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Abstract. We propose a positivity preserving entropy decreasing finite volume scheme
for nonlinear nonlocal equations with a gradient flow structure. These properties al-
low for accurate computations of stationary states and long-time asymptotics demon-
strated by suitably chosen test cases in which these features of the scheme are essential.
The proposed scheme is able to cope with non-smooth stationary states, different time
scales including metastability, as well as concentrations and self-similar behavior in-
duced by singular nonlocal kernels. We use the scheme to explore properties of these
equations beyond their present theoretical knowledge.
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1 Introduction

In this paper, we consider a finite-volume method for the following problem:

{
ρt=∇·

[
ρ∇
(

H′(ρ)+V(x)+W∗ρ
)]

, x∈R
d, t>0,

ρ(x,0)=ρ0(x),
(1.1)

where ρ(x,t)≥ 0 is the unknown probability measure, W(x) is an interaction potential,
which is assumed to be symmetric, H(ρ) is a density of internal energy, and V(x) is a
confinement potential.

Equations such as (1.1) appear in various contexts. If W and V vanishes, and H(ρ)=
ρlogρ−ρ or H(ρ)=ρm, it is the classical heat equation or porous medium/fast diffusion
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equation [1]. If mass-conserving, self-similar solutions of these equations are sought, the
quadratic term V(x) = |x|2 is added, leading to new equations in similarity variables.
More generally, V usually appears as a confining potential in Fokker-Planck type equa-
tions [2, 3]. Finally, W is related to the interaction energy, and can be as singular as the
Newtonian potential in chemotaxis system [4] or as smooth as W(x)= |x|α with α>2 in
granular flow [5].

The free energy associated to Eq. (1.1) is given by (see [6–8]):

E(ρ)=
∫

Rd
H(ρ)dx+

∫

Rd
V(x)ρ(x)dx+

1

2

∫

Rd

∫

Rd
W(x−y)ρ(x)ρ(y)dxdy. (1.2)

This energy functional is the sum of internal energy, potential energy and interaction
energy, corresponding to the three terms on the right-hand side of (1.2), respectively. A
simple computation shows that, at least for classical solutions, the time-derivative of E(ρ)
along solutions of (1.1) is

d

dt
E(ρ)=−

∫

Rd
ρ|u|2 dx :=−I(ρ), (1.3)

where

u=−∇ξ, ξ :=
δE

δρ
=H′(ρ)+V(x)+W∗ρ. (1.4)

The functional I will henceforth be referred to as the entropy dissipation functional.
Eq. (1.1) and its associated energy E(ρ) are the subjects of intensive study during the

past fifteen years, see e.g. [6, 8–10] and the references therein. The general properties
of (1.1) are investigated in the context of interacting gases [6, 8, 9], and are common to a
wide variety of models, including granular flows [5, 11–13], porous medium flows [2, 3],
and collective behavior in biology [14]. The gradient flow structure, in the sense of (1.3),
is generalized from smooth solutions to measure-valued solutions [10]. Certain entropy-
entropy dissipation inequalities between E(ρ) and I(ρ) are also recognized to character-
ize the fine details of the convergence to steady states [2, 3, 6].

The steady state of (1.1), if it exists, usually verifies the form

ξ=H′(ρ)+V(x)+W∗ρ=C, on supp ρ, (1.5)

where the constant C could be different on different connected components of supp ρ. In
many cases, especially in the presence of the interaction potential W, there are multiple
steady states, whose explicit forms are available only for particular W. Most of studies of
these steady states are based on certain assumptions on the support and the characteriz-
ing equation (1.5).

In this work, we propose a positivity preserving finite-volume method to treat the
general nonlocal nonlinear PDE (1.1). Moreover, we show the existence of a discrete free
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energy that is dissipated for the semi-discrete scheme (discrete in space only). A related
method was already proposed in [15] for the case of nonlinear degenerate diffusions in
any dimension. We generalize this method to cover the nonlocal terms for both 1D and
2D cases in Section 2. In fact, the first order scheme generalizes easily to cover unstruc-
tured meshes. However, it is an open problem how to obtain entropy decreasing higher
order schemes in this setting in 2D. Let us remark that other numerical methods based on
finite element approximations have been proposed in the literature which are positivity
preserving and entropy decreasing at the expense of constructing them by an implicit
discretization in time but continuous in space, see [16].

Section 3 is devoted to numerical experiments, in which the performance of the de-
veloped numerical approach is tested. In Section 3.1, we conduct the convergence study
of stationary states, where the order of accuracy depends on the regularity at free bound-
aries. We then showcase the performance of this method for finding stable stationary
states with nonlocal terms and their equilibration rate in time for different nonlocal mod-
els. In Section 3.2, we emphasize how this method is useful to explore different open
problems in the analysis of these nonlocal nonlinear models such as the Keller-Segel
model for chemotaxis in its different versions. We continue in Section 3.3 with aggrega-
tion equations with repulsive-attractive kernels and address the issue of singular kernels
and discontinuous steady states. Finally, in Section 3.4, we demonstrate the performance
of the scheme in a number of 2-D experiments showcasing numerical difficulties and
interesting asymptotics.

2 Numerical method

In this section, we describe both one- (1-D) and two-dimensional (2-D) finite-volume
schemes for (1.1) and prove their positivity preserving and entropy dissipation proper-
ties. We also establish error estimates and convergence results for the proposed methods.
We start in Section 2.1 with the 1-D case and then generalize it to the 2-D case in Sec-
tion 2.2, both on uniform meshes. The extension to higher dimensions and non-uniform
structured meshes is straightforward.

