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Abstract. We construct a nonlinear monotone finite volume scheme for three-
dimensional diffusion equation on tetrahedral meshes. Since it is crucial important
to eliminate the vertex unknowns in the construction of the scheme, we present a new
efficient eliminating method. The scheme has only cell-centered unknowns and can
deal with discontinuous or tensor diffusion coefficient problems on distorted meshes
rigorously. The numerical results illustrate that the resulting scheme can preserve pos-
itivity on distorted tetrahedral meshes, and also show that our scheme appears to be
approximate second-order accuracy for solution.
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1 Introduction

The monotonicity of finite volume scheme is an important issue for accurately and effi-
ciently solving diffusion equations and has been under research for a long time. In the
context of anisotropic thermal conduction, the scheme without preserving monotonicity
can cause heat to flow from regions of lower temperature to higher temperature, and it
can result in negative values of temperature in regions of large temperature variations.
The construction of monotone scheme has been an active field of research in recent years.

A new numerical schemes on distorted meshes should satisfy some desirable prop-
erties [1], including monotonicity, local conservation, linearity-preserving, stability, high
accuracy, and simplicity. To our knowledge, there exists no linear scheme satisfying all
the above properties. Usually, a scheme can possess some of the properties mentioned
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above. The classical multi-point flux approximation (MPFA) method [2,3] and nine-point
scheme [4–6] are not monotone on general meshes. The schemes in [5,6] consider the case
of diffusion coefficient being scalar only. The schemes in [7,8] are monotone under certain
severe (geometric) restrictions. The restrictions on monotonicity of the MPFA methods
are analyzed in [9–13].The sufficient condition to ensure the monotonicity of the mimetic
finite difference is investigated in [14, 15]. Some algorithms in [16] based on slope lim-
iters are proposed to preserve the monotonicity. In [17], based on repair technique and
constrained optimization, two approaches have been suggested to enforce discrete ex-
tremum principle for linear finite element solutions of general elliptic equations with
self-adjoint operator on triangular meshes.

The criteria for the monotonicity of control volume methods on quadrilateral meshes
is derived in [10], which shows that it is impossible to construct linear nine-point methods
which unconditionally satisfy the monotonicity criteria when the discretization satisfies
local conservation and exact reproduction of linear solution.

A few nonlinear finite volume methods with monotonicity have been proposed in
[18–22]. It is shown in [18] that the scheme is monotone only for parabolic equations and
sufficiently small time steps. Some two-dimensional nonlinear finite volume schemes
have been further developed and analyzed in [1], [19–22]. The scheme in [1] is monotone
on triangular meshes for strongly anisotropic and heterogeneous full tensor coefficients.
Based on an adaptive approach of choosing stencil in the construction of discrete nor-
mal flux, a nonlinear finite volume scheme for diffusion problems with anisotropic and
heterogeneous full tensor coefficients on arbitrary star-shaped polygonal meshes is pro-
posed in [19]. In [20] a nonlinear finite volume scheme satisfying the discrete extremum
principle for diffusion equation on polygonal meshes is constructed. An interpolation-
free nonlinear monotone scheme is presented in [21], and it has been extended to the
advection diffusion equations on unstructured polygonal meshes in [22].

Up to now there are too many researches on discrete schemes for the two-dimensional
diffusion problems. As for the three-dimensional case, there are also some finite volume
methods on polyhedral meshes have been discussed, e.g., [23–28]. But monotonicity anal-
ysis for them has seldom been studied. An effective way to ensure the monotonicity
property is to construct a numerical method such that the final discretization matrix is an
M-matrix (see [29]). An M-matrix analysis for three-dimensional schemes, which is the
extension of two-dimensional cases in [12, 13], has been discussed in [30, 31].

