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Abstract. In a recent paper (Du and Ekaterinaris, 2016) optimization of dissipation
and dispersion errors was investigated. A Diagonally Implicit Runge-Kutta (DIRK)
scheme was developed by using the relative stability concept, i.e. the ratio of ab-
solute numerical stability function to analytical one. They indicated that their new
scheme has many similarities to one of the optimized Strong Stability Preserving (SSP)
schemes. They concluded that, for steady state simulations, time integration schemes
should have high dissipation and low dispersion. In this note, dissipation and disper-
sion errors for DIRK schemes are studied further. It is shown that relative stability is
not an appropriate criterion for numerical stability analyses. Moreover, within abso-
lute stability analysis, it is shown that there are two important concerns, accuracy and
stability limits. It is proved that both A-stability and SSP properties aim at minimizing
the dissipation and dispersion errors. While A-stability property attempts to increase
the stability limit for large time step sizes and by bounding the error propagations via
minimizing the numerical dispersion relation, SSP optimized method aims at increas-
ing the accuracy limits by minimizing the difference between analytical and numerical
dispersion relations. Hence, it can be concluded that A-stability property is necessary
for calculations under large time-step sizes and, more specifically, for calculation of
high diffusion terms. Furthermore, it is shown that the oscillatory behavior, reported
by Du and Ekaterinaris (2016), is due to Newton method and the tolerances they set
and it is not related to the employed temporal schemes.
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1 Introduction

Steady state solutions could be sought as the long-time mean solutions of the unsteady
problems (Du and Ekaterinaris, 2016). However, dissipation and dispersion errors are the
main obstacles to achieve long time-step sizes and accordingly to decrease the calculation
time.

Among different temporal integrator schemes, Runge-Kutta methods have attracted
attentions, as they are single-step methods and have free parameters which could lead
to optimization of dissipation and dispersion errors. Excessive research in the literature
has been made to control and bound dissipation and dispersion errors to increase the
range of stability and accuracy. Consequently, numerous stability properties have been
introduced including A-stability property. The reader is referred to ODEs books for more
details (e.g. Hairer and Wanner, 1996).

The Strong Stability Preserving (SSP) Runge-Kutta methods are well-known due to
their non-oscillatory behavior in shock and discontinuity problems. These methods were
designed as convex combinations of Forward Euler (FE) method within limited radius of
absolute monotonicity. This class of methods was further developed by Gottlieb and Shu
(1998). Then, Ketcheson (2009) developed optimal implicit SSP RungeKutta methods up
to order six with eleven stages.

The objective of this paper is to further investigate the stability analysis within study-
ing dissipation and dispersion errors, in order to discuss the conclusions of Du and Eka-
terinaris (2016) and to discuss their proposed DIRK scheme.

Du and Ekaterinaris (2016) indicated that this new scheme has many similarities with
the three-stage fourth order SSP optimized DIRK scheme. They also described their pro-
posed scheme, so called DIRK-D, as a more accurate model for low wavenumber com-
ponents than other schemes they employed. However, as will be discussed, in stability
analyses of temporal schemes, the main attention is on time step sizes. The wavenumber
is assumed as a fixed variable, which basically would be the highest one. It will be shown
that the source of instability, imposed by grid mesh, is due to high wavenumbers.

Relative stability analysis, i.e. the ratio of absolute numerical stability function to an-
alytical one, was introduced by Hairer and Wanner (1996) within the concept of Order
Star. Du and Ekaterinaris (2016) used relative stability function to design the optimized
three-stage fourth order DIRK scheme, DIRK-D, and to examine its performances. How-
ever, the Order Star is mainly useful in proving relation between stability and achievable
order of accuracy and this idea is not useful for judging the stability. Indeed, absolute
stability is the more practical one (Leveque, 2007).