2.1 One-dimensional case

We begin with the derivation of the 1-D second-order finite-volume method for Eq. (1.1).
For simplicity, we divide the computational domain into finite-volume cells Cj =
[xj− 1

2
,xj+ 1

2
] of a uniform size ∆x with xj = j∆x, j∈{−M,··· ,M}, and denote by

ρj(t)=
1

∆x

∫

Cj

ρ(x,t)dx,

the computed cell averages of the solution ρ, which we assume to be known or approx-
imated at time t ≥ 0. A semi-discrete finite-volume scheme is obtained by integrating
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Eq. (1.1) over each cell Cj and is given by the following system of ODEs for ρj:

dρ j(t)

dt
=−

Fj+ 1
2
(t)−Fj− 1

2
(t)

∆x
, (2.1)

where the numerical flux Fj+ 1
2

approximate the continuous flux −ρξx=−ρ(H′(ρ)+V(x)+

W∗ρ)x at cell interface xj+ 1
2

and is constructed next. For simplicity, we will omit the

dependence of the computed quantities on t≥0 in the rest. As in the case of degenerate
diffusion equations treated in [15], we use the upwind numerical fluxes. To this end, we
first construct piecewise linear polynomials in each cell Cj,

ρ̃j(x)=ρj+(ρx)j(x−xj), x∈Cj, (2.2)

and compute the right (“east”), ρE
j , and left (“west”), ρW

j , point values at the cell interfaces

xj− 1
2

and xj+ 1
2
, respectively:

ρE
j = ρ̃j

(
xj+ 1

2
−0
)
=ρj+

∆x

2
(ρx)j,

ρW
j = ρ̃j

(
xj− 1

2
+0
)
=ρj−

∆x

2
(ρx)j. (2.3)

These values will be second-order accurate provided the numerical derivatives (ρx)j are
at least first-order accurate approximations of ρx(x,·). To ensure that the point values
(2.3) are both second-order and nonnegative, the slopes (ρx)j in (2.2) are calculated ac-
cording to the following adaptive procedure. First, the centered-difference approxima-
tions (ρx)j =(ρj+1−ρj−1)/(2∆x) is used for all j. Then, if the reconstructed point values

in some cell Cj become negative (i.e., either ρE
j < 0 or ρW

j < 0), we recalculate the corre-

sponding slope (ρx)j using a slope limiter, which guarantees that the reconstructed point
values are nonnegative as long as the cell averages ρj are nonnegative. In our numerical

experiments, we have used a generalized minmod limiter [17–20]:

(ρx)j =minmod

(
θ

ρj+1−ρj

∆x
,
ρj+1−ρj−1

2∆x
,θ

ρj−ρj−1

∆x

)
,

where

minmod(z1,z2,···) :=





min(z1,z2,. . .), if zi >0 ∀ i,
max(z1,z2,···), if zi <0 ∀ i,
0, otherwise,

and the parameter θ can be used to control the amount of numerical viscosity present in
the resulting scheme. In all the numerical examples below, θ=2 is used.
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Equipped with the piecewise linear reconstruction ρ̃j(x) and point values ρE
j , ρW

j , the

upwind fluxes in (2.1) are computed as

Fj+ 1
2
=u+

j+ 1
2

ρE
j +u−

j+ 1
2

ρW
j+1, (2.4)

where the discrete values uj+ 1
2

of the velocities are obtained using the centered-difference

approach,

uj+ 1
2
=− ξ j+1−ξ j

∆x
, (2.5)

and the positive and negative parts of uj+ 1
2

are denoted by

u+
j+ 1

2

=max(uj+ 1
2
,0), u−

j+ 1
2

=min(uj+ 1
2
,0). (2.6)

The discrete velocity field ξ j is calculated by discretizing (1.4):

ξ j =∆x∑
i

Wj−iρi+H′(ρj)+Vj, (2.7)

where Wj−i=W(xj−xi) and Vj=V(xj). The formula (2.7) is a second-order approximation
of

∑
i

∫

Ci

W(xj−s)ρ̃i(s)ds+H′(ρ̃j(xj))+V(xj).

Indeed, the reconstruction (2.2) yields H′(ρ̃j(xj))=H′(ρj) and

∑
i

∫

Ci

W(xj−s)ρ̃i(s)ds=∑
i

ρi

∫

Ci

W(xj−s)ds+∑
i

(ρx)i

∫

Ci

W(xj−s)(s−xi)ds

=∆x∑
i

Wj−iρi+O(∆x2). (2.8)

Here Wj−i can be any approximation of the local integral 1
∆x

∫
Ci

W(xj−s)ds with error

O(∆x2). If W has a bounded second order derivative near xj−i, Wj−i can be chosen to be
W(xj−i) (the middle point rule) or (W(xj−i−1/2)+W(xj−i+1/2))/2 (the trapezoidal rule).

The integral
∫

Ci
W(xj−s)(s−xi)ds in the second summation is of O(∆x3) because of the

anti-symmetric factor s−xi, leading to overall error O(∆x2).
The case with non-smooth or singular interaction potential W has to be treated more

carefully. First, the last integral
∫

Ci
W(xj−s)(s−xi)ds in the above formula vanishes as

soon as i= j due to the symmetry of W independently of any possible singularity at x=xj.

If W has a locally integrable singularity (usually at the origin), 1
∆x

∫
Ci

W(xj−s)ds can still

be approximated by a higher order quadrature scheme with an error O(∆x2) or smaller.
Actually, in the particular case of powers or logarithm kernels, it can be explicitly com-
puted. However, the second sum above may have a slightly larger error. For instance, if
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W(x)∼|x|−α for 0<α<1, then
∫

Ci
W(xj−s)(s−xi)ds∼O(∆x2−α) by direct computation

when |i− j| is close to zero.
Finally, the semi-discrete scheme (2.1) is a system of ODEs, which has to be integrated

numerically using a stable and accurate ODE solver. In all numerical examples reported
in next section, the third-order strong preserving Runge-Kutta (SSP-RK) ODE solver [21]
is used.

Remark 2.1. The computational bottleneck is the discrete convolution in (2.7). This is
a classical problem in scientific computing that can be effectively evaluated using fast
convolution algorithms, mainly based Fast Fourier Transforms [22].

Remark 2.2. The second-order finite-volume scheme (2.1), (2.4)-(2.7), reduces to the first-
order one if the piecewise constant reconstruction is used instead of (2.2), in which case
one has

ρ̃j(x)=ρj, xj ∈Cj, and therefore ρE
j =ρW

j =ρj, ∀j.

Positivity Preserving. The resulting scheme preserves positivity of the computed cell
averages ρj as stated in the following theorem. The proof is based on the forward Euler

integration of the ODE system (2.1), but will remain equally valid if the forward Euler
method were replaced by a higher-order SSP ODE solver [21], whose time step can be
expressed as a convex combination of several forward Euler steps.