In [32] a nonlinear monotone scheme for 3D diffusion problems on unstructured tetra-
hedral meshes is proposed, which is a generalization of the scheme in [18] on 2D trian-
gular meshes. To construct monotone schemes, the diffusion coefficient and the location
of collocation point associated with the cell are restricted. Following the ideas of [19, 21],
a nonlinear two-point flux approximation scheme is proposed in [33]. The important fea-
ture of this method is that most of auxiliary unknowns are interpolated from primary
unknowns on the basis of a physical relationship. And it has been extended to the advec-
tion diffusion equations on unstructured polyhedral meshes in [34].

In this paper, we develop a nonlinear monotone scheme for three-dimensional dif-
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fusion equation on tetrahedral meshes, which uses cell-centered unknowns as primary
unknowns. To rigorously deal with discontinuous or tensor diffusion coefficient prob-
lems on non-orthogonal meshes, some auxiliary unknowns (e.g., vertex unknowns or
edge unknowns) are introduced in addition to the primary unknowns. Our main contri-
bution is that an efficient method to eliminate the vertex unknowns is constructed and the
computational cost is remarkably reduced. We exploit a feature of the nonlinear mono-
tone scheme that the vertex unknowns appear only in the coefficient matrix, so they can
be taken as the values at previous nonlinear iteration step. It follows that at each vertex
we avoid solving a local system with both auxiliary and primary unknowns, otherwise
it increases computational cost greatly. The construction of the scheme can be easily to
extend to more general polyhedral meshes, but the description of the scheme becomes
somewhat complicated in this case, so we will focus on tetrahedral meshes.

The rest of this paper is organized as follows. In Section 2, The construction of a non-
linear scheme is presented. In Section 3, a new method is proposed to eliminate the vertex
unknowns. And in Section 4, Picard iteration for solving the nonlinear discrete system,
and the monotonicity theorem are given. In Section 5, several numerical examples are
given to illustrate the performance of the scheme and the convergence rate of the scheme
is also presented.

2 Construction of monotone nonlinear scheme

2.1 Problem and notation

Consider the stationary diffusion problem with a Dirichlet boundary condition

−∇·(κ∇u)= f in Ω, (2.1)

u(x)= g on ∂Ω, (2.2)

where Ω is an open bounded set of R3 with boundary ∂Ω, and κ = κ(x) is a diffusion
tensor, which is essentially bounded and positive definite, i.e., there exist two positive
constants κ− and κ+ such that, for any x∈Ω and all ξ∈R3, κ−|ξ|2 ≤κ(x)ξ ·ξ≤κ+ .

In this paper, we use a mesh on Ω made up of tetrahedron and denote the neighbor-
ing cells by K and L. With each cell K we associate one point denoted also by K: the
barycenter is a qualified candidate but other points can also be chosen.

Denote the cell-vertices by Q1,Q2,Q3,Q4,···, and the cell face by S. |S| is the area of S.
If the cell face S is a common face of cells K and L, then denote S= K|L. Denote nKS (resp.
nLS) as the unit outer normal vector on the face S of cell K (resp. L). Then nKS =−nLS

holds for S= K|L. Denote tKQi
(reps. tLQi

) be the unit tangential vector on the lines KQi

(resp. LQi) (i=1,2,···), respectively.
Let J be the set of all cells, ε be the set of all cell-faces, and εK be the set of all cell-faces

of cell K. Denote ε int= ε∩Ω, εext= ε∩∂Ω, and m(K) be the volume of cell K.
Let κT be the transpose of matrix κ. Discrete stencil and some notations are shown in

Fig. 1. The ray originated in the point K along κTnKS must intersect one of the cell-face
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Figure 1: Stencil and notation.

of cell K, and this cell-face is denoted as Q1Q2Q3, and the intersection point is O1. Q1O1

intersects Q2Q3 at point O. Similarly, the ray originated in the point L along κTnLS must
intersect one of the cell-face of cell L, and this cell-face is denoted as Q4Q5Q6, and the
intersection point is O2. Q4O2 intersects Q5Q6 at the point P.