In Section 2, the relative stability analysis is studied further in order to show that this
concept is not useful for optimization of the dissipation and dispersion errors. Mean-
while, as indicated by Leveque (2007) and shown in the present paper, this concept just
shows the order of accuracy and truncation error. Du and Ekaterinaris (2016) indicated
that, for advection-diffusion system, the amplification factor needs to include contribu-
tion of physical and numerical diffusion. In contrast, it will be shown that this contri-
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bution is not required in minimizing the dissipation and dispersion errors (Section 3).
Moreover this section proves that both A-stability and SSP properties cope with mini-
mizing the dissipation and dispersion errors but for different applications. In Section 4,
the non-linear viscous Burgers equation is examined with high order WENO-5 spatial
scheme, which is very similar to WENO-5M used by Du and Ekaterinaris (2016). They
used Newton iteration method, while, in this paper, the Gauss Seidel approach is served.
It will be shown that the oscillatory behavior reported by Du and Ekaterinaris (2016) is
not caused by temporal schemes and it is due to Newton method and the tolerances they
set. Section 6 presents some concluding remarks.

2 Relative stability function

The advection-diffusion model is described by:

∂u

∂t
+c

∂u

∂x
=ν

∂2u

∂x2
. (2.1)

Applying the Fourier transform and assuming the solutions as u(x,t)=u(t)eikx, this equa-
tion is simplified as:

∂û

∂t
=−(ick+k2)û(t). (2.2)

It could be found that the analytical solution is an exponential function. Consequently
the analytical stability function, Ra, defined as the ratio of two successive time steps so-
lutions, forms as:

ûn+1

ûn
=Ra= ez, (2.3)

in which,

z=−(ick+k2
ν)∆t. (2.4)

As it is clear, z∈C−, where C− includes all the complex variables with negative real part.
Note that c represents the advection speed which is assumed to obtain negative value as
well.

Applying the Fourier transform to time dependent function as û(tn)= e−iωtn , results
in the analytical dispersion relation:

e−iω∆t= ez (2.5)

in which ω is analytical frequency. Therefore, Eq. (2.3) is rearranged as:

e−iω∆t= e−k2ν∆te−ick∆t. (2.6)
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As can be seen, the diffusion contribution to the equation is in the form of descending
exponential function with maximum value equals one. This fact will be discussed in the
optimization process in Section 3.2.

In order to analyze the performance of Runge-Kutta scheme, this time integration
method would be applied to (2.2) using the following equations:

un+1=un+zbTY,

Y=une+zAY. (2.7)

un represents the numerical solution at time step tn, while Y represents the vector of
solutions in internal stages. e is vector of ones of size s×1, and s is the number of internal
stages. For DIRK scheme, matrix A and vector b are shown in Butcher tableau as Table 1.

Table 1: Butcher Tableau for s stage DIRK scheme.

c A

bT

c1 a11 0 0 0
c2 a21 a22 0 0
...

...
...

...
...

cs as1 as2 asl ass

b1 b2 ··· bs

Similar to the definition of the analytical stability function, the absolute numerical
stability function, which is the ratio of the numerical solutions of two successive time
steps, is in the form:

un+1

un
=Rn=1+zbT(I−zA)−1e, (2.8)

in which I is s×s unit matrix.

It should be noted that the DIRKs coefficients which are specified by matrix A and
vectors b and c need to satisfy the order conditions. The reader is referred to the literature
for more details on order conditions, e.g. Nazari et al. (2015).

Du and Ekaterinaris (2016) described the relative stability function, called E, as the
ratio of absolute numerical stability function to analytical one:

E=
Rn

Ra
=

1+zbT(I−zA)−1e

ez
. (2.9)

Taylor series expansion of the numerator reforms this equation as:

E=
1+zbTe+z2bTAe+z3bTA2e+...+zpbTAp−1e+∑

∞
n=p+1znbTAn−1e

ez
. (2.10)



272 A. Rokhzadi and A. Mohammadian / Commun. Comput. Phys., 24 (2018), pp. 268-285

This equation could be rearranged as:

E=
1+zbTe+z2bTAe+z3bTA2e+...+zpbTAp−1e

ez
+

∑
∞
n=p+1znbTAn−1e

ez
. (2.11)

Obviously, in the first term of Right Hand Side (RHS), the polynomials coefficients in
numerator are part of the order conditions. Depending on the desired order of accuracy,
p, imposed on DIRK scheme, this polynomial is an approximation of the Taylor series of
exponential function up to order p. Hence, (2.11) could be rearranged as follows:

E=1−∑
∞
n=p+1

zn

n!

ez
+

∑
∞
n=p+1znbTAn−1e

ez
. (2.12)

Comparing Eqs. (2.11) and (2.12) implies that the Runge-Kutta methods try to revive the
exponential function depending on the order of accuracy, p.

In stability analysis context, it is tried to design new schemes bearing large time step
sizes, which is included in the variable z, (2.4). Note that decay rate of exponential func-
tion, denominator in RHS of (2.11) and (2.12), is faster than any power law function.
Hence, it is clear that the magnitude of relative stability function, i.e. |E|, diverges once
the variable z, obtains extremely large negative values in the domain of interest, z∈C−.
Moreover, to minimize the difference between the relative stability function and one,
it is required to minimize the summation in numerator of the last term in RHS, (2.11)
and (2.12), which is the Truncation Error (TE) term of the absolute numerical stability
function, comparing (2.8) and numerator of (2.10). Therefore, it would be appropriate to
consider the absolute numerical stability function in order to optimize the performance
of Runge-Kutta schemes.

Leveque (2007) indicated that the relative stability function is just useful in studying
the relation between stability and accuracy. In order to show this relation, Fig. 1 illus-
trates the relative stability region, i.e. |E| ≤ 1, with blue color for some optimized SSP
schemes. The coefficients of the examined SSP schemes are provided in Tables 2-5 in
Butcher tableau form. The first row compares the stable region of the optimized SSP
Runge-Kutta schemes with second order of accuracy achieved in two and three stages, so
called SSP(2,2) and SSP(3,2) respectively. It is clear that more internal stages, involved in
the simulation, results in larger stable region. However, it is worth mentioning that these
two schemes preserve the A-stability property, which means that their absolute numer-
ical stability function remain less than one in the whole domain of interest, i.e. z∈C−.
However, the relative stability function does not show this property.

Table 2: Butcher Tableau for SSP(2,2) scheme.

0.25 0.25 0
0.75 0.5 0.25

0.5 0.5
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Table 3: Butcher Tableau for SSP(3,2) scheme.

0.333333333333333 0.166666666666667 0 0
0.5 0.333333333333333 0.166666666666667 0
0.833333333333333 0.333333333333333 0.333333333333333 0.166666666666667

0.333333333333333 0.333333333333333 0.333333333333333

Table 4: Butcher Tableau for SSP(3,3) scheme.

0.146446609406726 0.146446609406726 0 0
0.5 0.353553390593275 0.146446609406726 0
0.853553390593272 0.353553390593273 0.353553390593273 0.146446609406726

0.333333333333333 0.333333333333333 0.333333333333333

Table 5: Butcher Tableau for SSP(3,4) scheme.

0.128886400515720 0.128886400515720 0 0
0.5 0.371113599484280 0.128886400515720 0
0.871113599484281 0.257772801031442 0.484454397937119 0.128886400515720

0.302534578182651 0.394930843634698 0.302534578182651

To compare the relative stability region for third and fourth order of accuracy, SSP op-
timized Runge-Kutta schemes with three stages, so called SSP(3,3) and SSP(3,4) respec-
tively, are illustrated in the second row of Fig. 1. The blue fingers include the stability
functions roots (Hairer and Wanner, 1996). As can be seen, the higher order of accuracy
results in more fingers and different region of stability. Further details of Order Star could
be found in the literature (Hairer and Wanner, 1996; Wanner et al., 1978; Norsett and Wan-
ner, 1979; Norsett and Trickett, 1984; Iserles and Norsett, 1991 and Butcher, 2009).