Theorem 2.1. Consider the system (1.1) with initial data ρ0(x)≥0 and the semi-discrete finite-
volume scheme (2.1), (2.4)-(2.7) with a positivity preserving piecewise linear reconstruction (2.2)
for ρ. Assume that the system of ODEs (2.1) is discretized by the forward Euler method. Then,
the computed cell averages ρj≥0, ∀ j, provided that the following CFL condition is satisfied:

∆t≤ ∆x

2a
, where a=max

j

{
u+

j+ 1
2

,−u−
j+ 1

2

}
, (2.9)

with u+
j+ 1

2

and u−
j+ 1

2

defined in (2.6).

Proof. Assume that at a given time t the computed solution is known and positive: ρj ≥
0, ∀j. Then the new cell averages are obtained from the forward Euler discretization of
equation (2.1):

ρj(t+∆t)=ρ j(t)−λ
[

Fj+ 1
2
(t)−Fj− 1

2
(t)
]

, (2.10)

where λ := ∆t/∆x. As above, the dependence of all terms on the RHS of (2.10) on t
is suppressed in the following to simplify the notation. Using (2.4) and the fact that
ρj =

1
2(ρ

E
j +ρW

j ) (see (2.3)), we obtain

ρj(t+∆t)=
1

2

(
ρE

j +ρW
j

)
−λ
[
u+

j+ 1
2

ρE
j +u−

j+ 1
2

ρW
j+1−u+

j− 1
2

ρE
j−1−u−

j− 1
2

ρW
j

]

=λu+
j− 1

2

ρE
j−1+

(
1

2
−λu+

j+ 1
2

)
ρE

j +

(
1

2
+λu−

j− 1
2

)
ρW

j −λu−
j+ 1

2

ρW
j+1. (2.11)
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It follows from (2.11) that the new cell averages ρj(t+∆t) are linear combinations of the

nonnegative reconstructed point values ρE
j−1,ρE

j ,ρW
j and ρW

j+1. Since u+
j− 1

2

≥0 and u−
j+ 1

2

≤0,

we conclude that ρj(t+∆t)≥0, ∀j, provided that the CFL condition (2.9) is satisfied.

Remark 2.3. Similar result holds for the first-order finite-volume scheme with the CFL
condition reduced to

∆t≤ ∆x

2max
j

(
u+

j+ 1
2

−u−
j− 1

2

) .

Discrete Entropy Dissipation. A discrete version of the entropy E defined in (1.2) is
given by

E∆(t)=∆x∑
j

[
1

2
∆x∑

i

Wj−iρiρj+H(ρj)+Vjρj

]
. (2.12)

We also introduce the discrete version of the entropy dissipation

I∆(t)=∆x∑
j

(
uj+ 1

2

)2
min

j

(
ρE

j ,ρW
j+1

)
. (2.13)

In the following theorem, we prove that the time derivative of E∆(t) is less or equal than
the negative of I∆(t), mimicking the corresponding property of the continuous relation.

Theorem 2.2. Consider the system (1.1) with no flux boundary conditions on [−L,L] with
L> 0 and with initial data ρ0(x)≥ 0. Given the semi-discrete finite-volume scheme (2.1) with
∆x=L/M, (2.4)-(2.7) with a positivity preserving piecewise linear reconstruction (2.2) for ρ and
discrete boundary conditions FM+ 1

2
=F−M− 1

2
=0. Then,

d

dt
E∆(t)≤−I∆(t), ∀t>0.

Proof. We start by differentiating (2.12) with respect to time to obtain:

d

dt
E∆(t)=∆x∑

j

[
∆x∑

i

Wj−iρi

dρj

dt
+H′(ρj)

dρj

dt
+Vj

dρj

dt

]

=∆x∑
j

[
∆x∑

i

Wj−iρi+H′(ρj)+Vj

]
dρ j

dt
.

Using the definition (2.7) and the numerical scheme (2.1), we have

d

dt
E∆(t)=−∆x∑

j

ξ j

Fj+ 1
2
−Fj− 1

2

∆x
.
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A discrete integration by parts using the no flux discrete boundary conditions along with
(2.5) yields

d

dt
E∆(t)=−∑

j

(ξ j−ξ j+1)Fj+ 1
2
=−∆x∑

j

uj+ 1
2
Fj+ 1

2
.

Finally, using the definition of the upwind fluxes (2.4) and formulas (2.6) and (2.13), we
conclude

d

dt
E∆(t)=−∆x∑

j

uj+ 1
2

[
u+

j+ 1
2

ρE
j +u−

j+ 1
2

ρW
j+1

]
≤−∆x∑

j

(uj+ 1
2
)2min

j
(ρE

j ,ρW
j+1)=−I∆(t).

The proof is completed.

2.2 Two-dimensional case

In this subsection, we quickly describe a semi-discrete second-order finite-volume
method for the 2-D equation (1.1). We explain the main ideas in 2D for the sake of the
reader. As already mentioned, the first order scheme generalizes easily to unstructured
meshes. However, higher order schemes with the desired entropy decreasing property
are harder to obtain in this setting for higher dimensions. We introduce a Cartesian
mesh consisting of the cells Cj,k := [xj− 1

2
,xj+ 1

2
]×[yk− 1

2
,yk+ 1

2
], which for the sake of sim-

plicity are assumed to be of the uniform size ∆x∆y, that is, xj+ 1
2
−xj− 1

2
≡ ∆x, ∀ j, and

yk+ 1
2
−yk− 1

2
≡∆y, ∀ k.