2.2 Construction of scheme

Integrate (2.1) over the cell K to obtain

∑
S∈εK

FK,S =
∫

K
f (x)dx,

where the continuous flux on the cell face S is

FK,S =−
∫∫

S

κ∇u·nKSdS=−
∫∫

S

∇u·κTnKSdS. (2.3)

Since KQ1, KQ2 and KQ3 are the three edges of tetrahedron KQ1Q2Q3 sharing one point
K (see Fig. 1), the unit tangential vectors tKQ1

, tKQ2
and tKQ3

cannot be coplanar. Then
there exist three scalars a1, b1 and c1 such that

κTnKS = a1tKQ1
+b1tKQ2

+c1tKQ3
,

where

a1=
(κT(K)nKS,nKQ3Q2

)

(tKQ1
,nKQ3Q2

)
, b1=

(κT(K)nKS,nKQ1Q3
)

(tKQ2
,nKQ1Q3

)
, c1=

(κT(K)nKS,nKQ2Q1
)

(tKQ3
,nKQ2Q1

)
,

and nKQ3Q2
is the unit outer normal vector on the face KQ3Q2, and nKQ1Q3

and nKQ2Q1

have similar meaning. From (2.3), we have

FK,S=−|S|

(
a1

uQ1
−uK

|KQ1|
+b1

uQ2
−uK

|KQ2|
+c1

uQ3
−uK

|KQ3|

)
+O(h3).
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Let FK,S be the discrete normal flux on the face S of cell K, then

FK,S=−|S|

(
a1

uQ1
−uK

|KQ1|
+b1

uQ2
−uK

|KQ2|
+c1

uQ3
−uK

|KQ3|

)
.

Similarly, the discrete normal flux on the face S of cell L is defined as:

FL,S=−|S|

(
a2

uQ4
−uL

|LQ4|
+b2

uQ5
−uL

|LQ5|
+c2

uQ6
−uL

|LQ6|

)
,

where

a2=
(κT(L)nLS,nKQ6Q5

)

(tKQ4
,nKQ6Q5

)
, b2=

(κT(L)nLS,nKQ4Q6
)

(tKQ5
,nKQ4Q6

)
, c2=

(κT(L)nLS,nKQ5Q4
)

(tKQ6
,nKQ5Q4

)
.

By the continuity of the normal flux component FK,S =−FL,S, we define

FK,S =−µ1 |S|

(
a1

uQ1
−uK

|KQ1|
+b1

uQ2
−uK

|KQ2|
+c1

uQ3
−uK

|KQ3|

)

+µ2 |S|

(
a2

uQ4
−uL

|LQ4|
+b2

uQ5
−uL

|LQ5|
+c2

uQ6
−uL

|LQ6|

)
,

where µ1 and µ2 are some coefficients to be determined. FK,S can be rewritten as

FK,S=µ1 |S|

(
a1

|KQ1|
+

b1

|KQ2|
+

c1

|KQ3|

)
uK

−µ2 |S|

(
a2

|LQ4|
+

b2

|LQ5|
+

c2

|LQ6|

)
uL

−µ1α1+µ2α2, (2.4)

where

α1= |S|

(
a1

|KQ1|
uQ1

+
b1

|KQ2|
uQ2

+
c1

|KQ3|
uQ3

)
,

α2= |S|

(
a2

|LQ4|
uQ4

+
b2

|LQ5|
uQ5

+
c2

|LQ6|
uQ6

)
.

In order to obtain the two-point flux approximation, the third and the fourth terms at
the right of Eq. (2.4) should be vanished. Hence µ1 and µ2 should satisfy

{
µ1+µ2=1,

−α1µ1+α2µ2=0.
(2.5)

If α1+α2 6=0, then µ1=
α2

α1+α2
, µ2=

α1
α1+α2

. If α1+α2=0, then µ1=µ2=
1
2 .
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For S= K|L∈ ε int, by (2.4) and (2.5), we have

FK,S=µ1 |S|

(
a1

|KQ1|
+

b1

|KQ2|
+

c1

|KQ3|

)
uK

−µ2 |S|

(
a2

|LQ4|
+

b2

|LQ5|
+

c2

|LQ6|

)
uL

=AK,SuK−AL,SuL, (2.6)

where

AK,S=µ1 |S|
∣∣∣κT(K)nKS

∣∣∣
1

|KO1|
,

AL,S=µ2 |S|
∣∣∣κT(L)nLS

∣∣∣
1

|LO2|
.

