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Abstract. We study the construction of symplectic Runge-Kutta methods for stochas-
tic Hamiltonian systems (SHS). Three types of systems, SHS with multiplicative noise,
special separable Hamiltonians and multiple additive noise, respectively, are consid-
ered in this paper. Stochastic Runge-Kutta (SRK) methods for these systems are inves-
tigated, and the corresponding conditions for SRK methods to preserve the symplectic
property are given. Based on the weak/strong order and symplectic conditions, some
effective schemes are derived. In particular, using the algebraic computation, we ob-
tained two classes of high weak order symplectic Runge-Kutta methods for SHS with
a single multiplicative noise, and two classes of high strong order symplectic Runge-
Kutta methods for SHS with multiple multiplicative and additive noise, respectively.
The numerical case studies confirm that the symplectic methods are efficient compu-
tational tools for long-term simulations.
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1 Introduction

Consider the following Cauchy problem for stochastic differential equations (SDEs):

dXt = a(t,Xt)dt+
m

∑
k=1

bk(t,Xt)∗dwk
t , Xt0 = x0, (1.1)
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where X,a(t,x1,··· ,xr), bk(t,x
1,··· ,xr) are r-dimensional column-vectors with the compo-

nents Xi,ai,bi
j, i=1,··· ,r, a,bk∈C2η(Rr,Rr), η=1,2,··· , and where wk

t , k=1,··· ,m, are inde-

pendent standard Wiener processes. We write ∗dwk
t =dwk

t in the case of an Itô stochastic
integral and ∗dwk

t =◦dwk
t for a Stratonovich stochastic integral.

Let us write a system of SDEs of even dimension r = 2d in the form of stochastic
Hamiltonian systems (SHS) in the sense of Stratonovich:

dPi =−∂H0(t,P,Q)

∂Qi
dt−

m

∑
k=1

∂Hk(t,P,Q)

∂Qi
◦dwk

t , P(t0)= p,

dQi =
∂H0(t,P,Q)

∂Pi
dt+

m

∑
k=1

∂Hk(t,P,Q)

∂Pi
◦dwk

t , Q(t0)=q

(1.2)

for d,m≥1 with an m-dimensional Wiener process (wt)t≥0 and t∈R, where P,Q,p,q are
d-dimensional vectors with components Pi,Qi,pi,qi, i= 1,2,··· ,d. The SHS (1.2) includes
both Hamiltonian systems with additive or multiplicative noise.

For SHS (1.2), [28] established the theory about the stochastic symplectic methods
which preserve the symplectic structure of the SDEs. Tretyakov and Tret’jakov [40] con-
sidered numerical methods for Hamiltonian systems with external noise. Seesselberg et
al. [38] investigated the numerical simulation of singly noisy Hamiltonian systems and
their application to particle storage rings. Misawa [29] proposed an energy conserva-
tive stochastic difference scheme for a one-dimensional stochastic Hamilton dynamical
system. Milstein, Repin and Tretyakov [25,26] investigated symplectic integration of SHS
(1.2) with additive and multiplicative noise, respectively. Hong, Scherer and Wang [14,15]
investigated numerical methods for linear stochastic oscillator with additive noise. Mil-
stein and Tretyakov [27] presented quasi-symplectic integration for Langevin-type equa-
tions. Wang et al [41, 42] discussed variational integrators and generating functions of
SHS (1.2). Deng, Anton and Wong [12] proposed some high order symplectic schemes
based on generating functions. Abdulle, Cohen, Vilmart and Zygalakis [1] proposed
a new methodology for constructing numerical integrators with high weak order for
the time integration of stochastic differential equations based on modified equations.
Hong, Zhai and Zhang [17] proposed discrete gradient approach to stochastic differ-
ential equations with a conserved quantity. Cohen and Duardin [8] proposed a new
class of energy-preserving numerical schemes for stochastic Hamiltonian systems with
noncanonical structure matrix in the Stratonovich sense. Hong, Xu and Wang [16] in-
vestigated quadratic invariant-preserving SRK methods for SDEs possessing an invari-
ant in the sense of Stratonovich. Recently, Cristina, Deng and Wong [9, 10] discussed
symplectic schemes for SHS and stochastic systems preserving Hamiltonian functions,
respectively. Using generating functions, Wang [42] presented the generalization of a
symplectic Runge-Kutta method for SHS with a single noise in the sense of Stratonovich.
Ma, Ding and Ding [23] presented the symplectic conditions of SRK methods for SHS
with a single noise in the sense of Stratonovich. And the above two works are concerned
about the strong convergence case. Here we will discuss the more general cases that in-
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clude the weak convergence case, the multiple noise case and the Itô case. An attempt to
construct practical SRK methods preserving the symplectic property for various types of
SHS, introduced in this paper.