A general semi-discrete finite-volume scheme for Eq. (1.1) can be written in the fol-
lowing form:

dρ j,k

dt
=−

Fx
j+ 1

2 ,k
−Fx

j− 1
2 ,k

∆x
−

F
y

j,k+ 1
2

−F
y

j,k− 1
2

∆y
. (2.14)

Here, we define

ρ̄j,k(t)≈
1

∆x∆y

∫∫

Cj,k

ρ(x,y,t)dxdy

as the cell averages of the computed solution and Fx
j+ 1

2 ,k
and F

y

j,k+ 1
2

are upwind numerical

fluxes in the x and y directions, respectively.
As in the 1-D case, to obtain formulae for numerical fluxes, we first compute

ρE
j,k,ρW

j,k,ρN
j,k and ρS

j,k, which are one-sided point values of the piecewise linear reconstruc-
tion

ρ̃(x,y)=ρ j,k+(ρx)j,k(x−xj)+(ρy)j,k(y−yk), (x,y)∈Cj,k, (2.15)

at the cell interfaces (xj+ 1
2
,yk), (xj− 1

2
,yk), (xj,yk+ 1

2
), (xj,yk− 1

2
), respectively. Namely,

ρE
j,k := ρ̃(xj+ 1

2
−0,yk)=ρj,k+

∆x

2
(ρx)j,k, ρW

j,k := ρ̃(xj− 1
2
+0,yk)=ρj,k−

∆x

2
(ρx)j,k,

ρN
j,k := ρ̃(xj,yk+ 1

2
−0)=ρj,k+

∆y

2
(ρy)j,k, ρS

j,k := ρ̃(xj,yk− 1
2
+0)=ρj,k−

∆y

2
(ρy)j,k. (2.16)
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To ensure the point values in (2.16) are both second-order and nonnegative, the slopes in
(2.15) are calculated according to the adaptive procedure similarly to the 1-D case. First,
the centered-difference approximations,

(ρx)j,k =
ρj+1,k−ρj−1,k

2∆x
and (ρy)j,k =

ρj,k+1−ρj,k−1

2∆y

are used for all j,k. Then, if the reconstructed point values in some cell Cj,k become nega-
tive, we recalculate the corresponding slopes (ρx)j,k or (ρy)j,k using a monotone nonlinear
limiter, which guarantees that the reconstructed point values are nonnegative as long as
the cell averages of ρj,k are nonnegative for all j,k. In our numerical experiments, we have

used the one-parameter family of the generalized minmod limiters with θ∈ [1,2]:

(ρx)j,k =minmod

(
θ

ρj,k−ρj−1,k

∆x
,
ρj+1,k−ρj−1,k

2∆x
,θ

ρj+1,k−ρj,k

∆x

)
,

(ρy)j,k =minmod

(
θ

ρj,k−ρj,k−1

∆y
,
ρj,k+1−ρj,k−1

2∆y
,θ

ρj,k+1−ρj,k

∆y

)
.

Given the polynomial reconstruction (2.15) and its point values (2.16), the upwind
numerical fluxes in (2.14) are defined as

Fx
j+ 1

2 ,k
=u+

j+ 1
2 ,k

ρE
j,k+u−

j+ 1
2 ,k

ρW
j+1,k, F

y

j,k+ 1
2

=v+
j,k+ 1

2

ρN
j,k+v−

j,k+ 1
2

ρS
j,k+1, (2.17)

where

uj+ 1
2 ,k=− ξ j+1,k−ξ j,k

∆x
, vj,k+ 1

2
=− ξ j,k+1−ξ j,k

∆y
,

the values of u±
j+ 1

2 ,k
and v±

j,k+ 1
2

are defined according to (2.6), and

ξ j,k =∆x∆y∑
i,l

Wj−i,k−lρi,l+H′(ρj,k)+Vj,k. (2.18)

Here, Wj−i,k−l =W(xj−xi,yk−yl) and Vj,k =V(xj,yk).
Similarly to the 1-D case, the formula (2.18) for ξ j,k is obtained by using the recon-

struction formula (2.15) and applying the midpoint quadrature rule to the first integral
in

ξ j,k =∑
i,l

∫∫

Ci,l

W(x−s,y−r)ρ̃i,l(s,r)dsdr+H′(ρ̃j,k(x,y))+V(xj,yk).

As in the 1-D case, the ODE system (2.14) is to be integrated numerically by a stable and
sufficiently accurate ODE solver such as the third-order SSP-RK ODE solver [21].

Remark 2.4. As in the 1-D case, the first-order finite-volume method is obtained by taking

ρ̃j,k(x,y)=ρj,k and ρE
j,k =ρW

j,k =ρN
j,k =ρS

j,k =ρj,k, ∀j,k.
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Positivity Preserving. The resulting 2-D finite-volume scheme will preserve positivity
of the computed cell averages ρj,k, ∀j,k, as long as an SSP ODE solver, whose time steps

are convex combinations of forward Euler steps, is used for time integration. We omit
the proof of the positivity property of the scheme as it follows exactly the lines of The-
orem 2.1. The only difference is that in the 2-D case ρj,k =

1
4(ρ

E
j,k+ρW

j,k+ρN
j,k+ρS

j,k), which

leads to a slightly modified CFL condition. We thus have the following theorem.

Theorem 2.3. Consider the system (1.1) with initial data ρ0(x)≥0 and the semi-discrete finite-
volume scheme (2.14), (2.17)-(2.18) with a positivity preserving piecewise linear reconstruction
(2.15) for ρ. Assume that the system of ODEs (2.14) is discretized by the forward Euler (or a
strong stability preserving Runge-Kutta) method. Then, the computed cell averages ρj,k≥0, ∀j,k,

provided the following CFL condition is satisfied:

∆t≤min

{
∆x

4a
,
∆y

4b

}
, a=max

j,k

{
u+

j+ 1
2 ,k

,−u−
j+ 1

2 ,k

}
, b=max

j,k

{
v+

j,k+ 1
2

,−v−
j,k+ 1

2

}
,

where u±
j+ 1

2 ,k
and v±

j,k+ 1
2

are defined according to (2.6).

Discrete Entropy Dissipation. We define the discrete entropy

E∆(t)=∆x∆y∑
j,k

[
1

2
∆x∆y∑

i,l

Wj−i,k−lρi,lρj,k+H(ρj,k)+V j,kρj,k

]
,

and discrete entropy dissipation

I∆(t)=∆x∆y∑
j,k

[
(uj+ 1

2 ,k)
2+(vj,k+ 1

2
)2
]

min
j,k

(
ρE

j,k,ρW
j+1,k,ρN

j,k,ρS
j,k+1

)
.

Similarly to the 1-D case, we can show the following dissipative property of the scheme.

Theorem 2.4. Consider the system (1.1) with no flux boundary conditions in the domain [−L,L]2

with L>0 and with initial data ρ0(x)≥0. Given the semi-discrete finite-volume scheme (2.14),
(2.17)-(2.18) with a positivity preserving piecewise linear reconstruction (2.15) for ρ, with ∆x=
L/M, and with discrete no-flux boundary conditions Fx

M+ 1
2 ,k

=Fx
−M− 1

2 ,k
=F

y

j,M+ 1
2

=F
y

j,−M− 1
2

=0.

