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Abstract. In this paper, a Cauchy problem of two-dimensional heat conduction equa-
tion is investigated. This is a severely ill-posed problem. Based on the solution of
Cauchy problem of two-dimensional heat conduction equation, we propose to solve
this problem by modifying the kernel, which generates a well-posed problem. Error
estimates between the exact solution and the regularized solution are given. We pro-
vide a numerical experiment to illustrate the main results.
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1 Introduction

In many industrial applications one wants to determine the temperature or heat flux on
the surface of a body, where the surface itself is inaccessible for measurements [1]. The
Cauchy problem of the heat conduction equation can be considered as a data completion
problem that means to achieve the remaining part information from boundary conditions
for both the solution and its normal derivative of the boundary. This sort of problem
many occur in a large field of practical applications. In a one-dimensional setting this
situation can be modelled as the following problem for the heat equation. Determining
the temperature u(x,t) for 0< x ≤ 1 from temperature measurements u(0,t) = g(t) and
heat flux measurements ux(0,t)=0, when u(x,t) satisfies





ut(x,t)=uxx(x,t), t≥0, 0< x<1,
u(0,t)= g(t), t≥0,
ux(0,t)=0, t≥0,
u(x,0)=0, 0< x<1.

(1.1)

∗Corresponding author.
Email: hit zjj@hit.edu.cn (J. J. Zhao)

http://www.global-sci.org/aamm 31 c©2015 Global Science Press



32 J. J. Zhao, S. S. Liu and T. Liu / Adv. Appl. Math. Mech., 7 (2015), pp. 31-42

Problem (1.1) has been studied by several authors, see for instance [3, 10] and also [2].
In this paper, motivated by (1.1), we want to extend problem (1.1) to a Cauchy prob-

lem of two-dimensional heat conduction equation in a semi-infinite slab, i.e.,




ut(x,y,t)=uxx(x,y,t)+uyy(x,y,t), 0< x<1, y>0, t>0,
u(0,y,t)= g(y,t), y≥0, t≥0,
ux(0,y,t)=0, y≥0, t≥0,
u(x,y,0)=0, 0≤ x≤1, y≥0,
u(x,0,t)=0, 0≤ x≤1, t≥0,
u(x,y,t)|y→∞ bounded, 0≤ x≤1, t≥0.

(1.2)

Due to the complexity of this problem, it is much more difficult to solve Cauchy prob-
lem of heat conduction equation in the 2D case. To the knowledge of the authors, there
are still very few results on Cauchy problem of 2D heat conduction problem, e.g., the
articles by Li and Wang [9], Qian and Fu [12].

In order to apply the Fourier transform, we extend the functions u(x,·,·) to be whole
real (y,t) plane by defining them to be zero everywhere in {(y,t), y< 0, t< 0}. We also
assume that these functions are in L2(R2). Practically, the input data g(y,t) is measured,
there will be measured data function gδ(y,t)∈L2(R2) with measured error which satisfy

‖gδ−g‖L2(R2)≤δ, (1.3)

the constant δ> 0 represents a bound on the measurement error. Our aim is to seek the
solution u(x,y,t) form the Cauchy data [u,ux], given on the line x=0.

It is well-known that Cauchy problem is generally ill-posed, i.e., the existence,
uniqueness and stability of their solutions are not always guaranteed, see e.g.,
Hadamard [8]. A small perturbation in the data gδ(y,t) may cause a dramatically large
error in the corresponding solution u(x,y,t) for 0< x ≤ 1. Such ill-posedness is caused
by the perturbation of high frequencies. Thus, an appropriate regularization method is
required.

The paper is organized as follows: in Section 2, we demonstrate ill-posedness of a
Cauchy problem of 2D heat conduction equation. In Section 3, we propose a modify-
ing kernel method to solve this ill-posed problem and give error estimates between the
regularization solution and the exact solution under a priori choice of the regularization
parameter. In Section 4, A numerical experiment is given to illustrate the accuracy and
efficiency of our method. Finally, we conclude this paper in Section 5.

2 Ill-posedness of a Cauchy problem of 2D heat conduction

equation

Here, and in the following sections, ‖·‖ denotes the L2(R2)-norm as

‖ f‖=
(∫

R2
| f (y,t)|2dydt

) 1
2
. (2.1)
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Let

f̂ (ξ,η)=
1

2π

∫

R2
f (y,t)e−i(ξy+ηt)dydt, ξ,η∈R,

be the Fourier transform of the function f (y,t)∈L2(R2). The corresponding inverse Fouri-

er transform of the function f̂ (ξ,η) is

f (y,t)=
1

2π

∫

R2
f̂ (ξ,η)ei(ξy+ηt)dξdη.