The outline of the rest of this paper is as follows. In Section 2 we consider the sym-
plecticity of stochastic Runge-Kutta (SRK) methods with weak or strong order for SHS
with multiplicative noise. We also discuss the symplecticity of SRK methods with weak
or strong order for SHS with special separable Hamiltonians and for SHS with multi-
ple additive noise in Section 3 and Section 4, respectively. In Section 5, some numerical
experiments are carried out in order to justify our theoretical results.

2 The symplecticity of SRK methods for SHS with

multiplicative noise

In this section we will study the symplecticity of SRK methods that are used to solve
SHS with multiplicative noise. For this purpose, we will be concerned with a uniform
partition on L⊂ R with nodal points tn = t0+nh, n = 0,1,··· ,N, where h = (T−t0)/N,
N = 1,2,··· is the stepsize. Numerical schemes for SDEs are recursive methods where
trajectories of the solution are computed at discrete time steps. We first recall the concepts
of convergence for the numerical integration of SDEs.

Definition 2.1. A discrete time approximation Yh
N is said to be convergent with a strong

order κ (respectively, weak order of ν) to solution of SDE at time τ if there exists a constant
C such that

E(|Yh
N−X(τ)|)<Chκ (strong), |E(ϕ(Yh

N))−E(ϕ(X(τ)))|<Chν (weak)

for any fixed τ=nh∈L and h sufficiently small and for all functions ϕ :Rd→R∈C
2(ν+1)
P .

Here C
2(ν+1)
P denotes the space of 2(ν+1) times continuously differentiable functions

R
d→R with all partial derivatives with polynomial growth.

In differential geometry, the exterior product d f ∧dg of the functions f ,g :R2d →R on
φ,ψ∈R

2d is given by d f∧dg(φ,ψ)=d f (φ)dg(ψ)−d f (ψ)dg(φ), and represents the oriented
area of the image of the parallelogram with sides d f (φ) and dg(ψ) on the d f (φ),dg(ψ)-
plane. The stochastic flow (p,q)→ (P,Q) of the SHS (1.2) preserves the symplectic struc-
ture (Theorem 2.1 of [26]) as follows:

dP∧dQ=dp∧dq, (2.1)

i.e., the sum of the oriented areas of projections of a two-dimensional surface onto the
coordinate planes (pi,qi) is invariant. Consider the differential two-form

dp∧dq=dp1∧dq1+···+dpd∧dqd.
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To avoid confusion, we note that the differentials in (1.2) and (2.1) have different mean-
ings. In (1.2), P,Q are treated as functions of time, and p,q are fixed parameters, while
differentiation in (2.1) is made with respect to the initial data p,q. We say that a nu-
merical method based on a one step approximation Pn+1=Pn+1(tn+h;tn,Pn,Qn), Qn+1=
Qn+1(tn+h;tn ,Pn,Qn) preserves the symplectic structure if

dPn+1∧dQn+1=dPn∧dQn.

For convenience, we denote

f i =−∂H0

∂Qi
, gi =

∂H0

∂Pi
, σi

k =−∂Hk

∂Qi
,

γi
k=

∂Hk

∂Pi
, i=1,··· ,d, k=1,··· ,m.

(2.2)

2.1 Symplectic conditions of weak order SRK methods

For SDEs (1.1) in the sense of Stratonovich, a class of SRK methods with Y0 = x0 is given
by Rößler [35]

Yn+1=Yn+
s

∑
i=1

αia
(
tn+c

(0)
i h,G

(0)
i )h+

m

∑
k=1

s

∑
i=1

β
(1)
i bk

(
tn+c

(1)
i h,G

(k)
i

)
Îk

+
m

∑
k=1

s

∑
i=1

β
(2)
i bk

(
tn+c

(1)
i h,Ĝ(k)

