiments have been used to study the deformation and relaxation of
RBC membranes, and the time course of shape recovery shows some behavior consis-
tent with the exponential decay function characterization. For RBCs deformed by shear
flow, the relaxation of cell membranes can also been described by the same exponential
decay function [4]. The recovery of two-dimensional (2D) biconcave capsules has been
predicted numerically, and a two-part recovery is characterized by a pair of exponential
decay functions [19].

RBCs exhibit shape memory during the recovery motion subsequent to shear-induced
deformation [16]. After the removal of shear flow, the cell can return to its resting shape,
and the rim of the cell is always formed by the same part of the membrane. This phe-
nomenon implies that material elements at different position have different natural states,
corresponding to some energy minimum shape of the membrane. Similarly, the shear ex-
periments of Dupire et al. [11] and the centrifuge experiments of Hoffman et al. [21] fur-
ther indicate anisotropic elastic properties of membrane. For RBCs both shear (spectrin
network) and bending (lipid bilayer) elasticities might make a contribution to the defor-
mation of the membranes. Thus shape memory could result from spatial inhomogeneous
in either the natural state for shear elasticity or for bending elasticity or both.

So far, the main idea for the anisotropy of cell membrane comes from the stress-free
state of spectrin network [16, 18]. The stress-free state can affect cell dynamics in shear
flow and it seems that the stress-free state of RBC is close to a spherical shape [7, 28, 29].
However, these arguments do not exclude the effect of bending rigidity. The bending en-
ergy of membrane is due to the curvature of lipid bilayer, and the spontaneous curvature
is imposed to describe the chemical difference between the two monolayers [20]. In the
following paragraphs, the term spontaneous shape corresponds to the shape determined
by the spontaneous curvature. For capsules with uniform spontaneous curvature shapes
(circle and flat plate), it has been shown that bending stiffness cause highly deformed
capsules to develop round caps [25,32]. For capsules with resting shapes as spontaneous
shapes, the capsules’ steady shapes in extension flow are more akin to their resting shapes
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with increasing bending stiffness [37], and the energy barrier for TB-to-TT transition is
also increased [38, 39]. The biconcave shape developed by Evans and Fung [12] has been
adopted by many researchers as the spontaneous shape of RBC [2, 8, 9]. Capsules and
vesicles composed of lipid bilayer only can also possess shape memory due to biconcave
spontaneous shape [19, 27].

In the above researches, the capsules’ spontaneous shapes are uniform curvature
shapes (circle and flat plate) and the resting shapes of capsules, and these researches
mainly focused on the effect of bending modulus on capsule dynamics. Apart from these
spontaneous shapes, Sinha and Graham [33] suggests that an oblate spheroidal shape
with spatially varying curvature results in better agreement with experiments than ei-
ther a spherical or a biconcave spontaneous shape. Nevertheless, the difference among
these three spontaneous shapes is subtle. Further investigation is needed to find dis-
tinguishable mechanisms that can be easily tested through experiments. On the other
hands, although shape memory can not be eliminated after shearing for hours [16], re-
cent optical tweezing experiments have shown that it can be changed or erased using
very high power tweezers or long stretching time [6]. The change in biochemical mi-
lieu might also affect the spontaneous shape. Thus more variety of spontaneous shapes
should be considered to model capsules and cells in certain situations.

So far, there is no related research on the effect of spontaneous shape on shape mem-
ory. Different spontaneous shapes might change the recovery process of cells and cap-
sules dramatically, e.g. the recovery time and shape memory property. These results
can be used as a qualitative guidance in identifying spontaneous shape in future exper-
iments. The purpose of the present work is to numerically study the shape memory of
capsules, especially its dependence on different spontaneous shapes with 2D models.

The rest of the paper is organized as follows. We begin with an introduction of the
elastic model and the numerical algorithm, followed by the validation of our numerical
method with previous results. Then the resting shapes of biconcave capsules with dif-
ferent spontaneous shapes are conducted as references of shear-induced deformations.
With these preparations, we follow the ”go-and-stop” method described by Fischer [16]
and shape memory is simulated after the abrupt stop of shear flow for various sponta-
neous shapes. A brief interpretation is proposed based on the membrane bending energy,
followed by the conclusions.