Consequently, one may notice that the relative stability function is not an appropriate
concept to provide the details of Runge-Kutta schemes. Moreover, as shown, it is just
informative in studying the relation between order of accuracy and stability. This fact
was also indicated by Leveque (2007).

Therefore, it is not more helpful than absolute stability function to minimize the dis-
sipation and dispersion errors.

3 Dissipation and dispersion errors optimization

In this section, two issues, accuracy and stability limits, associated with the exact and
numerical dispersion relations will be discussed. Afterward, the optimization of dissi-
pation and dispersion errors and contribution of diffusion terms will be investigated.
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Figure 1: Relative stability analysis within domain of interest, z∈C−, for SSP(2,2) and SSP(3,2) (first row)
and SSP(3,3) and SSP(3,4) (second row), stable region, |E|≤1, shown in blue color.

Finally, the A-stability and SSP properties will be described as the dissipation and dis-
persion optimization problems.

3.1 Accuracy and stability

Similar to the exact dispersion relation, (2.5), the numerical dispersion relation could be
easily found by applying the Fourier transform to temporal term, i.e. û(tn)= e−iω∗tn and
substitution into (2.8):

e−iω∗∆t=1+zbT(I−zA)−1e, (3.1)

in which z=−(ick+k2ν)∆t and ω∗ is called numerical frequency.



A. Rokhzadi and A. Mohammadian / Commun. Comput. Phys., 24 (2018), pp. 268-285 275

Furthermore, in stability analysis context, it is common to linearize the nonlinear
governing equation by using perturbation technique. Hence, referring to (2.1), the vari-
able is decomposed as u= u+u′, in which u and u′ represent the mean and perturbed
components. Therefore, the distribution of perturbed component, which represents the
propagation of the errors as well, follows the original governing equation (with some
approximation). Hence, one may expect that the absolute numerical stability function,
(2.8), rules the error propagations as well. This means that Eq. (2.8), representing the
ratio of errors in two successive time steps and the associated dispersion relation, (3.1),
need to be less than one in order to have a stable scheme. Clearly, large values of the
attributed variable, z, which includes time step and wavenumber, may result in large er-
rors. Therefore, the main concern with instability, associated with spatial discretization,
is the highest wavenumber corresponding to the finest grid size, i.e. kmax = 2π/λmin,
in which λmin = 2∆x. Using (2.9) and (2.12) and the exact dispersion relation, (2.5), the
following equation could be obtained:

e−iω∗∆t= e−iω∆t−
∞

∑
n=p+1

zn

n!
+

∞

∑
n=p+1

znbTAn−1e. (3.2)

The last RHS summation in (3.2) presents the dissipation and dispersion error. It could
be realized that, in order to have an accurate time integrator, the difference between nu-
merical and exact dispersion relations, (3.2), needs to be minimized.

There are two important issues related to dispersion relations; the first one is related to
accuracy and it is associated with (3.2). It means that minimizing the difference between
exact and numerical dispersion relations in (3.2) increases the accuracy. The other issue
is stability concern and corresponds to numerical dispersion relation in (3.1), which is
necessary to be less than one. These issues were also indicated by Hu et al. (1996) within
the concept of accuracy and stability limits.

In order to show these two issues, Fig. 2 shows the magnitude of numerical dispersion
relation, (3.1), in which the variable z just obtains the imaginary component. Referring to
(2.5), the exact dispersion relation obtains the magnitude value equal to one. Hence, for
accuracy reason, it is expected that time integrator schemes approximate the exact value,
which is one, for large interval of the variable. In addition, due to the above discussion,
the stable scheme needs to approximate the magnitude of numerical dispersion relation,
(3.1), less than or equal one for large interval as well, which is due to error propagation.
Both schemes employed in Fig. 2 are three-stage fourth order SDIRK schemes. However,
the purple one is SSP optimized, so called SSP(3,4), which could be shown that it has
less TE than the other one which is the unique three-stage fourth order A-stable scheme,
developed by Crouzeix (1975).