)√
h (2.3)

for n=0,1,··· ,N−1 with supporting values

G
(0)
i =Yn+

s

∑
j=1

A0
ija
(
tn+c

(0)
j h,G

(0)
j )h+

m

∑
l=1

s

∑
j=1

B0
ijb

l
(
tn+c

(1)
j h,G

(l)
j

)
Îl,

G
(k)
i =Yn+

s

∑
j=1

A1
ija
(
tn+c

(0)
j h,G

(0)
j )h+

s

∑
j=1

B1
ijb

k
(
tn+c

(1)
j h,G

(k)
j

)
Îk

+
m

∑
l=1
l 6= k

s

∑
j=1

B3
ijb

l
(
tn+c

(1)
j h,G

(l)
j

)
Îl,

Ĝ
(k)
i =Yn+

s

∑
j=1

A2
ija
(
tn+c

(0)
j h,G

(0)
j )h+

m

∑
l=1,l 6=k

s

∑
j=1

B2
ijb

l
(
tn+c

(1)
j h,G

(l)
j

) Îkl√
h

for i=1,··· ,s and k=1,··· ,m. The random variables are defined by

Îkl =

{
Îk Ĩl if l< k,

− Îl Ĩk if k< l
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with independent random variables Îk, 1≤ k≤m, possessing the moments

E( Î
q
k )=





0 for q∈{1,3,5},
(q−1)hq/2 for q∈{2,4},

O(hq/2) for q≥6,

(2.4)

and Ĩk, 1≤ k≤m−1, having the moments

E( Ĩ
q
k )=





0 for q∈{1,3},
h for q=2,

O(hq/2) for q≥4.
(2.5)

We choose Îk as three point distributed random variables with P( Îk =±
√

3h) = 1
6 and

P( Îk = 0) = 2
3 , and Ĩk as two point distributed random variables with P( Ĩk =±

√
h) = 1

2 .

Applying SRK methods (2.3) with β
(2)
i =0, i=1,··· ,s to SHS (1.2), we obtain

Pn+1=Pn+h
s

∑
i=1

αi f (tn+c
(0)
i h,p

(0)
i ,q

(0)
i )+

m

∑
k=1

s

∑
i=1

β
(1)
i σk

(
tn+c

(1)
i h,p

(k)
i ,q

(k)
i

)
Îk,

Qn+1=Qn+h
s

∑
i=1

αig(tn+c
(0)
i h,p

(0)
i ,q

(0)
i )+

m

∑
k=1

s

∑
i=1

β
(1)
i γk

(
tn+c

(1)
i h,p

(k)
i ,q

(k)
i

)
Îk

(2.6)

for n=1,··· ,N−1 with P0= p, Q0=q and

p
(0)
i =Pn+h

s

∑
j=1

A0
ij f (tn+c

(0)
j h,p

(0)
j ,q

(0)
j )+

m

∑
l=1

s

∑
j=1

B0
ijσ

l
(
tn+c

(1)
i h,p

(l)
j ,q

(l)
j

)
Îl,

q
(0)
i =Qn+h

s

∑
j=1

A0
ijg(tn+c

(0)
j h,p

(0)
j ,q

(0)
j )+

m

∑
l=1

s

∑
j=1

B0
ijγ

l
(
tn+c

(1)
i h,p

(l)
j ,q

(l)
j

)
Îl,

p
(k)
i =Pn+h

s

∑
j=1

A1
ij f (tn+c

(0)
j h,p

(0)
j ,q

(0)
j )+

s

∑
j=1

B1
ijσ

l
(
tn+c

(1)
j h,p

(k)
j ,q

(k)
j

)
Îk

+
m

∑
l=1,l 6=k

s

∑
j=1

B3
ijσ

l
(
tn+c

(1)
j h,p

(l)
j ,q

(l)
j

)
Îl,

q
(k)
i =Qn+h

s

∑
j=1

A1
ijg(tn+c

(0)
j h,p

(0)
j ,q

(0)
j )+

s

∑
j=1

B1
ijγ

l
(
tn+c

(1)
j h,p

(k)
j ,q

(k)
j

)
Îk

+
m

∑
l=1,l 6=k

s

∑
j=1

B3
ijγ

l
(
tn+c

(1)
j h,p

(l)
j ,q

(l)
j

)
Îl.