2 Models and numerical method

2.1 Model

In this paper, the membrane of capsule is treated as a continuous elastic shell. For a 2D
model, the membrane is a curve with principle stretch ratio, λ=ds/dS. The term ds is the
length of an infinitesimal element after some deformation while dS represents the length
of the same element before deformation. The shear elasticity of the capsule is modeled
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with the Skalak model [34] as

T=
(

λ2
−1

)[

G+Kλ2
(

λ2+1
)]

, (2.1)

where G is the shear modulus and K is the area modulus. It has been shown that the
results for the Skalak model reach an asymptotic value for K/G≥10 [3,41]. In the present
study, Hooke’s law is also employed to benchmark the numerical method:

T=G(λ−1) . (2.2)

To introduce the effect of spatially varied spontaneous curvature, we follow the ap-
proach by Pozrikidis [32] and define a bending energy

E=
EB

2

∫ L

0
[κ(s)−κ0(s)]

2ds, (2.3)

where κ(s) and κ0(s) are the instantaneous curvature and the spontaneous curvature at
point s of the membrane respectively, and EB is the bending modulus. The bending force
f b to minimize this energy can then be calculated by

f b=EB
d

ds

[

d(κ−κ0)

ds
n

]

, (2.4)

where n is the unit normal vector outward to the membrane. The total membrane strain
force density is the combination of the shear and bending elastic forces:

F=
d

ds
(Tτ)+ f b, (2.5)

where τ refers to the unit tangent vector.

To quantify different spontaneous shapes, we define the reduced area A0 = 4πA/L2

as ratio of the enclosed area A of a spontaneous shape to the area of circle with the same
perimeter L. Thus the reduced area for the circular spontaneous shape is 1, and other
three spontaneous shapes to be investigated are: (i) oblate ellipsoid with A0 = 0.95 (OE
0.95), (ii) oblate ellipsoid with A0 = 0.28 (OE 0.28) and (iii) biconcave discoid with A0 =
0.46, as showed in Fig. 1. The OE 0.95 shape is nearly circular while its curvature is
spatially varied. The thickness of the OE 0.28 shape is the same as the length between the
two dimples of the biconcave shape. The biconcave discoidal shape follows the equations
developed by Evans and Fung [12]:

x= asin(θ), y=
a

2

[

0.207+2.003sin2(θ)−1.123sin4(θ)
]

cos(θ), (2.6)

where a is the discoid radius of biconcave shape.
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Figure 1: Contours of spontaneous shapes. The markers ”OE 0.95” and ”OE 0.28” represent oblate ellipsoid
shape with reduced area of 0.95 and 0.28, respectively.

2.2 Numerical method

The present work is based on the immersed boundary method developed by Peskin [30].
As shown in Fig. 2, the membrane boundary Γ is represented by a Lagrangian coordinate
s (usually the arc length of the boundary), while the fluid domain Ω is represented by an
Eulerian coordinate x. Then any point on the membrane has a corresponding Eulerian
expression as X(s,t), where t is time.

Interior vertex

Membrane

Interior center

Lagrangian node

Fluid 2

Fluid 1

Figure 2: Schematic of a capsule immersed in fluids. The fluid domain is represented by a fixed Eulerian mesh.
The membrane is represented by a moving Lagrangian mesh.
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For each Lagrangian point at X(s,t), the membrane force spreads to the fluid as the
force density f (x,t) through a distribution function:

f (x,t)=
∫

Γ

F(s,t)δ(x−X(s,t))ds. (2.7)

In the above equation, δ(x) is the Dirac delta function. Then the fluid flow is solved with
finite volume method. Using the no-slip condition at each point of the membrane, the
deformation of the membrane can be interpolated from the velocity field of the fluid:

∂

∂t
X(s,t)=U(X,t)=

∫

Ω

u(x,t)δ(x−X(s,t))dx, (2.8)

where U(X,t) is the velocity of the Lagrangian point at location X .
In previous researches, the viscosity ratio was set to 1 for simplicity [8,9,36–38]. How-

ever, it has been proved that the capsule dynamics, e.g. the transition from tank-treading
to tumbling, is related to viscosity ratio across the membrane [18, 22, 33]. The lattice-
Boltzmann method uses a viscosity function to describe lattice points inside and outside
the membrane at any given time [23]. Other investigators use boundary element method
to solve the Stokes equations [22, 25, 32, 33], and the viscosity ratio is explicitly contained
in this algorithm. Some mesh-free approach like dissipative particle dynamics [42] and
smooth particle hydrodynamics [31] denote the interior and exterior fluids with different
particles. For the finite volume method combined with immersed boundary method, a re-
sulting Poisson equation is solved to track the moving boundary in the fluid domain [40].
This algorithm is time consuming and inconvenient for parallel solution. In the present
work, we follow the cell center and vertex flagging method produced by Blais et al. [5],
which is highly parallelizable. For each cell i of the fixed Eulerian mesh, the numbers of
cell vertices Nvc,i and cell center Ncc,i inside the membrane are counted, as illustrated in
Fig. 2. The interior volume fraction βi is generated by following equation:

βi =
Nvc,i+Ncc,iNv,i

2Nv,i
, (2.9)

where Nv,i is the number of vertices of cell i (i.e. 4 for a square grid). With this volume
fraction function βi, the viscosity of cell i is defined as

µi =(1−βi)µex+βiµin, (2.10)

where µin is the interior viscosity, and µex the exterior viscosity.

2.3 Validation

The deformation of initially circular capsules is studied to validate the present numerical
method. The membrane includes shear elasticity with Hooke’s law and bending stiffness
with the spontaneous shape the same as the initial circular shape. The viscosity jump
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Figure 3: Time variation of (a) Taylor deformation parameter and (b) inclination angle for eB = 0. The solid
lines represent the results of present method and dots are data points from [36].

cross the membrane is not considered. Two dimensionless parameters are identified to
play an essential role in determining the capsule deformation. The dimensionless shear
modulus is expressed by the capillary number Ca=µexγ̇a/G, where γ̇ is the shear rate.
The bending modulus is expressed nondimensional as eB = EB/a2G. To quantify the
deformation of capsules, the Taylor deformation parameter D and inclination angle θ are
introduced. The Taylor deformation parameter is defined as

D=
L−B

L+B
, (2.11)

where L and B are the major and minor axes of capsule. The inclination angle θ refers to
the angle between the major axis of capsule and the horizontal direction of flow, in the
range of [−π

2 , π
2 ].

The time variation of the capsule deformation parameter D and inclination angle θ
are compared with previous results of Sui and coworkers [36, 38] by lattice-Boltzmann
method combined with the immersed boundary method. In Fig. 3 the effect of different
shear modulus in the absence of bending resistance is shown, and good quantitative
agreements are observed. Moreover, the effect of bending modulus is considered with
fixed capillary number Ca = 0.04 in Fig. 4. The present results match quite well with
previous data.

2.4 Set up

In the present study, the discoid radius a is chosen as the characteristic length and 1/γ̇
the characteristic time. The Reynolds number is kept less than 0.001 to achieve the Stokes
flow condition. The exterior viscosity is varied while other parameters are kept constant
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Figure 4: Time variation of (a) Taylor deformation parameter and (b) inclination angle for Ca=0.04. The solid
lines represent the results of present method and dots are data points from [38].

so that different capillary numbers are obtained. The computational domain is a 5a×5a
square, with 101 nodes in each direction. A capsule with an initial biconcave shape is
placed in the center of the computational domain. The capsule membrane is divided into
200 discrete segments with equal length. The whole simulations are performed by the
following steps:

1. The capsule is released in still fluid. If the spontaneous shape is differ from the
initial biconcave shape, the capsule would deform from its initial shape, and finally
reaching resting shape.