Applying this transformation to problem (1.2) with respect to y and t, we can know





(iη)û(x,ξ,η)= ûxx(x,y,t)−ξ2 û(x,ξ,η), 0< x<1, ξ>0, η>0,
û(0,ξ,η)= g(ξ,η), ξ>0, η>0,
û(0,ξ,η)=0, ξ>0, η>0,
û(x,ξ,0)=0, 0≤ x≤1, ξ∈R,
û(x,0,η)=0, 0≤ x≤1, η∈R,
û(x,ξ,η)|ξ→∞ bounded, 0≤ x≤1, η∈R.

(2.2)

We can obtain the solution of problem (2.2):

û(x,ξ,η)= ĝ(ξ,η)cosh(µx). (2.3)

Applying inverse Fourier transformation to (2.3) with respect to ξ and η, we can get the
solution of problem (1.2) (see, e.g., [4–6, 12]):

u(x,y,t)=
1

2π

∫

R2
ĝ(ξ,η)cosh(µx)ei(ξy+ηt)dξdη, (2.4)

where µ is the principal value of
√

iη+ξ2:

µ=
√

iη+ξ2 =

√√
η2+ξ4+ξ2

2
+isign(η)

√√
η2+ξ4−ξ2

2
.

We define cosh(µx) as the ”kernel” of an exact solution of problem (1.2). Since |cosh(µx)|
is unbounded for x> 0, small errors in the data can blow up and hardly get any mean-
ingful solution for 0 < x ≤ 1. Moreover, an error in the high-frequency component is

amplified by the factor exp
[√

(
√

η2+ξ4+ξ2)/2
]
, and the kernel includes two variables

ξ and η. Comparing this with the Cauchy problem of 1D heat conduction equation, we
know that Cauchy problem of 2D heat conduction equation is more ill-posed. Conse-
quently, it is more difficult to compute Cauchy problem of 2D heat conduction equation
than Cauchy problem of 1D heat conduction equation.

Following the above analysis, we will construct a regularization method by modify-
ing the kernel cosh(µx).
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3 A modifying kernel method and convergence estimates

In this section, we can construct a regularized solution by modifying the kernel, in the
present of noisy data, as

ûδ
α(x,ξ,η)=

cosh(µx)

1+α|cosh(µ)|m
ĝδ(ξ,η), (3.1)

or equivalently,

uδ
α(x,y,t)=

1

2π

∫

R2

cosh(µx)

1+α|cosh(µ)|m
ĝδ(ξ,η)ei(ξy+ηt)dξdη. (3.2)

The basis to do modification is to eliminate all high frequencies or to replace the ”kernel”

cosh(µx) by a bounded approximation. Note that, if the parameter α is small,
cosh(µx)

1+α|cosh(µ)|m

is close to cosh(µx), so ‖uδ
α−u‖→0. Moreover, for fixed α>0,

cosh(µx)
1+α|cosh(µ)|m is bounded.

Remark 3.1. This modification can be applied to the general heat conduction problem,
see [4–7, 11].

Remark 3.2 (see [12]). We could conclude a general form of modified kernel k(x,ξ,η),
which has the following two common properties:

(I) If the parameter α is small, the kernel k(x,ξ,η) is close to cosh(µx).

(II) If α is fixed, k(x,ξ,η) is bounded.

Property (I) describes the effect of the kernel k(x,ξ,η) closing to cosh(µx) in the low
frequency components. Obviously, the smaller the parameter α is, the better the approx-
imation is. Property (II) describes the effect of continuous dependence. Furthermore, the
bigger the parameter α is, the better the effect of the regularized solution depends contin-
uously on the data. Consequently, we need a strategy to choose the parameter α in order
to keep the balance between the properties (I) and (II). These two properties hint at the
regularized role of the parameter α.

The following Lemma is very important to our analysis.