(2.7)

These SRK methods can be characterized by the tableau

c(0) A0 B0

c(1) A1 B1 B3

αT β(1)T
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For SRK methods (2.6) and (2.7), we can obtain the following theorem.

Theorem 2.1. For SHS (1.2) and (2.1), if the coefficients of SRK methods (2.6) and (2.7) satisfy

αiαj−αj A
0
ji−αi A

0
ij=0, (2.8)

αiβ
(1)
j −αiB

0
ij−β

(1)
j A1

ji =0, (2.9)

β
(1)
i β

(1)
j −β

(1)
j B1

ji−β
(1)
i B1

ij=0, (2.10)

β
(1)
i β

(1)
j −β

(1)
j B3

ji−β
(1)
i B3

ij=0 (2.11)

for all i, j=1,··· ,s, then it preserve symplectic structure, i.e., dPn+1∧dQn+1=dPn∧dQn.

Proof. See Appendix.

Remark 2.1. If we apply deterministic Runge-Kutta methods (2.6) with B0
ij = 0, B1

ij = 0,

β
(1)
i =0 (i, j=1,··· ,s) to solve deterministic Hamiltonian systems (1.2) with Hk(t,P,Q)=

0, k= 1,··· ,m, symplectic conditions (2.8)-(2.11) reduce to the symplectic conditions for
deterministic Runge-Kutta methods

αiαj−αj A
0
ji−αi A

0
ij=0, i, j=1,··· ,s,

which can be found in [13, 37].

Let e=(1,1,··· ,1)T ∈R
s. It has been shown in [35] that SRK methods (2.6)-(2.7) will

have weak global order 1.0 if

αTe=1, (β(1)T
e)2=1, β(1)T

B1e=
1

2
(2.12)

are satisfied. Using both the order conditions (2.12) and symplectic conditions (2.8)-(2.11),
we construct stochastic symplectic Runge-Kutta methods, for instance, a class of weak
order 1.0 one-stage SRK methods with a tableau

1
2

1
2 b

1−b 1−b 1
2

1
2

1 1

which is said SRKw1 methods, where b∈R.
Next, let us consider the single noise case, namely m= 1 in (1.1) and (1.2). For SDEs

(1.1) in the sense of Stratonovich, a class of SRK methods is given by Rößler [31, 32],

namely SRK methods (2.3) with β
(2)
i =0,B3

ij =0 for i, j=1,··· ,s (replace Î1 by ∆wn). These

SRK methods can be characterized by the tableau

c(0) A0 B0

c(1) A1 B1

αT β(1)T
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It has been shown in [31, 32] that these SRK methods will have weak global order 2.0 if

1. αTe=1, 2. β(1)T
e=1, 3. β(1)T

B1e=
1

2
,

4. β(1)T
(B1((B1e)(B1e)))=

1

12
, 5. β(1)T

A1e=
1

2
,

6. αT((B0e)(B0e))=
1

2
, 7. αTB0e=

1

2
,

8. β(1)T
((A1e)(B1e))=

1

4
, 9. β(1)T

(A1(B1e))=0,

10. β(1)T
((B1e)(B1e))=

1

3
, 11. β(1)T

(B1(B1e))=
1

6
,

12. β(1)T
((B1e)((B1e)(B1e))=

1

4
, 13. αT A0e=

1

2
,

14. β(1)T
((B1e)(B1(B1e)))=

1

8
, 15. β(1)T

(B1(A1e))=
1

4
,

16. β(1)T
(B1(B1(B1e)))=

1

24
, 17. αT(B0(B1e))=

1

4

are satisfied. Using both the order conditions 1–17 and symplectic conditions (2.8)-(2.11),
we construct stochastic symplectic Runge-Kutta methods, for instance, a class of weak
order 2.0 four-stage symplectic SRK methods with a tableau

1
8

1
8 0 0 0 5

6−
√

3
3 − 1

2 0 0
3
8

1
4

1
8 0 0 − 1

6+
√

3
3

1
2 0 0

5
8

1
4

1
4

1
8 0 1

2
1
2 0 0

7
8

1
4

1
4

1
4

1
8 − 1

6
1
2 0 0

1
2 − 1

6+
√

3
6

1
3 −

√
3

6 0 1
3

1
4

1
4−

√
3

6 0 0
1
2

1
2 0 0 0 1

4+
√

3
6

1
4 0 0

0 0 0 0 0 b1 b2 0 b3

0 0 0 0 0 0 − 1
2 0 0

1
4

1
4

1
4

1
4

1
2

1
2 0 0

which is said SRKw2 methods, where b1,b2,b3∈R.