2. A linear shear flow is induced by translation movement of the top and bottom
boundaries to the opposite direction. Then the capsule would perform TT motion,
and the membrane would rotating around the interior fluid.

3. The shear flow is stopped when the material point forms the rim of the membrane
at rest (hereafter referred to as rim point) is at the dimple of the capsule. The suc-
cessive relaxation of capsule and the motion of the rim point are recorded.

3 Results and discussion

3.1 Resting shapes

Our research starts with the resting shapes of capsules in hydrostatic fluid. The final
resting shapes for different spontaneous shapes and the pressure fields after being nor-
malized by G/a are shown in Fig. 5. The solid lines represent the resting shapes and
the dash lines represent the biconcave shapes. When the spontaneous shape is circle or
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Figure 5: Normalized pressure contours of the resting shape with different spontaneous shapes: circle (left),
OE 0.95 (middle), OE 0.28 (right). The solid lines represent the resting shapes and the dash lines represent
the biconcave shapes.

OE 0.95, the resting shape is still a biconcave discoid with a slightly shallower dimple.
Apparently the resting shape of the OE 0.95 capsule is closer to the biconcave capsule.
However, when the spontaneous shape is OE 0.28, the dimple disappears and the resting
shape is more like an ellipsoid other than a biconcave discoid. This is reasonable for its
reduced area is smaller than the one of biconcave shape, leading to a swelling from the
spontaneous shape. It should be noticed that resting shape is not affected by Ca, since
it only relates to spontaneous shape for 2D capsules. These resting shapes are chosen as
references for the study of shape memory.

Explicit pressure jumps are observed across the membrane in all three cases with
nonbiconcave spontaneous shape, indicating the residual stress of membrane at rest. In-
terestingly, the pressure differences between the interior and exterior fluid are negative
for the circle and the OE 0.95 capsules while positive for the OE 0.28 capsule. As can be
seen from Fig. 5, the pressure difference is affected by the spontaneous shape, mainly the
reduced area A0. With the decreasing of A0, the absolute value of pressure difference first
decreases and then increases. The pressure difference reaches 0 when A0=0.46, which is
the same as the reduced area of the biconcave capsule.

3.2 Go-and-stop simulations

In the go-and-stop experiments developed by Fischer [16], a RBC is first sheared to per-
form TT motion (go). Then the shear flow is stopped when the rim point is at the dimple
of cell (stop). According to his research, the rim point can finally recover to the rim,
and the cell is said to possess shape memory. Following simulations are based on this
go-and-stop procedure, and the effect of spontaneous shapes is shown.

Fig. 6 shows deformations of capsules in go-and-stop simulations at Ca=0.086. The
blue lines denote the contours of capsules and the red dots represent the rim points. The
numbers below each contour indicate dimensionless time γ̇t. Shear flows are stopped at
γ̇t=0, and the negative numbers refer to TT motion of capsules. In the first column the
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Figure 6: Go-and-stop simulations considering different spontaneous shapes: (a) circle, (b) OE 0.95, (c) OE
0.28, and (d) biconcave in shear flow at Ca= 0.086. The blue lines denote the contours of capsules and the
red dots represent the rim points on the membrane. The first column shows resting shapes of capsules. The
numbers indicate dimensionless time γ̇t, and the flows are stopped at γ̇t=0.

resting shapes are shown and the rim points are at the rims of capsules. From comparison
between the second and third column we can see that all capsules perform TT motion
with a swinging mode. The OE 0.28 cell has two protrusions rotating around interior
fluid, due to the spatial variation of spontaneous shape. This phenomenon is analogous
to the motion of capsules with elliptical resting shape described by Sui et al. [38].