In (2.6), if Qi lies on ∂Ω, then we take uQi
=g(Qi) in the corresponding formula. With the

definition of FK,S, the finite volume scheme is constructed as follows:

∑
S∈εK

FK,S= fKm(K), ∀K∈J , (2.7)

uQi
= g(Qi), ∀Qi∈∂Ω, (2.8)

where fK = f (K).
The cell center can be collocated at any position of the cell in above scheme. And

the coefficients AK,S and AL,S depend on the cell vertex unknowns, hence this scheme is
nonlinear.

3 The approximation of cell vertex unknowns

From the above discussion, we know that the flux depends on the vertex unknowns in
addition to cell-centered unknowns. Now we will consider how to eliminate the ver-
tex unknowns locally, or approximate the vertex unknowns by certain combination of
neighboring cell-centered unknowns.

In [4, 6, 19] some methods are given to eliminate the vertex unknowns for 2D prob-
lems. These methods cannot be directly extended to three-dimensional problems. In [30],
each vertex unknown can be eliminated by solving a linear system. However in solving
three-dimensional problems too much time is needed by this method. So a new efficient
method should be proposed to eliminate the vertex unknowns for three-dimensional
problems.

In order to obtain the expression of the vertex unknown uQ, we first construct a con-
trol volume around vertex Q. Suppose that there are N tetrahedra surrounding the vertex
Q. In each tetrahedron, we connect the midpoints A,B,C of the three edges sharing Q, to
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Figure 2: The control volume of vertex Q.

obtain a tetrahedral region QABC (see Fig. 2). Then the control volume of Q, denoted as
Q∗, is formed. It is obvious that Q∗ is a N-faced polyhedron.

Suppose that L is the cell around Q. Denote the face S′=△ABC. Let GQ be the set of
all the faces S′ of Q∗. Denote nQS′ (resp. nLS′) as the unit outer normal vector on the face
S′ of Q∗ (resp. L). Then nQS′ =−nLS′ holds for S′.

Define u−=u|Q∗ ,u+=u|L\QABC, and similarly define κ−,κ+. Moreover, denote λ−=

|(κ−)TnQS′|,λ+= |(κ+)TnLS′ |.

The ray originated in the vertex Q along (κ−)TnQS′ intersects the plane that is gen-
erated by the cell face S′, and the intersection point is denoted by Q′. Similarly, the ray
originated in the point L along (κ+)TnLS′ intersects the plane generated by the face S′,
and the intersection point is L′. The point I is any given point on face S′ (see Fig. 3).

In order to obtain the vertex unknown uQ, we adopt the diamond scheme in [28]
on the control volume Q∗, which will be described briefly for completeness. Let’s see
Fig. 2 and Fig. 3. Now, the discrete normal flux on the face ABC is constructed by a
linear combination of the directional flux along the line connecting the vertex Q and the
cell-center L and the tangent flux along the cell-faces (S′).

From Fig. 3, we know that

(κ−)TnQS′

|(κ−)TnQS′ |
=

QQ’

|QQ’|
,

(κ+)TnLS′

|(κ+)TnLS′ |
=

LL’

|LL’|
.

Since

QQ’=QI+IQ’,

we have

∇u−(I)·QQ’=∇u−(I)·QI+∇u−(I)·IQ’.
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Figure 3: Stencil and notation of vertex Q.