It is clear from left column that SSP(3,4) could remain more accurate due to less TE.
However, as the absolute numerical stability function with A-stability property remains
less or equal one for extremely large variable, it shows more stable behavior (right col-
umn). Therefore, it could be concluded that although SSP optimized schemes were de-
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Figure 2: Comparison of absolute numerical stability functions magnitude, SSP(3,4) (purple), three stage fourth
order A-stable (blue), in terms of accuracy (left column) and stability (right column).

veloped from different concept and for different purposes, they try to minimize the dis-
sipation and dispersion error to increase the accuracy limit, (3.2). Meanwhile, A-stability
property tries to minimize these errors to increase the stability limit, (3.1).

3.2 Dissipation and dispersion optimization

In order to minimize the combination of dissipation and dispersion errors, Hu et al.
(1996) introduced an integral function, which is a summation of the difference of exact
and numerical phase relations in (3.2) for a specified interval. Note that the difference
of exact and numerical dispersion relations is equivalent to the difference of exact and
absolute numerical stability functions.

Du and Ekaterinaris (2016) optimized the dissipation and dispersion errors by max-
imizing the so called acceptable amplification (RAA) and acceptable phase shift (RAP).
They indicated that the nominated errors need to include the contribution of physical and
numerical diffusion terms. The purpose of the following discussion is to show that the
objective function proposed by Hu et al. (1996) does not require including the diffusion
terms.

Hu et al. (1996) tried to minimize the following integral as the objective function,
while they proved it as a combination of dissipation and dispersion errors.

Err =min
∫ Γ

0
|Rn−Ra|2dz. (3.3)

As they studied the hyperbolic compressible Euler system, the variable z in (2.3) and (2.8)
just obtains imaginary component, i.e. z=−ick∆t, and consequently, a proposed objective
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function, (3.3), they employed was:

Err =min
∫ Γ

0
|Rn−Ra|2dσ, (3.4)

in which Ra= e−iσ and σ=−ck∆t.
Hu et al. (1996) minimized the objective function in (3.4) in the interval [0,Γ] while

changing Γ manually. In the present paper, Err is defined as:

Err =min
∫ zm

0
|Rn−Ra|2dz, (3.5)

a more general form of the error function in (3.4). It is the deviation of absolute numer-
ical stability function from analytic stability function, or equivalently the difference of
exact and numerical dispersion relations, in which variable z includes the real negative
component, a representative of diffusion terms as well.

This integral would be calculated as the l2-norm of the function Rn−Ra in a dis-
cretized grid mesh. For any vector X, the l2-norm is bounded by l∞-norm as follows
(Boyd and Vandenberghe, 2004):

‖X ‖∞≤‖X ‖2≤
√

m‖X ‖∞ (3.6)

in which m is dimension of the vector X. In this paper, it depends on the grid mesh size
employed to calculate the integral (3.5). It should be mentioned that the l∞-norm is the
largest component of vector X, which, hereafter, means the largest component of function
Rn−Ra.

As the l2-norm is lower bounded by l∞-norm, it can be shown, for the present case,
that maximizing the l∞-norm results in the minimum value of l2-norm. Consequently,
the objective function in (3.5) could be replaced as follows:

Err =max‖Rn−Ra ‖∞ . (3.7)

From triangular inequality, one obtains:

‖Rn ‖∞ −‖Ra ‖∞≤‖Rn−Ra ‖∞≤‖Rn ‖∞ +‖Ra ‖∞ . (3.8)

Referring to (2.3) and considering the fact that the desired domain is z∈C−, the analyt-
ical stability function is found as descending function with maximum value of one, i.e.
‖ Rn ‖∞= 1. Furthermore, one can find that ”max” is a convex function (Boyd and Van-
denberghe, 2004) and it preserves the inequality direction. Consequently, the following
inequalities hold:

max‖Rn ‖∞ −1≤max‖Rn−Ra ‖∞≤max‖Rn ‖∞ +1. (3.9)