Then,
d

dt
E∆(t)≤−I∆(t), ∀t>0.

3 Numerical experiments

In this section, we present several numerical examples, focusing mainly on the steady
states or long time behaviors of the solutions to the general equation

ρt =∇·
[
ρ∇
(

H′(ρ)+V(x)+W∗ρ
)]

, x∈R
d, t>0.
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A previous detailed study in [15] for the degenerate parabolic and drift-diffusion equa-
tions demonstrated the good performance of the method (with small variants) in dealing
with exponential rates of convergence toward compactly supported Barenblatt solutions.
Here we will concentrate mostly on cases with the interaction potential W, and show
that key properties like non-negativity and entropy dissipation are preserved. We will
first start our discussion by using some test cases to validate the order of convergence of
the scheme in space and its relation to the regularity of the steady states. If the solution
ρ is smooth, the spatial discretization given in Section 2 is shown to be of second order.
However, in practice, the steady states of (1.1) are usually compactly supported, with dis-
continuities in the derivatives or even in the solutions themselves near the boundaries.
This loss of regularity of the steady states usually leads to degeneracy in the order of
convergence, as shown in Examples 3.1-3.4. Then, we will illustrate with several exam-
ples that the presented finite-volume scheme can be used for a numerical study of many
challenging questions in which theoretical analysis has not yet been fully developed.

3.1 Steady states: Spatial order and time stabilization

Example 3.1 (Attractive-repulsive kernels). We first consider Eq. (1.1) in 1-D with only
the interaction kernel W(x)= |x|2/2−log|x| (i.e., H(ρ)=0, V(x)=0). The corresponding
unit-mass steady state is given by (see [23]):

ρ∞(x)=

{
1
π

√
2−x2, |x|≤

√
2,

0, otherwise,

and is Hölder continuous with exponent α= 1/2. This steady state is the unique global
minimizer of the free energy (1.2) and it approached by the solutions of (1.1) with an
exponential convergence rate as shown in [24]. We compute ρ∞ by numerically solving

(1.1) at large time, with the initial condition ρ(x,0) = e−x2/2/
√

2π. In Fig. 1(a), we plot
the numerical steady state obtained on a very coarse grid with ∆x=

√
2/5. As one can

see, even on such a coarse grid, the numerical steady state is in good agreement with
the exact one, except near the boundary x=±

√
2. The spatial convergence error of the

steady states in L1 norm and L∞ norm is shown in Fig. 1(b). As a general rule, the practical
convergence error of the numerical steady state is α in L∞ norm and α+1 in L1 norm, if
the exact steady state is Cα-Hölder continuous.

Example 3.2 (Nonlinear diffusion with nonlocal attraction kernel). Next, we consider
the equation (1.1) in 1-D with H(ρ)= ν

m ρm, W(x)=W(|x|) and V(x)=0, where ν>0, m>1
and W∈W1,1(R) is an increasing function on [0,∞), i.e.,

ρt =
(

ρ(νρm−1+W∗ρ)x

)
x
. (3.1)

This equation arises in some physical and biological modelling with competing nonlinear
diffusion and nonlocal attraction, see [14] for instance. The attraction represented by
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Figure 1: (a) The numerical steady state with grid size ∆x=
√

2/5, compared with the exact one. (b) The

convergence of error in L1 and L∞ norms. Here the L1 norm is computed by taking the numerical steady state
piecewise constant inside each cell and L∞ norm is evaluated only at the cell centers.

convolution W∗ρ is relatively weak (compared to that in the Keller-Segel model discussed
below), and the solution does not blow up with bounded initial data, while the long time
behavior of the solution is characterized by an extensive study of the steady states in [25].
When m > 2, the attraction dominates the nonlinear diffusion, leading to a compactly
supported steady state. When m< 2, the behavior depends on the diffusion coefficient
ν: there is a local steady state for small ν with localized initial data and the solution
always decays to zero for large ν. The borderline case m = 2 is investigated in [26] for
non-compactly supported kernels, where the evolution depends on the coefficient ν, the
total conserved mass, and ‖W‖1.

We begin by numerically calculating the solutions to the 1-D equation (3.1) with non-

linear diffusion and W(x)=−e−|x|2/2σ/
√

2πσ, for some constants σ>0. The correspond-
ing steady states can also be obtained by implementing an iterative procedure proposed
in [25]. Here, we compute the steady state solutions ρ∞ by the time evolution of (3.1)
subject to Gaussian-type initial data

ρ0(x)=
1√
8π

[
e−0.5(x−3)2

+e−0.5(x+3)2
]

.

The simulations are run on the computational domain [−6,6] with the mesh size ∆x=0.02
for large time until stabilization and the results are plotted in Fig. 2(a) for different
values of m. As one can observe, the boundary behavior of the compactly supported
steady states has a similar dependence on m as the Barenblatt solutions of the classical
porous medium equation ρt = ν(ρ(ρm−1)x)x, that is, only Hölder continuous with expo-
nent α = min(1,1/(m−1)). Using the steady states of (1.1) computed by the iterative
scheme proposed in [25], we can check the spatial convergence error of our scheme on
different grid sizes ∆x. As shown in Fig. 2(b), the spatial convergence error of the steady
states is min(2,m/(m−1)) in L1 norm and is min(1,1/(m−1)) in L∞ norm.
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Figure 2: (a) The steady states with unit total mass for different m have Hölder exponent α=min(1,1/(m−1))
and σ=1, where ν is chosen such that the corresponding ρ∞ is supported on [−2,2]. (b) The convergence of

the steady states ρ∞ on different grid size ∆x, which is min(2,m/(m−1)) in L1 norm and is min(1,1/(m−1))
in L∞ norm.

0 100 200 300 400
10

−8

10
−6

10
−4

10
−2

10
0

t
 

 

(a)

E[ ρ]−E[ ρ
∞
]

exp(−0.256(t−340))
−6

−4
−2

0
2

4
6 0

100

200

300

400

500

0

0.2

0.4

t

x

ρ(x,t)

(b)

Figure 3: (a) The two timescales in the decay towards the unique equilibrium solution corresponding: very slow
energy decay followed by an exponential decay. (b) Time evolution of the density. Here, m = 3, σ = 1 and
ν=1.48.