Lemma 3.1 (see [12]). If a≥b≥0, x≥0, σ= sign(η), η∈R, we have

|cosh(a+iσb)|≥

√
1−2e−

π
2

2
ea, (3.3a)

|cosh(x(a+iσb))|≤ exa . (3.3b)

The following theorems show that the regularized solution (3.2) is a nice approxima-
tion of the exact solution (2.4).
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Theorem 3.1. Let u(x,y,t) be the exact solution of problem (1.2) with the exact given data g, and
let uδ

α(x,y,t) be the new regularized solution (3.2) with the noisy data gδ. Let assumption (1.3)
be satisfied. Suppose that the exact solution of problem (1.2) at x=1 has a priori bound

‖u(1,·,·)‖≤E, (3.4)

where the constant E>0, if we choose the parameter

α=
( δ

E

)m
, (3.5)

then we have the convergence estimate for fixed 0< x<1,

‖uδ
α(x,·,·)−u(x,·,·)‖≤Kδ1−xEx. (3.6)

Proof. Using Parseval’s equality and triangle inequality, we get

‖uα(x,·,·)−uδ
α(x,·,·)‖=‖ûα(x,·,·)−ûδ

α(x,·,·)‖

=
∥∥∥ cosh(µx)

1+α|cosh(µ)|m
(ĝδ− ĝ)

∥∥∥

≤δ sup
ξ,η∈R

B, (3.7)

we set

a=

√√
η2+ξ4+ξ2

2
, b=

√√
η2+ξ4−ξ2

2
, σ= sign(η). (3.8)

Denote

B=
cosh(µx)

1+α|cosh(µ)|m
. (3.9)

From Lemma 3.1, we can obtain

B=
cosh(µx)

1+α|cosh(µ)|m
≤

exa

1+α
(

1−2e−
π
2

4

) m
2 ema

. (3.10)

Let

f (a)=
exa

1+α
(

1−2e−
π
2

4

) m
2 ema

and c1=
(1−2e−

π
2

4

) m
2

,

then

f ′(a)= f (a)
x−αc1ema(m−x)

1+αc1ema
. (3.11)

It is easy to find

a0 =
1

m
ln

x

αc1(m−x)
, (3.12)
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such that f ′(a0)=0. Moreover, if a> a0, then f ′(a)<0; if a< a0, then f ′(a)>0, hence f (a)
has a unique maximal value point a0. Finally,

f (a)≤ f (a0)= c2α− x
m , (3.13)

where

c2=
x

x
m

m
c
− x

m
1 (m−x)1− x

m .

So, we know

B≤
exa

1+αc1ema
≤ c2α− x

m . (3.14)

Combining (3.7) and (3.14), we have proved the formal stability with respect to perturba-
tion in the data,

‖uα(x,·,·)−uδ
α(x,·,·)‖≤ c2α− x

m δ. (3.15)

Moreover, using Parseval’s equality, we also get

‖uα(x,·,·)−u(x,·,·)‖=‖ûα(x,·,·)−û(x,·,·)‖

=
∥∥∥
( cosh(µx)

1+α|cosh(µ)|m
−cosh(µx)

)
ĝ
∥∥∥

≤
∥∥∥ α|cosh(µ)|m

1+α|cosh(µ)|m
cosh(µx)ĝ

∥∥∥

≤E sup
ξ,η∈R

D. (3.16)

Denote

D=
α|cosh(µ)|m−1|cosh(µx)|

1+α|cosh(µ)|m
. (3.17)

From Lemma 3.1, we have

D=
α|cosh(µ)|m−1|cosh(µx)|

1+α|cosh(µ)|m
≤

αe(m−1)a ·exa

1+α
(

1−2e−
π
2

4

) m
2 ema

=
αe(m−1+x)a

1+α
(

1−2e−
π
2

4

) m
2 ema

. (3.18)

Let

p(a)=
e(m−1+x)a

1+α
(

1−2e−
π
2

4

) m
2 ema

and c1=
(1−2e−

π
2

4

) m
2

,

then

p′(a)= p(a)
(1+αc1ema)(m−1+x)−αc1emam

1+αc1ema
. (3.19)
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It is easy to find

a1=
1

m
ln
( 1

αc1
·
m−1+x

1−x

)
, (3.20)

such that p′(a1)=0. Moreover, if a> a1, then p′(a)<0; if a< a1, then p′(a)>0, hence p(a)
has a unique maximal value point a1. So

p(a)≤ p(a1)= c3α− m−1+x
m , (3.21)

where

c3=
(m−1+x)

m−1+x
m

m
c
− m−1+x

m
1 (1−x)1− m−1+x

m .