Hence, it is clear that maximizing the absolute numerical stability function results in
maximum value for the objective function in (3.5), which is equivalent to minimizing the
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specified integral in (3.4). Therefore, in minimizing the summation of dissipation and
dispersion errors, it is not required to include the contributions of diffusion terms and
using the objective function proposed by Hu et al. (1996), Eq. (3.4), results in minimizing
the dissipation and dispersion errors. In this regard, the constraint ‖Rn‖∞≤1 is necessary
to impose on the optimization algorithm, as shown in Section 2.

In conclusion, in order to optimize the dissipation and dispersion errors using (3.4),
the above discussions let us consider the analytical stability function without diffusion
coefficient. Therefore, the objective function, (3.4), may be considered as:

E1
rr =min

∫ Γ

0
|Rn−1|2dσ. (3.10)

Moreover, by using (3.7), one may consider the objective function as:

E2
rr =max‖Rn−1‖∞ . (3.11)

Any above objective functions should be minimized subject to the constraint:

‖Rn ‖∞≤1. (3.12)

Substituting the absolute numerical stability function, (2.8), into Eqs. (3.11) and (3.12), the
new forms could be found as:

E2
rr =max‖zbT(I−zA)−1e‖∞≤1, (3.13)

subject to:

‖1+zbT(I−zA)−1e‖∞≤1. (3.14)

Eq. (3.13) may be rearranged as:

E2
rr =max‖bT(z−1I−A)−1e‖∞≤1, (3.15)

and the constraint may be reformed as:

−2≤ zbT(I−zA)−1e≤0. (3.16)

As the desired domain in stability analysis is z∈C−, and z appears in the denominator
in Eq. (3.15), it is clear that maximizing ‖ z ‖ results in the maximum value for RHS of
Eq. (3.15). Hence, the new objective function could be:

E3
rr =max‖z‖∞ , (3.17)

subject to the constraint in (3.16).
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3.3 A-stability property

According to Hairer and Wanner (1996), an implicit Runge-Kutta method is A-stable if
and only if Rn(z) is analytic for Re(z)<0 and |Rn(iy)|≤1 for all real y values.

Therefore it could be interpreted that A-stability condition implies bounding the mag-
nitude of absolute numerical stability function in the whole left half plane, i.e. z∈C− such
that ‖Rn ‖∞≤1.

One may find A-stability property as an optimization problem with objective function
as (3.17) subject to the constraint in (3.16). Eq. (3.16) could be rearranged in an appropri-
ate way for the discussion as:

−2≤bT(z−1I−A)−1e≤0. (3.18)

The maximum value for ‖ z ‖∞, which tends to infinity, lets the A-stability conditions
become:

0≤bTA−1e≤2. (3.19)

Therefore, A-stability property aims at minimizing the dissipation and dispersion errors,
which can be obtained by using the proposed integral in (3.4).

In addition, Eq. (2.4) shows that the real component of variable z includes the time
step, ∆t, the diffusion term, represented by ν, and wavenumber, k. It is clear that large
values of time step and/or diffusion terms, in both physical and numerical forms, may
move the numerical instability region farther along the negative real axis. This includes
the maximum resolvable wavenumber, kmax =

2π

λmin
, which represents the finest grid size

as λmin=2∆x.
Consequently, A-stability property is necessary for calculation of large time steps and

large diffusion terms. Although Du and Ekaterinaris (2016) correctly indicated that high
dissipation is suitable for decreasing the calculation cost toward steady state solutions,
their conclusion is inconsistent with their statement that A-stable schemes may not re-
main stable.