Now let us turn our attention to the time evolution and the stabilization in time to-
ward equilibria and show that the convergence in time toward equilibration can be ar-
bitrarily slow. This is due to the fact that the effect of attraction is very small for large
distances. Actually, different bumps at large distances will slowly diffuse and take very
long time to attract each other. However, once they reach certain distance, the convex-
ity of the Gaussian well will lead to equilibration exponentially fast in time. These two
different time scales can be observed in Fig. 3, where the time energy decay and density
evolution are plotted to the solution corresponding to m=3, σ=1, and ν=1.48 (see also
Fig. 2).

Example 3.3 (Nonlinear diffusion with compactly supported attraction kernel). The
dynamics of the solution of the 1-D equation (1.1) with characteristic functions as initial
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Figure 4: The dynamics of (3.1) starting with the initial data ρ0 =χ[−2,2] and ρ0=χ[−3,3].
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Figure 5: (a) The decay of the entropy of Eq. (3.1) with initial data ρ0(x)=χ[−2,2] and ρ0(x)=χ[−3,3]. After an

initial transient behavior, there is a significant decrease in the entropy only when the topology of the solution
changes. (b) The final steady state of (3.1) with initial data ρ0(x)=χ[−3,3] and the corresponding ξ. Here ξ

assumes different constant values on different connected components of the support.

data is shown in Fig. 4, for the compactly supported interaction kernel W(x) =−(1−
|x|)+. For ρ0(x)=χ[−2,2](x), the solution forms two bumps and then merges to a single
one, which is the global minimizer of the energy. When ρ0(x) = χ[−3,3](x), the solution

converges to three non-interacting bumps (in the sense that ∂ξ
∂x ρ≡ 0), each of which is a

steady state.

The decay of the energy for these two cases is shown in Fig. 5(a). After the initial tran-
sient disappears, the energy decreases significantly at later times only when the topology
changes, i.e. the merge of disconnected components. Although there is a steady state with
one single component with all the mass, the three-bump solutions with ρ0(x) = χ[−3,3]

seems to be the correct final stable steady state. This can be confirmed from Fig. 5(b), as
ξ is a constant on each connected component of the support.

This example shows a very interesting effect in this equation, which is the appear-
ance in the long time asymptotics of steady states with disconnected support. It should
be observed that each bump is at distance larger than 1 from the other bumps, and thus
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the interaction force exerted between them is zero. This together with the finite speed of
propagation of the degenerate diffusion are the reasons why the steady state with the to-
tal mass and connected support is not achieved in the long time asymptotics. This fact is
related to the existence of local minimizers of the functional (1.2) in certain weak topolo-
gies, infinity Wasserstein distance, not allowing for large perturbations of the support,
see [27, Section 5] and [28] for related questions.

For other non-compactly supported kernels like W(x)=−e−|x|/2 or the Gaussian as
in Example 3.2, there is a unique steady state with one single connected component in
its support, though it exhibits the same slow-fast behavior in its convergence in time as
shown in Fig. 3. This metastability and other decaying solutions when m<2 are discussed
in more details in [25].

Example 3.4 (Nonlinear diffusion with double well external potential). In this exam-
ple, we elaborate more on stationary states which are not global minimizers of the total
energy. More precisely, we consider nonlinear diffusion equation for particles under an
external double-well potential of the form

ρt=
(

ρ(νρm−1+V)x

)
x
, V(x)=

x4

4
− x2

2
. (3.2)

Actually, the steady states of (3.2) are of the form

ρ∞(x)=

(
C(x)−V(x)

ν

) 1
m−1

+

with C(x) piecewise constant possibly different in each connected component of the sup-
port.

We run the computation with ν=1, m=2 and initial data of the form

ρ0(x)=
M√
2πσ2

e
− (x−xc)

2

2σ2 , M=0.1, σ2=0.2, (3.3)

corresponding to the symmetric (xc = 0) and asymmetric (xc = 0.2) cases, respectively.
It is obvious that for small mass, we can get infinitely many stationary states with two
connected components in its support by perturbing the value of C defining a symmetric
steady state. Actually, each of them has a non zero basin of attraction depending on the
distribution of mass initially as shown in Fig. 6(b). While the global minimizer of the
free energy is the symmetric steady state, the non symmetric ones are local minimizers in
the infinity Wassertein distance or informally for small perturbations in the sense of its
support. It is interesting to observe that even if the long time asymptotics is different for
each initial data, the rate of convergence to stabilization seems uniformly 2, see Fig. 6(a).
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Figure 6: (a) The decay of the entropy of Eq. (3.2) with initial data (3.3), for the symmetric (xc = 0) and
asymmetric (xc=0.2) cases, respectively. A uniform rate of convergence of order 2 is observed towards the sta-
tionary states. (b) The evolution of the asymmetric initial data (xc=0.2) towards the corresponding asymmetric
stationary state.

3.2 Generalized Keller-Segel model

Another related diffusion equation with nonlocal attraction is the generalized Keller-
Segel model,

ρt =∇·
(

ρ∇(νρm−1+W∗ρ)
)

, (3.4)

with the kernel W(x)= |x|α /α with −d<α or the convention W(x)= ln |x| for α=0. The
bound from below in α due to local integrability of the kernel W. When α= 2−d, W is
the Newtonian potential in R

d, and the equation reduces to the Keller-Segel model for
chemotaxis with nonlinear diffusion:

ρt=∇·
(

ρ∇(νρm−1−c)
)

, −∆c=ρ. (3.5)

Compared with Example 3.2 where the interaction potential W is integrable, the long
tail for W(x) = |x|α/α has non-trivial consequences. In certain parameter regimes, the
solution can even blow up in finite time with smooth initial data. To clarify the different
regimes, we can easily evaluate the balance between the attraction due to the nonlocal
kernel W and the repulsion due to diffusion by scaling arguments. In fact, taking the
corresponding energy functional (1.2) and checking the scaling under dilations of each
term, we can find three different regimes:

• Diffusion-dominated regime: m>(d−α)/d. Here, the intuition is that solutions ex-
ist globally in time and the aggregation effect only shows in the long-time behavior
where we observe nontrivial compactly supported stationary states.