Then

κ−∇u−(I)·nQS′=
λ−

|QQ’|
∇u−(I)·QI+

λ−

|QQ’|
∇u−(I)·IQ’

≈
λ−

|QQ’|
(uI−uQ)+

λ−

|QQ’|
∇u−(I)·IQ’. (3.1)

Similarly,

κ+∇u+(I)·nLS′ =
λ+

|LL’|
∇u+(I)·LI+

λ+

|LL’|
∇u+(I)·IL’

≈
λ+

|LL’|
(uI−uL)+

λ+

|LL’|
∇u+(I)·IL’. (3.2)

From the continuity of the normal flux,

κ−∇u−(I)·nQS′=−κ+∇u+(I)·nLS′ ,

it follows that

uI =
1

a+b

[
auQ+buL−b∇u+ ·IL’−a∇u− ·IQ’

]
,

where a= λ−

|QQ’|
, b= λ+

|LL’|
. We know that the tangent derivative of u on S is continuous, i.e.,

∇u− ·t=∇u+ ·t,∀t⊥nQS′, on S′,

hence

κ−∇u−(I)·nQS′ = a(uI−uQ)+a∇u(I)·IQ’

=
ab

a+b
[−uQ+uL]+∇u·

[
−

ab

a+b
IL’+aIQ’−

a2

a+b
IQ’

]
. (3.3)
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Also, there holds
IQ’= IL’+L’Q’,

and then

λ−∇u−(I)·nQS′=
ab

a+b
[−uQ+uL−∇u·Q’L’].

It follows that the discrete normal flux on S′ is

FQ,S′ =−κ−∇u−(I)·nQS′ |S′|

=
λ+λ−|S′|

λ+ |QQ′|+λ− |LL′|
[uQ−uL+∇u·Q’L’]. (3.4)

Now we approximate ∇u on the face S′=△ABC as follows.

∇u=
1

|△ABC|

∫

△ABC
∇u=

1

|△ABC|

∫

∂△ABC
undl

≈
1

|△ABC|
(uJ1

nBA+uJ2
nAC+uJ3

nCB)

≈−
1

2|△ABC|
(uAnCB+uBnAC+uCnBA), (3.5)

where J1, J2 and J3 are the midpoints of the edge BA,AC and CB respectively. Moreover
the midpoints formulae, e.g., uJ1

= 1
2 (uA+uB), have been used. And nAC =n×AC,nCB =

n×CB, nBA=n×BA, and n is the unit normal vector to △ABC (see Fig. 4).
Substituting (3.5) into (3.4), we obtain

FQ,S′=
λ−λ+|S′|

λ+|QQ’|+λ−|LL’|

[
(uQ−uL)−

(uAnCB+uBnAC+uCnBA)·Q’L’

2|S′|

]
. (3.6)
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Note that A,B,C are the midpoints of edge of cell L, so uA,uB,uC can be expressed by
the arithmetic average of corresponding vertex unknowns of cell L. Let GQ be the set of

all the cell-faces S′ of Q∗ and J̃ the set of all vertices. Then {uQ} satisfy

∑
S′∈GQ

FQ,S′= f (Q)m(Q), ∀Q∈J̃ . (3.7)

Actually this is a coupled system of vertex unknowns and cell-centered unknowns. For-
tunately, we need not to solve this system of equations, since the vertex unknowns appear
only in the coefficients AK,S and AL,S in the flux equation (2.6), and when Picard iteration
is applied to solve (2.7)-(2.8) (see the next section), we need only the vertex-unknown
values at previous iteration step. Thus, let k be the iteration index and

F
(k+1)
Q,S′ =

λ−λ+|S′|

λ+|QQ’|+λ−|LL’|

[
(u

(k+1)
Q −u

(k)
L )−

(u
(k)
A nCB+u

(k)
B nAC+u

(s)
C nBA)·Q’L’

2|S′|

]
. (3.8)

Then u
(k+1)
Q is obtained by the following formula

∑
S′∈GQ

F
(k+1)
Q,S′ = f (Q)m(Q), ∀Q∈J̃ . (3.9)

So the vertex unknowns of the (k+1)-th iteration step are expressed by the com-
bination of cell-centered unknowns and the midpoint unknowns of the (k)-th iteration
step. This method can deal with both continuous and discontinuous coefficient prob-
lems. Moreover, because the vertex unknowns can be eliminated without solving linear
systems, the computation cost is reduced remarkably.