Remark 2.2. In the single noise case, the random variable J1=∆wn is used for SRK meth-
ods in [31]. As implicit methods, in order to avoid unboundedness of absolute moments
of the numerical solution, we replace J1 by Îk with k=1, where Îk satisfy (2.4) with k=1.
Note that here Gaussian variable J1 can be replaced by Î1 without decreasing the weak
order two of the method.



244 P. Wang, J. Hong and D. Xu / Commun. Comput. Phys., 21 (2017), pp. 237-270

2.2 Symplectic conditions of strong order SRK methods

For SDEs (1.1) in the autonomous case and the sense of Stratonovich, a class of SRK
methods with Y0= x0 is given by Burrage and Burrage [2, 6]

Yn+1=Yn+h
s

∑
j=1

αja(Gj)+
m

∑
k=1

s

∑
j=1

β
(k)
j bk(Gj)Jk (2.13)

for n=0,1,··· ,N−1 with stage values

Gi=Yn+h
s

∑
j=1

Aija(Gj)+
m

∑
k=1

s

∑
j=1

Bk
ijb

k(Gj)Jk,

where i=1,··· ,s and Stratonovich integral Jk =
∫ tn+1

tn
◦dwk

s . Applying SRK methods (2.13)
to SHS (1.2), we obtain

Pn+1=Pn+h
s

∑
j=1

αj f (pj,qj)+
m

∑
k=1

s

∑
j=1

β
(k)
j σk(pj,qj)Jk,

Qn+1=Qn+h
s

∑
j=1

αjg(pj,qj)+
m

∑
k=1

s

∑
j=1

β
(k)
j γk(pj,qj)Jk

(2.14)

for n=1,··· ,N−1 with P0= p, Q0=q and

pi =Pn+h
s

∑
j=1

Aij f (pj,qj)+
m

∑
l=1

s

∑
j=1

Bl
ijσ

l(pj,qj)Jl ,

qi =Qn+h
s

∑
j=1

Aijg(pj,qj)+
m

∑
l=1

s

∑
j=1

Bl
ijγ

l(pj,qj)Jl ,

(2.15)

where i=1,··· ,s. These SRK methods can be characterized by the tableau

A B1 B2 ··· Bk

αT β(1)T
β(2)T ··· β(k)T

Correspondingly, we present the following theorem without proof, since the proof is sim-
ilar to that of Theorem 2.1.

Theorem 2.2. For SHS (1.2) and (2.1), if the coefficients of SRK methods (2.14) and (2.15)
satisfy

αiαj−αj Aji−αi Aij=0, (2.16)

αiβ
(k)
j −β

(k)
j Aji−αiB

k
ij=0, (2.17)

β
(k)
i β

(l)
j −β

(l)
j Bk

ji−β
(k)
i Bl

ij=0 (2.18)

for all i, j = 1,··· ,s, l,k = 1,··· ,m, then it preserve symplectic structure, i.e., dPn+1∧dQn+1 =
dPn∧dQn.
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Remark 2.3. For the single noise case, namely m= 1, Ma, Ding and Ding presented the
symplectic conditions of SRK methods (2.14) and (2.15) in [23]. Here we present Theorem
2.2 as a more general result.

It has been shown in [2, 6] that SRK methods (2.14) and (2.15) will have strong global
order 0.5 if

αTe=1, βkT
e=1, βkT

Bke=
1

2
(2.19)

for k= 1,··· ,m are satisfied. In particular, for the commutative noise case, SRK methods
(2.14) and (2.15) will have strong global order 1.0 if

αTe=1, βiT
e=1, βiT

Bje+βjT
Bie=1 (2.20)

for i, j = 1,··· ,m are satisfied. Using the order conditions (2.19), (2.20) and symplectic
conditions (2.16)-(2.18), we construct stochastic symplectic Runge-Kutta methods, for in-
stance, a one-stage symplectic SRK methods with a tableau

1
2

1
2

1
2 ··· 1

2

1 1 1 ··· 1

which is said midpoint method, see [25, 28]. Again, we can obtain a class of two-stage
symplectic SRK methods with a tableau

a 0 a 0 a 0 ··· a 0

2a 1
2−2a 2a 1

2−2a 2a 1
2 −2a ··· 2a 1

2−2a

2a 1−2a 2a 1−2a 2a 1−2a ··· 2a 1−2a

which is said SRKs1 methods, where a∈R. It is obvious that SRKs1 methods have strong
order 0.5. In particular, they have strong order 1.0 for the commutative noise case.