After stop, the dimples become evident for all capsules in the beginning. These re-
sults are similar to the observation of Fischer [16] that the RBC first returns to a biconcave
shape before tank treading. For the OE 0.28 capsule the dimple vanishes with time as the
capsule recovering to resting shape. All capsules can recover to their resting shapes,
while the motions of rim points divide them into two groups. For circle capsule in
Fig. 6(a), the TT motion stops right after the shear flow stops and the rim point stays
at the dimple till the capsule reaches resting shape. Capsules with noncircular sponta-
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neous shapes (Figs. 6(b-d)) perform a combination movement of TT and flipping after
the shear flow stops. Their rim points return to the rims at final resting states, similar to
the observation of Fischer [16]. It seems that the shape memory comes from noncircular
spontaneous shape. The tank-treading of membrane exerts a torque on the cell that lead
to a counter-clockwise flipping motion. This torque is also responsible for the inclination
angle during the steady state TT motion in shear flow [24].

It is noteworthy that the OE 0.95 cell take longest time to recover to its resting shape,
while the other two capsules with noncircular spontaneous shapes recover faster. As the
OE 0.95 spontaneous shape approaches a circle, its curvature value varies in a relatively
smaller range comparing to the other two capsules, resulting in smaller energy barrier for
different configurations of the rim point. Thus we can hypothesize that for capsule with
noncircular spontaneous shape, the smaller the range of spontaneous curvature is, the
longer the recovery time is. Sinha and Graham [33] have reported similar results that the
critical shear rate for TT-to-TB transition is smaller for spontaneous shape akin to sphere
than biconcave shape, indicating larger energy barrier for the biconcave spontaneous
shape. However, they did not consider the effect of spontaneous shape on the recovery
motion of cell.

To quantify the recovery motion of capsules, the phase angle β [26] is introduced as

β(t)=α(t)−θ(t)−(α0−θ0), (3.1)

in which α(t) is the current angle between the membrane element and the direction of
flow, θ(t) is the current inclination angle, and α0 and θ0 are the initial values of these
angles. In the present work, the membrane element refers to the rim point, and the range
of β is [0, π

2 ]. Thus for a capsule in resting shape, the value of β is 0. Actually, the temporal
evolution of phase angle β reflects the movement of rim point. If the phase angle can
return to 0 at resting shape, the capsule must possess shape memory. The variation of β
is shown in Figs. 7(a). For circle spontaneous shape, the phase angle is nearly constant,
which means circle spontaneous shape is not related to shape memory. For OE 0.95 and
biconcave capsules, as the β values monotonically decrease to 0, the rim points also return
to the rims of capsules. For OE 0.28 capsule the β value first increases and soon decreases
to 0. The increasing period does not mean an inversely TT motion, but might be related
to the two protrusions as shown in Fig. 5(c).

The variation of inclination angle θ is shown in Figs. 7(b). The inclination angle for
circle spontaneous shape is almost unchanged comparing to its initial value. For capsules
with noncircular spontaneous shapes, the increasing of θ values indicates the flipping
motions shown in Fig. 6.

The relaxation process in terms of Taylor deformation parameter D for Ca= 0.086 is
show in Figs. 8(a) and (b). For circle capsule, the value of D first increases within a short
period and then declines slowly. The D value of biconcave capsule first decreases in a
short time and then increases for a much longer period. This relaxation process with two
separate modes follows the results of Gounley and Peng [19]. The curve trend for OE
0.28 capsules seems to be an inversion for biconcave capsule on horizontal axis, but the
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Figure 7: Relaxation from TT in terms of (a) phase angle β and (b) inclination angle θ. The capillary number
is Ca=0.086.
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Figure 8: Relaxation from TT in terms of Taylor deformation parameter D. The capillary numbers are Ca=0.086
(first row) and Ca= 0.039 (second row). The figures in right column enlarge the horizontal axes of figures in
left column.

turning point arises later. The case for OE 0.95 capsule is the most complicated among
others. In the first period the D value rises with a speed nearly the same as the circle
capsule. Then the first turning point shows up and the value decreases slowly. After a
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fluctuation period around γ̇t = 150, the value increases again until the capsule reaches
resting shape (not shown in Fig. 8(a)).