4 Discrete system, Picard iteration and monotonicity

Substituting (2.6) into (2.7), we obtain a nonlinear algebraic system:

A(U)U=F, (4.1)

where U is the vector discrete unknowns,

A(U)=∑
S∈ε

NS AS(U)NT
S

is represented by assembling of 2×2 matrices

AS(U)=

(
AK,S(U) −AL,S(U)
−AK,S(U) AL,S(U)

)

for interior faces and 1×1 matrices AS(U)= AK,S(U) for boundary faces. NS are assem-
bling matrices consisting of zeros and ones.
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The Picard iteration is employed to solve the nonlinear system (4.1). That is: Choose a
small value εnon>0 and initial cell-centered vector U(0)≥0, initial vertices vector V(0)≥0,
and repeat for k=1,2,··· ,

1. Using U(k−1),V(k−1) and Eqs. (3.8), (3.9), to calculate V(k).

2. Using V(k−1) to calculate A(U(k−1)) and solve A(U(k−1))U(k)=F.

3. Using V(k) to calculate A(U(k)) and stop if

∥∥∥A(U(k))U(k)−F
∥∥∥≤ εnon

∥∥∥A(U(0))U(0)−F
∥∥∥.

In our numerical experiments, we take εnon =1.0e−6.
The matrix A(U) is non-symmetric and has the following properties:

1. All diagonal entries of matrix A(U) are positive;

2. All off-diagonal entries of A(U) are non-positive;

3. Each column sum in A(U) is non-negative and there exists a column with a positive
sum.

Note that the coefficients AK,S and AL,S in (2.6) are non-negative provide that the
vertex unknowns are non-negative. The proof of monotonicity is the same as that in [19].
Here we only give the following theorem.

Theorem 4.1. Assume that F ≥ 0, U(0) ≥ 0, and the vertex unknowns are non-negative, and
linear systems in Picard iterations are solved exactly. Then all iterations U(k) are non-negative
vectors:

U(k)≥0, k=1,2,··· .

5 Numerical experiments

The discrete L2-norms is used to evaluate approximation errors. For the solution u, the
following L2-norm is applied:

εu
2 =

[

∑
K∈J

(uK−u(K))2m(K)

] 1
2

.

For the flux F, we use the following L2-norm:

εF
2 =

[

∑
S∈ε

(FK,S−FK,S)
2

] 1
2

.
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Figure 5: Mesh A: a random tetrahedra meshes (h=1/8).

Figure 6: Mesh B:random tetrahedra meshes generated from Kershaw grid (h=1/18).

We construct two mesh partitions: one is that we take a uniform cubic partition on
Ω= [0,1]3 with a mesh size h, split each cube into 24 random tetrahedra with randomly
distorted position of mesh nodes:

X= x+ξxh,

Y=y+ξyh,

Z= z+ξzh,

where ξx, ξy and ξz are random variables with values between -0.3 and 0.3 (see Fig. 5).
The other is that we take a three dimensional trapezoidal grid like Kershaw mesh on
Ω=[0,1]3 with a mesh size h, then split each trapezoidal mesh into 24 tetrahedra. We call
the first kind mesh A, the second kind mesh B (see Fig. 6).



174 X. Lai, Z. Sheng and G. Yuan / Commun. Comput. Phys., 21 (2017), pp. 162-181

In the following, we firstly give a numerical example to test the positivity of numeri-
cal solution of our scheme. Then we give some numerical tests to demonstrate the accu-
racy of the discrete scheme. For all the examples, the method in section 3 is applied to
eliminate the vertex unknowns.