For strong order SRK methods, in order to avoid unboundedness of absolute mo-
ments of the numerical solution, following [25], we introduce the truncated random vari-
able for numerical solutions of stochastic Hamiltonian systems, defined by

Ĵ(t,h)=





J̃(t,h), | J̃(t,h)|≤Ah,

Ah, J̃(t,h)>Ah,

−Ah, J̃(t,h)<−Ah,

(2.21)

where J̃(t,h)=∆w(t)/
√

h,∆w(t)=w(t+h)−w(t). For the given Ah =
√

2k|lnh| (k≥1), it
holds that

E[( Ĵ(t,h)− J̃(t,h))2]≤hk , k≥1.

We refer to [5] for further information on the application of the truncated random variable
to solving stochastic differential equations.
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3 The symplecticity of SRK methods for SHS with special

Hamiltonians

In this section we will consider a special case of the Hamiltonian system (1.2), (2.1) such
that

H0(t,p,q)=V0(p)+U0(t,q), Hk(t,p,q)=Uk(t,q), k=1,··· ,m.

In this case we get the following system in the sense of Stratonovich:

dP= f (t,Q)dt+
m

∑
k=1

σk(t,Q)◦dwk
t , P(t0)= p,

dQ= g(P)dt, Q(t0)=q

(3.1)

with

f i =−∂H0

∂Qi
, gi =

∂H0

∂Pi
, σi

k =−∂Hk

∂Qi
, i=1,··· ,d, k=1,··· ,m.

SHS (3.1) is investigated in [25, 27, 28]. It is obvious that the system (3.1) has the same
form in the sense of Itô.

For V0(p)= 1
2 (M−1p,p) with M a constant, symmetric, invertible matrix, the system

(3.1) takes the form

dP= f (t,Q)dt+
m

∑
k=1

σk(t,Q)dwk
t , P(t0)= p,

dQ=M−1Pdt, Q(t0)=q.

This system can be written as a second-order differential equation with multiplicative
noise. Some physical applications of stochastic symplectic integration for such systems
are discussed in [38].

3.1 Symplectic conditions of weak order SRK methods

For SDEs (1.1) in the sense of Itô, a class of SRK methods with Y0= x0 is given by Rößler
[34]

Yn+1=Yn+
s

∑
i=1

αia
(
tn+c

(0)
i h,G

(0)
i )h

+
m

∑
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s

∑
i=1

β
(1)
i bk

(
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(1)
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(k)
i

)
Îk+

m

∑
k=1

s

∑
i=1

β
(2)
i bk

(
tn+c

(1)
i h,G

(k)
i

) Îkk√
h

+
m

∑
k=1

s

∑
i=1

β
(3)
i bk

(
tn+c

(2)
i h,Ĝ

(k)
i

)
Îk+

m

∑
k=1

s

∑
i=1

β
(4)
i bk

(
tn+c

(1)
i h,Ĝ(k)

)√
h (3.2)
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for n=0,1,··· ,N−1 with supporting values

G
(0)
i =Yn+

s

∑
j=1

A0
ija
(
tn+c

(0)
j h,G

(0)
j )h+

m

∑
l=1

s

∑
j=1

B0
ijb

l
(
tn+c

(1)
j h,G

(l)
j

)
Îl,

G
(k)
i =Yn+

s

∑
j=1

A1
ija
(
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(0)
j h,G

(0)
j )h+

s

∑
j=1

B1
ijb

l
(
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(1)
j h,G

(k)
j

)√
h,

Ĝ
(k)
i =Yn+

s

∑
j=1

A2
ija
(
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(0)
j h,G

(0)
j )h+

m

∑
l=1
l 6= k

s

∑
j=1

B2
ijb

l
(
tn+c

(1)
j h,G

(l)
j

) Îkl√
h

for i=1,··· ,s and k=1,··· ,m. The random variables are defined by

Îkl =





1
2( Îk Îl−

√
hĨk) if k< l,

1
2( Îk Îl+

√
hĨl) if l< k,

1
2( Î2

k −h) if k= l

(3.3)

for 1≤ k,l≤m with independent random variables Îk, 1≤ k≤m, satisfy (2.4) and random

variables Ĩk, 1≤k≤m−1, satisfy (2.5). Applying SRK methods (3.2) with β
(2)
i =0, β