Figs. 8(c) and (d) refer to the variation of D at Ca=0.039. The turning points for corre-
sponding curves appear earlier when compared with Figs. 8(a) and (b). The comparison
of top and bottom rows in Fig. 8 shows similar relaxation processes, but the relaxation
time is shorter for less Ca value. The relaxation of capsule reflects the dissipation of
membrane energy in viscous fluids, which is dominated by the elasticity and bending
stiffness of the membrane, along with dissipation in the fluid. In the above simulations,
the change of Ca comes from different µex values while other parameters are kept con-
stant. Thus higher Ca means larger exterior viscosity, bringing more resistance to the
relaxation process of capsule.

3.3 Bending energy

The bending modulus EB is chosen as the energy scale, and the variation of nondimen-
sional membrane bending energy E/EB is demonstrated in Fig. 9. At Ca = 0.086 the
bending energies decrease in two modes: initial quick decreasing mode and later slow
decreasing mode, separated by obvious turning points (Fig. 9(b)). While at Ca=0.039 the
bending energies seem to follow the later mode at Ca=0.086. For capsules in shear flow,
spontaneous shapes increase the energy barrier for TB-to-TT transition. More energy is
stored in the membrane when Ca is higher. During the relaxation process, the motion of
capsule is driven by extra energy exceeding this energy barrier. It seems that there exists
a critical energy value. For bending energy higher than this critical value, the dissipation
follows two modes like Figs. 9(a) and (b). Otherwise the dissipation only has one mode.

The bending energies for OE 0.95 capsules take much longer time to decrease to equi-
librium values than other two capsules with noncircular spontaneous shapes. Fig. 6 and
Fig. 7(a) show analogous phenomenon. To further explain this phenomenon, we defined
a dimensionless bending energy density as

ω(g)=
et(g)−e∞(g)

E∞

·L·
µex

µin
, (3.2)

where g is the dimensionless curve length varying from 0 to 1 as s varies from 0 to L, E∞

is the bending energy of the resting shape, and et and e∞ are bending energy densities
at dimensionless time γ̇t and resting shape respectively. The bending energy density is
defined as

e(g)=
EB

2
[κ(g)−κ0(g)]2 . (3.3)

As mentioned above, E∞ and e∞ refer to the energy barrier induced by spontaneous
shapes, and et−e∞ corresponds to the extra energy exceeding energy barrier. Thus the ω
value is 0 for any segment of the membrane when the capsule recovers to resting shape.
According to the above definition, the value of E∞ is 0 for the biconcave capsule, which
leads to an infinite value of ω. Thus biconcave capsule is not considered in the following
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Figure 9: Time variation of the membrane bending energy in terms of different capillary numbers: Ca=0.086
(first row) and Ca= 0.039 (second row). The figures in right column enlarge the horizontal axes of figures in
left column.
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Figure 10: Variation of dimensionless bending energy ω with g at (a) γ̇t=20 and (b) γ̇t=100. The capillary
numbers is Ca=0.086.

discussion. Fig. 10 shows the variation of ω with g at γ̇t=20 and γ̇t=100. At γ̇t=20, the
OE 0.28 capsule has the largest amplitude of ω. While at γ̇t=100, the ω amplitude of OE
0.95 capsule becomes the largest.
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Figure 11: Variation of ∆ω with dimensionless time at Ca=0.086.

The amplitude of ω is defined as

∆ω=max(ω)−min(ω), (3.4)

where max(ω) and min(ω) refer to the maximum and minimum value of ω at given
time. Variation of ∆ω with β is shown in Fig. 11. For capsules with same shape and
same β, ∆ω is affected by the range of spontaneous curvature. The value of ∆ω is also
0 at resting shape. The ∆ω value for OE 0.95 capsule remains smaller than the one for
OE 0.28 capsule at any β value. It seems that the TT speed in relaxation process is pos-
itive correlated with the range of dimensionless bending energy density. For capsule at
same phase angle, spontaneous shape with large reduced ratio would have small range
of spontaneous curvature, leading to small ∆ω value and long relaxation time. The value
of ∆ω for circle capsule is even smaller than the one for OE 0.95 capsule, but the isotropic
spontaneous curvature greatly reduce the energy difference of resting shape at different
β. Hence the circle capsule performs no TT during relaxation process, leading to rapid
relaxation.