• Balanced regime: m=(d−α)/d. Here the mass of the system is the critical quan-
tity. There is a critical mass, separating the diffusive behavior from the blow-up
behavior.
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• Aggregation-dominated regime: m < (d−α)/d. Blow-up and diffusive behavior
coexist for all values of the mass depending on the initial concentration.

The classical 2-D Keller-Segel system corresponds to m = 1, α = 0, see [29–32] and
the references therein for the different behaviors. The nonlinear diffusion model for the
balanced case with the Newtonian potential in d≥3 was studied in detail in [33]. Finite
time blow-up solutions for general kernel W(x) = |x|α/α in the aggregation-dominated
regime were also investigated, combined with numerical simulations [34].

Example 3.5 (Generalized Keller-Segel model in the balanced regime). Let us start with
the 1-D example when m+α=1 corresponding to the balanced case. Here, the behavior of
the dynamics depends on the total conserved mass. The solutions blow up if the mass is
greater than the threshold Mc and otherwise the solutions decay to zero. This threshold
mass can be determined by solving the equation with different initial conditions and is
shown in Fig. 7(a) for different values of m. For example, when m= 1.5 and α= 1−m=
−0.5, the threshold mass Mc is about 0.055. If the initial data has a larger mass as in
Fig. 7(b), the solution blows up. Since the numerical method is conservative, the density
concentrates inside one cell instead of being infinity. Otherwise, if the initial data has a
smaller mass as in Fig. 7(c), the solution decays to zero.
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Figure 7: (a) The critical mass Mc when m+α = 1, ν = 1 for different exponents m. (b) The blowing up

solution for m = 1.5, α =−0.5 and ν = 1 with initial data ρ0(x) = M(e−4(x+2)2
+e−4(x−2)2

)/
√

π, where the
total mass M=0.057>Mc ≈0.055. (c) The decaying solution for m=1.5, α=−0.5 and ν=1 with initial data

ρ0(x)=Me−x2
/
√

π, where M=0.53<Mc=0.55.
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Figure 8: (a) The uniformly exponential decay towards equilibrium (in similarity variables) for subcritical mass in
self-similar variables when m=1.5, α=−0.5, ν=1 for different values of the mass M<Mc. (b) The equilibrium
profiles for different M<Mc.

We have also checked the self-similar behavior for subcritical mass cases (M< Mc)
in the sense of solving (3.4) with V(x) = |x|2/2. That is in the similarity variables, the
solution of ρt =∇·(ρ∇(νρm−1+W∗ρ+|x|2/2)) converges to the self-similar profile. The
decay rate in time is computed for several subcritical masses and is shown in Fig. 8(a),
illustrating that this rate is independent of the mass and is exactly O(e−2t) as proven in
the classical 2-D Keller-Segel model in [35]. We also observe in Fig. 8(b) how the self-
similar profiles become concentrated as a Dirac Delta at the origin as M→Mc.

Example 3.6 (Generalized Keller-Segel model in the other regimes). The general behav-
iors of solutions to the 1-D version of (3.4) in other parameter regimes are also known to
some extent. When m> 1−α corresponding to the diffusion-dominated regime, a com-
pact steady state is always expected, which is the global minimizer of the energy (1.2)
as in [36]. If the nonlinearity of the diffusion is increased to be m = 1.6 with the same
total mass (=0.057) and the exponent α=−0.5, the solution converges to a steady state
as in Fig. 9 instead of blowing up as in Fig. 7(b). When α+m< 1 corresponding to the
aggregation-dominated regime, the small initial data decays to zero while large initial
data blows up in finite time (see Fig. 10). The size of the initial data determining the
distinct behaviors is usually measured in a norm different from L1 (the conserved mass),
and no critical value in this norm as in the case m+α=1 is expected.

3.3 Aggregation equation with repulsive-attractive kernels

In the absence of diffusion from H(ρ) or confinement from V, steady states of the general
equation (1.1) are still expected when the kernel W incorporates both short range repul-
sion and long range attraction. This type of kernels arises in the continuum formulation
of moving flocks of self-propelled particles [37, 38], and the popular ones are the Morse
potential

W(x)=Ce−|x|/ℓ−e−|x|, C>1, ℓ<1
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Figure 9: The evolution of the generalized Keller-Segel equation in the diffusion dominated regime (m= 1.6,

α=−0.5) with ν=1.0. The initial condition ρ0(x)=M(e−4(x+2)2
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Figure 10: The evolution of the generalized Keller-Segel equation in the aggregation-dominated regime (m=1.6,

α=−0.5) with ν=1.0. The initial condition is ρ0(x)=M(e−4(x+2)2
+e−4(x−2)2

)/
√

π, with M=0.047 for decaying
solution in (a) and M=0.048 for blowup solutions in (b).

and the power-law type

W(x)=
|x|a

a
− |x|b

b
, a>b,

with the convention that |x|0/0= ln |x| below.

Example 3.7 (Quadratic attractive and Newtonian repulsive kernels). The regularity
of the solution depends on the singularity of the repulsion force. If this force is small
at short distance (or equivalently b is relatively large), the solution can concentrate at a
lower dimension subset, while more singular forces lead to smooth steady states except
possible discontinuities near the boundary [27]. The case a = 2 and b = 0 is shown in
Example 3.1, whose steady state is a semi-circle [23, 24], while the case a = 2 and b = 1
leads to a steady state which is a constant supported on an interval [39, 40].
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Figure 11: The steady states computed with: (a) mid-point quadrature rule for (3.6); (b) exact computation of
Wj−i in (3.6); (c) Same as (b) but adding small nonlinear diffusion.

We remind that the discrete convolution for the velocity field in (2.8) is discretized
using the coefficients Wj−i, chosen as approximations of the local integral

Wj−i =
1

∆x

∫

Ci

W(xj−s)ds. (3.6)

In the case of smooth kernels (b>0), we can either use the mid-point rule or a direct com-
putation of the integral if available. We show the numerically computed stationary state
with both options in Figs. 11(a) and (b) respectively. As one can observe, the first choice
is oscillation free while the second choice with exact integrals shows an overshoot of the
density near the boundary of the support. The difference between the two cases can be
explained by carefully writing down the characterization of the discrete stationary states
based on the discrete entropy inequality in Theorem 2.2. The mid-point rule performs
better due to its symmetry that induces some numerical diffusion.