5.1 Positivity of numerical solutions

Consider the problem (2.1)-(2.2) in unit cube Ω=[0,1]3 with

κ=




y2+εx2 −(1−ε)xy 0
−(1−ε)xy x2+εy2 0
0 0 1


, ε=5×10−3, (5.1)

and

f =

{
1, if (x,y)∈ [ 3

8 , 5
8 ]

2, z∈ [0,1],

0, otherwise.

The homogeneous Dirichlet boundary condition is imposed on ∂Ω.

The exact solution u(x,y,z) is unknown, but the maximum principle states that it is
non-negative. Yuan and Sheng in [19] discussed a similar two-dimensional problem with
(5.1). They illustrated that the numerical solutions obtained by MPFA has non-physical
oscillations, and MPFA can produce negative values. We test our nonlinear finite volume
schemes on uniform and random tetrahedral meshes. The numerical results obtained
on different meshes are shown in Tables 1 and 2, which demonstrate that our scheme
preserves positivity of the numerical solution.

Table 1: The numerical solution on uniform tetrahedral meshes.

Mesh size Number of iteration umin umax

1/8 13 2.16e-13 5.25e-02

1/16 25 1.13e-16 5.69e-02

1/32 44 1.11e-19 5.89e-02

1/64 91 1.91e-22 5.98e-02

Table 2: The numerical solution on random tetrahedral meshes.

Mesh size Number of iteration umin umax

1/8 16 7.18e-15 4.99e-02

1/16 31 1.80e-15 5.59e-02

1/32 55 1.15e-16 5.87e-02

1/64 116 9.50e-18 5.94e-02
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Figure 7: The slice of numerical solution at x=0.5 on uniform tetrahedral meshes.
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Figure 8: The slice of numerical solution at x=0.5 on random tetrahedral meshes.

Let J ′ be internal tetrahedral cells in Ω. Denote

umin= min
K∈J ′

uK, umax=max
K∈J

uK.

From Tables 1 and 2, one can see that the minimum value of numerical solutions is pos-
itive and close to zero. Hence the non-negative discrete solutions are obtained by our
method. Figs. 7 and 8 give the slice of numerical solution at x = 0.5 on uniform and
random tetrahedral meshes (h=1/32) respectively.
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5.2 Scalar diffusion coefficient

Consider the problem (2.1)-(2.2) with Dirichlet boundary condition in the unit cube Ω=
[0,1]3.

Let κ(x,y,z) = 1+x+y+z. The solution is chosen to be u = sin(πx)sin(πy)sin(πz).
Then the corresponding function

f =3π2κ(x,y,z)sin(πx)sin(πy)sin(πz)−π(cos(πx)sin(πy)sin(πz)

+sin(πx)cos(πy)sin(πz)+sin(πx)sin(πy)cos(πz)),

and g=0.
Tables 3 and 4 give the errors between exact solutions and numerical solutions on

tetrahedral mesh A and B, respectively. From Table 3 and Table 4, one can see that, on
meshes A and B, the convergent order for the solution is almost second order.

Table 3: Numerical results for scalar diffusion coefficient on mesh A.

The number of cell 24×63 24×123 24×183 24×243

Mesh size(h) 1/6 1/12 1/18 1/24

εu
2 2.80e-3 6.62e-4 3.05e-4 1.74e-4

Rate ······ 2.01 1.91 1.95

Table 4: Numerical results for scalar diffusion coefficient on mesh B.

The number of cell 24×63 24×123 24×183 24×243

Mesh size(h) 1/6 1/12 1/18 1/24

εu
2 6.94e-3 2.60e-3 1.30e-3 7.35e-4

Rate ······ 1.42 1.71 1.98

5.3 Full anisotropic tensor

Consider the problem (2.1)-(2.2) with Dirichlet boundary condition in the unit cube Ω=
[0,1]3.

Let κ be the symmetric positive definite matrix defined by

κ=




1 0 0
0 1 0
0 0 1000


.

The solution is chosen to be u=1+x−y2+z, the corresponding function

f =2.0.