3.4 Phase angle differences

It has been shown that the relaxation of capsule is related to the phase angle when shear
flow stops [16, 19]. In the above simulations, shear flows are stopped at β≈0.7. We also
conduct simulations when shear flows stop at β≈0 and compare the results at Ca=0.039.

Time variations of phase angle β is illustrated in Fig. 12(a). It can be seen that all
capsules recover to resting shapes within a short time. The phase angles for all capsules
are almost constant during the whole relaxation process. Particularly for capsules other
than the OE 0.28 capsule, their β values do not decrease to 0. This could be limited by the
calculation accuracy. Fig. 12(b) shows the contours of biconcave capsules at γ̇t=20 when
shear flows stop at different phase angle. The blue solid line is at β= 0.07 and red dash
line at β=0.68. The dots represent the rim points. Obviously the blue dot is already at the
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Figure 13: Relaxation from TT in terms of (a) inclination angle θ and (b) Taylor deformation parameter D at
Ca=0.039. Shear flows are stopped at β≈0.

rim of capsule, while the red dot still needs to tank-treads towards the rim. The shape of
blue solid line is the resting shape of biconcave capsule, and the shape of red dash line is
deformed from the resting shape.

The inclination angle θ and Taylor deformation parameter D are shown in Fig. 13. For
each capsule, the variation of θ is within the range of 0.1. Through the comparison be-
tween Figs. 7 and 13(a), the phase angle at which shear flow stops seems to determine the
inclination angle after shape relaxation [19]. The D values for OE 0.28 capsule decreases,
while the ones for circle, OE 0.95 and biconcave capsules increase. This is because the
shapes of all capsules at γ̇t=0 are similar to their elongated resting shapes. After shear
flows stop, the reduction of major axes decreases D values, but the formation of dimples
can increase D values. As the resting shape of OE 0.28 capsule has no dimple, the D value
is only effected by the decreased major axis. For other three capsules, the decrease of D
is compensated by the decrease of minor axes, and eventually the D values increase.
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4 Conclusion

In the present work, we have introduced a computational model for simulating the defor-
mation and relaxation of fluid-filled capsules which uses immersed boundary method.
The effect of the spontaneous shape on shape memory of capsules is the main focus. For
capsules with circle or oblate ellipsoid spontaneous shapes, as long as the reduced area
is greater than 0.46, the resting shapes are still biconcave discoid. However, the dimples
are shallower compared to the biconcave capsule. All capsules with noncircular sponta-
neous shapes show shape memory property. For capsules with circle spontaneous shape,
however, the rim points stay as the capsules recover to their resting shapes. Thus the
shape memory of membrane may come from noncircular spontaneous shape. Time vari-
ations in terms of Taylor deformation parameter, inclination angle and phase angle are
also studied and different relaxation modes are compared. The relaxation of bending en-
ergy is found to follow two separate modes when bending energy exceeds some critical
value. We have posited the range of dimensionless bending energy ∆ω and shown its
positive relationship with relaxation speed. Our research also indicates that as the oblate
ellipsoid spontaneous shape approaches a circle, the relaxation time would increase due
to the decrease of ∆ω. The above results are limited by the 2D model, thus can be used as
qualitative reference only. In a 2D model, the shear elasticity does not play any role for
the shape memory. For more complicated capsules like RBCs, a 3D model in combination
of both shear elastic and bending anisotropy is required to further study the shape mem-
ory and its dependence on membrane properties. Still, this research may help to identify
different spontaneous shapes of capsules through future experiments.
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