In case we would be dealing with singular kernels, we cannot use simple quadra-
ture formulas like middle-point rule but rather we need to implement either quadrature
formulas for singular integrals or perform exact evaluations of the integrals in (3.6). To
avoid the oscillations as in Fig. 11(b), we added a small nonlinear diffusion term, i.e.,
ρt = (ρ(ǫρ+W∗ρ)x)x. Here quadratic nonlinear diffusion is used, respecting the same
nonlinearity and scaling as in the original equation ρt =(ρ(W∗ρ)x)x. Numerical exper-
iments as in Fig. 11(c) indicate that ǫ= 0.25(∆x)2 is close to optimal, in the sense that ǫ
is just large enough to prevent the overshoot. This near optimal diffusion coefficient has
been further confirmed by numerical experiments with different ∆x.

For the sake of clarity, we show in Figs. 12(a)-(b) the steady-state solutions computed
on a finer mesh for the same cases as in Figs. 11(a)-(b) along with the O(∆x) decay of L1

errors for different grid sizes ∆x in Fig. 12(c). The L∞ errors is almost constant and not
decaying with mesh refinement. They clearly indicate that the overshoot amplitude seen
in Figs. 11(b) and 12(b) is not reduced by mesh refinement and it needs the fix of small
diffusion regularization. This will be further discussed in 2-D simulations below.
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Figure 12: The steady states computed with on a finer mesh with: (a) mid-point rule for (3.6); (b) exact

computation of Wj−i; (c) the convergence of L1 errors for both options.

3.4 Two-dimensional simulations

Now, let us illustrate the performance of the scheme in 2-D with some selected examples
showcasing different numerical difficulties and interesting asymptotics.

Example 3.8 (Nonlinear diffusion with nonlocal attraction in 2-D). For the equation
with H(ρ)= ν

m ρm, W(x)=−exp(−|x|2)/π and V ≡ 0, the dynamics is similar to that in
1-D, being the result of the competition between the nonlinear diffusion ∇·(ρ∇(νρm−1))
and the nonlocal attraction ∇·(ρ∇W∗ρ)). The evolution starting from the rescaled char-
acteristic function supported on the square [−3,3]×[−3,3] is shown in Fig. 13. Because
the interaction represented by the kernel W(x) is nonzero for any x = (x,y), the final
steady state consists of one single component; however, four clumps are formed in the
evolution, as the attraction dominates the relatively weak diffusion.

Example 3.9 (Quadratic attractive and Newtonian repulsive kernel with small nonlin-

ear diffusion). Similarly, overshoots may appear near the boundary of discontinuous
solutions of ρt =∇·(ρ∇W∗ρ) with repulsive-attractive kernels W. These overshoots can
not be eliminated as easily as in one dimension, either by a careful choice of grid to align
with the boundary or by a special numerical quadrature for Wi−j. However, stable solu-
tions can be obtained by adding small nonlinear diffusion as in Example 3.7. Therefore,
we consider the equation

ρt =∇·
(
ρ∇(ǫρ+W∗ρ)

)
.

For quadratic attractive and Newtonian repulsive kernel W(x)=|x|2/2−ln|x|, the steady
states are shown in Fig. 14, without (ǫ=0) or with the diffusion. The near optimal coef-
ficient ǫ is numerically shown to be close to 0.4((∆x)2+(∆y)2), exhibiting a similar mesh
dependence as in Example 3.7. Since W is singular in this (and next) example, Wj,k is
computed using Gaussian quadrature with four points in each dimension, to avoid the
evaluation of W at the origin.
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Figure 13: The evolution of the 2D aggregation equation with nonlinear diffusion with ν=0.1, m=3, W(x)=

exp(−|x|2)/π and initial condition ρ0(x)=
1
4 χ[−3,3]×[−3,3](x). The computational domain is [−4,4]× [−4,4],

with grid size ∆x=∆y=0.1 and time step ∆t=0.001.

ǫ=0 ǫ=0.4((∆x)2+(∆y)2)

Figure 14: (a) the steady state of the equation with W(x) = |x|2/2−ln|x|; (b) the steady state with the
same W(x), regularized by quadratic diffusion ∇·(ρ∇(ǫρ)). The exact steady state without diffusion is the
characteristic function of the unit disk with density 1/π.



J. A. Carrillo, A. Cherock and Y. Huang / Commun. Comput. Phys., 17 (2015), pp. 233-258 255

x

y

 

 

−0.6 −0.3 0 0.3 0.6
−0.6

−0.3

0

0.3

0.6

0

0.4

0.8

1.2

1.6

2

x

y

 

 

−2 −1 0 1 2
−2

−1

0

1

2

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

W(x)= |x|2/2−ln|x| W(x)=λ(V(|x|)−CV(|x|/ℓ))

Figure 15: The steady density ρ∞ for the rotating mill with ∆x = ∆y = 0.05. (a) α = 0.25, β = 2π; (b)
V(r) = −K0(kr)/2π, where K0(r) is the modified Bessel function of the second kind and the parameters
C=10/9, ℓ=0.75, k=0.5, λ=100, α=1.0, β=40 are taken from [42].

Example 3.10 (Steady mill solutions). Another common pattern observed for the self-
propelled particle systems with an attractive-repulsive kernel in 2-D is the rotating
mill [41], and the steady pattern can be obtained from the equation

ρt=∇·
(

ρ∇
(

W∗ρ− α

β
log|x|

))
, x∈R

2,

with some positive constants α and β. For the kernel W(x)= 1
2 |x|2−ln|x|, the steady state

is still a constant ρ∞ =2 on an annulus, whose inner and outer radius are given by

R0=

√
α

β
, R1=

√
α

β
+

M

2π
,

with the total conserved mass M=
∫

Rd ρdx. For other more realistic kernels like the Morse
type [41] or Quasi-Morse type [42], the radial density is in general more concentrated
near the inner radius, but the explicit form of ρ∞ can not be obtained in general. Numer-
ical diffusion, in the form of ǫ∇·(ρ∇ρ), is still needed to prevent the overshoot and the
resulting steady states with ǫ=0.2((∆x)2+(∆y)2) are shown in Fig. 15 for two different
potentials.
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