Then, we can get

D≤ c3α
1−x

m . (3.22)

Combining (3.16) and (3.22), we get the degree of regularized solution approximating
exact solution,

‖uα(x,·,·)−u(x,·,·)‖≤ c3α
1−x

m E. (3.23)

Therefore, combining (3.15) and (3.23), and using the triangle inequality

‖uδ
α(x,·,·)−u(x,·,·)‖≤‖uδ

α(x,·,·)−uα(x,·,·)‖+‖uα(x,·,·)−u(x,·,·)‖

≤c2α− x
m δ+c3α

1−x
m E

=c2δ1−xEx+c3δ1−xEx

=Kδ1−xEx,

where K= c2+c3.
To obtain the continuous dependence of the solution at x=1, we need to introduce a

stronger a priori assumption instead of (3.4),

‖u(1,·,·)‖p ≤E, p>0, (3.24)

where ‖·‖p denotes the norm in Sobolev space Hp(R2) defined by

‖u(1,·,·)‖p =
(∫

R2
(1+|ξ|2+|η|2)p|û(1,ξ,η)|2dξdη

) 1
2
, p>0. (3.25)

Thus, we complete the proof.

Theorem 3.2. Let u(1,y,t) be the solution of problem (1.2) with the exact given data g, and let
uδ

α(1,y,t) be the new regularized solution of problem (1.2) with the noisy data gδ. Let assumption
(1.3) be satisfied. Suppose that the solution of problem (1.2) at x=1 has the a priori bound (3.24).
Now choosing the parameter

α=
( δ

E

) m
2

, (3.26)
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then we have the convergence estimate at x=1 for p>0,

‖uδ
α(1,·,·)−u(1,·,·)‖≤ c2δ

1
2 E

1
2 +K1Emax

{( 1

6m
ln

E

δ

)−p
,
( δ

E

) 3m−1
6

}
. (3.27)

Proof. Like the proof of Theorem 3.1, we also divide two parts to prove the theorem. For
the first part, following the similar process of (3.7)-(3.15). We can easily obtain

‖uα(1,·,·)−uδ
α(1,·,·)‖≤ c2α− 1

m δ. (3.28)

For the second part, we have

‖uα(1,·,·)−u(1,·,·)‖=‖ûα(1,·,·)−û(1,·,·)‖

=
∥∥∥
( cosh(µ)

1+α|cosh(µ)|m
−cosh(µ)

)
ĝ
∥∥∥

≤
∥∥∥ α|cosh(µ)|m

1+α|cosh(µ)|m
(1+|ξ|2+|η|2)−

p
2 (1+|ξ|2+|η|2)

p
2 cosh(µ)ĝ

∥∥∥

≤E sup
ξ,η∈R

G, (3.29)

where

G=
α|cosh(µ)|m

1+α|cosh(µ)|m
(1+|ξ|2+|η|2)−

p
2 . (3.30)

From Lemma 3.1, we have

G=
α|cosh(µ)|m

1+α|cosh(µ)|m
(1+|ξ|2+|η|2)−

p
2 ≤

αema

1+α
(

1−2e−
π
2

4

) m
2 ema

(1+|ξ|2+|η|2)−
p
2 . (3.31)

Let

c1=
(1−2e−

π
2

4

) m
2

.

Now, we distinguish two cases to estimate (3.31).

Case 1: For small a, i.e.,

a≤ a2 =
1

m
ln(α− 1

3m ),

we have

G≤
αema

1+αc1ema
(1+|ξ|2+|η|2)−

p
2 ≤αema2 ≤α1− 1

3m . (3.32)

Case 2: For large a, i.e., a> a2, we get

G≤
αema

1+αc1ema
(1+|ξ|2+|η|2)−

p
2 ≤

1

c1
(1+|ξ|2+|η|2)−

p
2

≤
1

c1
a
−p
2 =

1

c1

( 1

m
ln(α− 1

3m )
)−p

. (3.33)
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Now using the triangle inequality, and combining (3.28), (3.29), (3.32) with (3.33), we
can easily get the convergence estimate

‖uδ
α(1,·,·)−u(1,·,·)‖≤‖uδ

α(1,·,·)−uα(1,·,·)‖+‖uα(1,·,·)−u(1,·,·)‖

≤c2α− 1
m δ+K1Emax

{( 1

m
ln(α− 1

3m )
)−p

,α1− 1
3m

}

=c2δ
1
2 E

1
2 +K1Emax

{( 1

6m
ln

E

δ

)−p
,
( δ

E

) 3m−1
6

}
,

where K1 is a certain constant.

Remark 3.3. Here we separately consider the case 0<x<1 and the case x=1. For the case
0< x< 1, the a priori bound for ‖u(1,·,·)‖ is sufficient. However, for the case x= 1, the
stronger a priori bound for ‖u(1,·,·)‖p, where p>0 must be imposed. Moreover, through
observing previous two theorems, we find that, in the case 0 < x < 1 the convergence
estimate is Hölder type which fast converge to zero as δ→0. However, in the case x=1,
the convergence estimate just is logarithmic type with the order of (lnE/δ)−p, p>0.