It shows in Tables 5 and 6 that the method is almost second order convergence for the
solution.
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Table 5: Numerical results for full anisotropic tensor on mesh A.

The number of cell 24×63 24×123 24×183 24×243

Mesh size(h) 1/6 1/12 1/18 1/24

εu
2 1.61e-3 4.63e-4 2.25e-4 1.36e-4

Rate ······ 1.80 1.78 1.77

Table 6: Numerical results for full anisotropic tensor on mesh B.

The number of cell 24×63 24×123 24×183 24×243

Mesh size(h) 1/6 1/12 1/18 1/24

εu
2 1.69e-3 4.13e-4 1.86e-4 1.05e-4

Rate ······ 2.03 1.97 2.01

5.4 Discontinuous diffusion coefficient

When κ is discontinuous scalar, we consider problem (2.1)-(2.2) with Dirichlet boundary
condition. Let

κ=

{
5.0, x≤0.5,
1.0, x>0.5.

The exact solution is

u=

{
sinπx+ey+z, x≤0.5,
sin5πx+ey+z, x>0.5.

then

f =

{
5π2sinπx−5ey, x≤0.5,
25π2sin5πx−ey, x>0.5.

This solution and its normal component of flux are continuous at x= 1
2 .

Table 7 and Table 8 show that the convergent rate for solution is almost second order.

From these experiments, we can see that our method is robust to deal with the cases
that κ is continuous and discontinuous.

Table 7: Convergence results for discontinuous problem on mesh A.

The number of cell 24×63 24×123 24×183 24×243

Mesh size(h) 1/6 1/12 1/18 1/24

εu
2 6.89e-2 1.38e-2 6.13e-3 3.37e-3

Rate ······ 2.32 2.00 2.08
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Table 8: Convergence results for discontinuous problem on mesh B.

The number of cell 24×63 24×123 24×183 24×243

Mesh size(h) 1/6 1/12 1/18 1/24

εu
2 5.98e-2 1.27e-2 5.60e-3 3.14e-3

Rate ······ 2.23 2.01 2.02

5.5 Vertex-unknown elimination method and computation cost

We give an example to illustrate the influence of the vertex-unknown elimination method
on the computation time.

We consider a problem (2.1)-(2.2) with Dirichlet boundary condition and κ being dis-
continuous as follows

κ=

{
4.0, x≤0.5,
1.0, x>0.5.

The exact solution is

u=

{
2+x+y+z, x≤0.5,
0.5+4x+y+z, x>0.5.

And
f =0.

Denote the method of eliminating the vertex unknowns proposed in [19] as (A), and
the iteration method in section 3 as (B). In the method (A), an under-determined system
for each vertex unknown should be solved. Similar method is also proposed in [30]. In
the methods (B) vertex unknowns are computed directly, which hardly takes time. So the
time cost only with the method (A) is shown in Table 9.

Table 9: Computation cost with method (A).

The number of cell 24×63 24×123 24×183 24×243 24×323

Mesh size(h) 1/6 1/12 1/18 1/24 1/32

time(s) 0 4 44 242 1069

From Table 9, we can see that the time cost increases intolerably as mesh size decreas-
ing by the method (A) of solving a local linear system. So we should try our best to avoid
solving local linear systems in eliminating vertex unknowns.

6 Conclusion

In this paper a nonlinear monotone finite volume scheme is constructed for solving three-
dimensional diffusion equation with scalar or full anisotropic symmetric tensor coeffi-
cients on tetrahedral meshes. The discretization stencil is chosen to adapt to geometry of
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distorted mesh. Compared with two-dimensional problem, it is more difficult to elimi-
nate the vertex unknowns for three-dimensional problem. We present a new method of
eliminating the vertex unknowns for three-dimensional problem, which does not need
to solve the linear system, so the computation cost is reduced remarkably. Numerical
experiments are presented to show the positivity and accuracy of the monotone scheme,
and the efficiency of the vertex-unknown elimination methods.
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