3.4 SSP property

The SSP DIRK schemes are convex combinations of Forward Euler (FE) method (Ketch-
eson et al., 2009). Hence, they preserve the monotonic behavior of FE method, but for
limited range of time-step sizes, specified with absolute radius of monotonicity. This
property prevents the non-oscillatory behavior in solving discontinuity and shock cap-
turing. Ketcheson et al. (2009) calculated the optimized radius of monotonicity for SSP
DIRK schemes up to order six with eleven stages. They described that the maximum
radius of absolute monotonicity of the Runge-Kutta scheme is the largest r≥0 such that
(I+rA)−1 exists and

K(I+rA)−1≥0,

rK(I+rA)−1es ≤es+1, (3.20)
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in which K=

[
A

bT

]
and es is s×1 vector of ones.

Clearly the objective function in SSP optimization problem is the same as (3.17) but
with some additional constraints.

As the absolute numerical stability function is the ratio of solutions of two successive
time steps, one may find that a requirement for non-oscillatory behavior is that the ab-
solute numerical stability function needs to preserve the positive sign, which results in
more restricted inequalities than (3.16) as:

−1≤ zbT(I−zA)−1e≤0. (3.21)

Clearly, as the SSP optimization seeks positive value for radius of absolute monotonic-
ity, r, simply replacing the variable z, in the interval z∈C−, with r gives the following
condition:

0≤ rbT(I+rA)−1e≤1. (3.22)

It is clear that equation set (3.20), i.e. constraints in SSP optimization problem, covers
(3.22), the constraints in minimizing dissipation and dispersion errors problem. Conse-
quently, SSP optimization aims at minimizing the dissipation and dispersion errors as
well. Additionally, as it is clear from (3.20), SSP optimization imposes non negativity
of all coefficients in DIRK scheme in order to guarantee the convex combination of FE
(Ketcheson et al., 2009).

Therefore, It can be concluded that both A-stability and optimized SSP properties aim
at minimizing the dissipation and dispersion errors. However, referring to the discussion
in Section 3.1, A-stability tries to extend the range of stability while SSP optimization tries
to extend the range of accuracy.

4 Non-linear viscous Burgers equation

Du and Ekaterinaris (2016), through calculation of non-linear viscous Burgers equation
and using Newton method, compared their proposed scheme, DIRK-D, to the only A-
stable three-stage fourth order SDIRK scheme (Crouzeix, 1975), so called DIRK-B, and
reported some oscillatory behaviors. In this section, the non-linear viscous Burgers equa-
tion is examined to show the ability of A-stable schemes in obtaining the steady state
solutions against DIRK-D which does not hold A-stability property.

The spatial terms are discretized with WENO-5 (Wang and Spiteri, 2007), which is
not much different from WENO-5M employed by Du and Ekaterinaris (2016). The only
difference is that they employed Newton iteration method to find the solutions, while
here the Gauss Seidel approach is used.

The following equation represents the one-dimensional non-linear viscous Burgers
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Figure 3: l2-norm of difference between numerical solution and analytical steady state solution, u−uexact,
against number of time steps, DIRK-B (red) and DIRK-D (blue), ∆t=3.2e−4 (solid), ∆t=5.0e−3 (dash).

equation:

∂u

∂t
+u

∂u

∂x
=ν

∂2u

∂x2
. (4.1)

Neumann boundary conditions and initial condition are assumed as follows:

u′(0,t)=u′(1,t)=0,

u(x,0)=Rcos(πx), 0≤ x≤1, (4.2)

where R= 5, and ν= 0.1. The governing equation is calculated within domain x∈ [0,1],
divided uniformly into 200 cells, and boundary conditions are set as symmetric. The
analytical steady state solution for non-linear viscous equation was derived by Burns et
al. (1998) as follows:

u(x)=4.9799tanh
[
4.9799

0.5−x

2ν

]
. (4.3)

In Fig. 3, the l2-norm of difference between numerical solutions in each time step
and exact steady state solution, i.e. ‖ u−uexact ‖2 is illustrated. Both schemes, DIRK-B
and DIRK-D, have the same behavior with the same time-step size, ∆t = 3.2e−4. It is
clear that the steady state solution is obtained by both schemes within 600 time-stepping.
DIRK-B, thanks to A-stability property, tolerates larger time step, ∆t=5.0e−3, but DIRK-
D diverges under this time step. Therefore, DIRK-B reaches the steady state solution
faster than DIRK-D, within less than 200 steps.
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Figure 4: Distribution of errors for six successive time step, DIRK-B and DIRK-D (both identical), ∆t=3.2e−4s.