4 Numerical example

Cauchy problem of two-dimensional heat conduction equation is a class of important
problems in several engineering contexts and many industrial applications. The physical
situation at the surface may be unsuitable for attaching a sensor, or the accuracy of a
surface measurement may be seriously impaired by the presence of the sensor. Although
it is often difficult to measure accurately the temperature history of the heated surface of
a solid, it is easier to measure accurately the temperature history at an interior location of
the body.

In previous sections, we have proved that the modified kernel method is stable and
convergent with suitable choice of regularization parameter from the theoretical view-
point. But from the numerical viewpoint, we still need give a concrete example to illus-
trate the behavior of the proposed method. Here, we assume that u is temperature and

consider problem (1.2). Similar to [13], we choose g(y,t)= e−y2−t2
.

In this case the bounded ”kernel” is given by υ(x,ξ,η)=cosh(x
√

ξ2+iη).
Our numerical procedure for the proposed method is based on the 2D discrete Fourier

transform (DFT) and computed with a fast Fourier transform (FFT) algorithm. In using
the DFT, it is assumed that the sequence to be transformed is periodic. Thus, we shall
make the data vector periodic before computation.

In our numerical implementations, we give the data g(y,t) and sample at an equidis-
tant grid in the domain [−10,10]×[−10,10] with 64×64 grid points, then carry out a 2D
DFT. The discrete noisy data gδ(y,t) is obtained by adding a random noise to the exact
data g(y,t),

gδ(y,t)= g(y,t)+ε randn(size(g(y,t))), (4.1)
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where,

g(y,t)=(g(y1 ,t1),g(y2,t2),··· ,g(yn,tn))
T,

yi =−10+(i−1)∆y, ∆y=
20

n−1
, i=1,2,··· ,n,

tj =−10+(j−1)∆t, ∆t=
20

n−1
, j=1,2,··· ,n.

Then the total noise δ can be measured in the sense of Root Mean Square Error according
to

δ :=‖gδ(y,t)−g(y,t)‖l2 =

√√√√ 1

n2

n

∑
i=1

n

∑
j=1

(gδ
i (yi,tj)−gi(yi,tj))2. (4.2)

The function ”randn(·)” generates arrays of random numbers whose elements are
normally distributed with mean 0, variance σ2 = 1 and standard deviation σ = 1,
”randn(size(g(y,t)))” returns an array of array of random entries that is the same size
as g(y,t).

Example 4.1. We choose

g(y,t)= e−y2−t2
. (4.3)

Our tests about this example correspond to Figs. 1-2. The numerical results for u and uδ
α

for m=1, m=2 and m=3 are shown in Fig. 1. Fig. 1 shows that the regularization solution
approximates the exact solution better as the amount of m increases. This is consistent
with Remark 3.2.

In Fig. 2, we make error comparison by plotting comparative curves along x. The
numerical results for u and uδ

α for ε= 0.01, ε= 0.001 and ε= 0.0001 are shown in Fig. 2.
Fig. 2 shows that the smaller the ε is, the better the computed solution is. Moreover, we
can see that numerical results become worse when x approaches to 1. Physically, the
more close to the surface of a solid, the worse the effect.

Here, we point out that Figs. 1-2 verify the stability of our proposed method.

5 Conclusions

In this paper, in order to deal with a Cauchy problem of 2D heat conduction equation,
we propose a new regularization method by modifying the kernel and prove the con-
vergence estimates in the whole domain, i.e., including the case 0< x < 1 and the case
x=1. A numerical example shows that the proposed method works well. Here, a Cauchy
problem of 2D heat conduction equation with only nonhomogeneous Dirichlet data on
the boundary is solved. However, nonhomogeneous Neumann data is never proposed in
this article. We will consider a Cauchy problem of 2D heat conduction equation with both
nonhomogeneous Dirichlet data and nonhomogeneous Neumann data on the boundary
in the future.
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Figure 1: The exact solution u and the approximation solution uδ
α, x= 0.8: (a) The exact solution; (b) The

approximation solution for m=1; (c) The approximation solution for m=2; (d) The approximation solution for
m=3.
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Figure 2: The absolute error between the exact solution u and the approximation solution uδ
α for the interval

[0,1]: ε=0.01,0.001,0.0001.
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