Following Du and Ekaterinaris (2016), the distribution of errors, defined as ∆u=u−
uexact, at six successive time intervals, is illustrated in Fig. 4 with time-step ∆t=3.2e−4s.
Both DIRK-B and DIRK-D calculate identical error distributions. As mentioned, the
Gauss Seidel approach was chosen for iteration. Comparing to the results presented by
Du and Ekaterinaris (2016), which was calculated by Newton method, it is realized that
Newton method predicts the results more accurately, as the level of errors is lower than
those provided by Gauss Seidel.

However, it is clear that no oscillations appear for any of schemes using Gauss Seidel
method. Consequently, one may find that the oscillation reported by Du and Ekaterinaris
(2016) is related to Newton method and not to temporal integration methods. Moreover,
Fig. 5 shows the same distribution of errors generated by DIRK-B with larger time step,
∆t=5.0e−3s. This figure can demonstrate that oscillatory behavior, reported by Du and
Ekaterinaris (2016), is due to Newton method and not due to the temporal integrators.

Fig. 6 shows the CPU time distribution for both DIRK-B and DIRK-D schemes in solv-
ing the non-linear viscous Burger equation until t=0.76s. DIRK-D, developed by Du and
Ekaterinaris, enjoys the SSP property. This property let the time integrator prevent oscil-
latory behavior and therefore, it help to reduce the CPU time. As shown, although the
stable time step is small for DIRK-D compared to DIRK-B, the CPU time is competitive.

5 Conclusion

In this note, the conclusions of Du and Ekaterinaris (2016) were further investigated. It
was shown that the relative stability function, which is the ratio of absolute numerical
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Figure 5: Distribution of errors for six successive time step, DIRK-B, ∆t=5.0e−3s.

Figure 6: CPU time distribution in solving Burger equation till t=0.76 s, DIRK-B (red) and DIRK-D (blue).

stability function to analytical one, is not informative for optimization of dissipation and
dispersion errors. It is just useful to study the relation between stability and order of
accuracy. It was discussed that the high wavenumber is the main concern as a source of
instability. In the literature, the optimization of dissipation and dispersion errors were
studied by Hu et al. (1996) using an integral function as a combination of dissipation and
dispersion errors. Du and Ekaterinaris (2016) included contribution of diffusion terms in
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their optimization procedure. It was shown that the proposed integral by Hu et al. (1996)
is sufficient for optimization purposes and it does not require including the diffusion
terms.

Moreover, referring to the analytical dispersion relation, (2.6), it is clear that the diffu-
sion term appears as descending exponential function with maximum value equal one.
This idea could be interpreted for numerical dispersion relation as well. Therefore, it is
clear that the contribution of diffusion term does not require in the optimization.

Furthermore, it was shown that the proposed integral by Hu et al. (1996) covers the
objectives of A-stability and SSP optimized properties. It was shown that A-stability
property tries to extend the limit of stability by bounding the error propagation, while
SSP optimized scheme tries to increase the limit of accuracy by decreasing the TE, which
is commonly called error constant as well.

Calculation of non-linear viscous equation showed that A-stability property is neces-
sary for stability under large time step sizes and large diffusion terms, and consequently,
this property can accelerate achieving the steady state solutions. It was also shown that
the oscillatory behavior reported by Du and Ekaterinaris (2016) is due to Newton method
implementation and probably it was caused by the tolerances they set, as the Gauss Sei-
del method approaches the solution with no fluctuations.
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