(3)
i =0,

β
(4)
i =0, i=1,··· ,s to SHS (3.1), we obtain

Pn+1=Pn+h
s

∑
i=1

αi f (tn+c
(0)
i h,q

(0)
i )+

m

∑
k=1

s

∑
i=1

β
(1)
i σk

(
tn+c

(1)
i h,q

(k)
i

)
Îk,

Qn+1=Qn+h
s

∑
i=1

αig(p
(0)
i )

(3.4)

for n=1,··· ,N−1 with P0= p, Q0=q and

p
(0)
i =Pn+h

s

∑
j=1

A0
ij f (tn+c

(0)
j h,q

(0)
j )+

m

∑
l=1

s

∑
j=1

B0
ijσ
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(
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i h,q

(l)
j

)
Îl,

q
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i =Qn+h

s

∑
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A0
ijg(p

(0)
j ),

p
(k)
i =Pn+h

s

∑
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(0)
j h,q

(0)
j )+

s

∑
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ijσ

l
(
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(1)
j h,q
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j

)
Îk,

q
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i =Qn+h

s

∑
j=1

A1
ijg(p

(0)
j ).

(3.5)

These SRK methods can be characterized by the tableau

c(0) A0 B0

c(1) A1 B1

αT β(1)T
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Accordingly, we present the following theorem without proof.

Theorem 3.1. For SHS (3.1) and (2.1), if the coefficients of SRK methods (3.4) and (3.5) satisfy
(2.8) and (2.9) for all i, j = 1,··· ,s, then it preserve symplectic structure, i.e., dPn+1∧dQn+1 =
dPn∧dQn.

It has been shown in [34] that SRK methods (3.4)-(3.5) will have weak global order 1.0
if

αTe=1, (β(1)T
e)2=1, β(1)T

B1e=0 (3.6)

are satisfied. Using both the order conditions (3.6) and symplectic conditions (2.8)-(2.9),
we construct stochastic symplectic Runge-Kutta methods, for instance, six weak order 1.0
one-stage SRK methods with tableaus

1
2

1
2

1
2

1
2

1
2 0 1

2
1
2 1

1
2

1
2 0 1 1 0 0 0 0
1 1 1 1 1 1

1
2

1
2 − 1

2
1
2

1
2 0 1

2
1
2 −1

1
2

1
2 0 1 1 0 0 0 0
1 −1 1 −1 1 −1

which is said SRKw3a method, SRKw3b method, SRKw3c method, SRKw3d method,
SRKw3e method and SRKw3f method, respectively, in turn.

Next, let us consider the single noise case, namely m= 1 in (1.1) and (3.1). For SDEs
(1.1) in the sense of Itô, a class of SRK methods is given by Rößler [30]

Yn+1=Yn+
s

∑
i=1

αia
(
tn+c

(0)
i h,G

(0)
i )h

+
s

∑
i=1

β
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i b
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(1)
i

)
Î1+

s

∑
i=1

β
(2)
i b

(
tn+c

(1)
i h,G

(1)
i

) Î11√
h

(3.7)

for n=0,1,··· ,N−1 with supporting values

G
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(0)
j )h+

s
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j=1
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ijb

l
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j

)
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∑
j=1
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(0)
j )h+

s

∑
j=1

B1
ijb

l
(
tn+c

(1)
j h,G

(1)
j

)√
h

for i=1,2,··· ,s, where Îk and Îkk with k=1 satisfy (2.4) and (3.3), respectively. Notice that
here we replace I1 and I11 by Î1 and Î11, respectively, without decreasing the weak order
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of the method. Applying SRK methods (3.7) to SHS (3.1), we obtain

Pn+1=Pn+h
s

∑
i=1

αi f (tn+c
(0)
i h,q

(0)
i )+

s

∑
i=1

β
(1)
i σ

(
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(1)
i

)
Î1

+
s

∑
i=1

β
(2)
i σ

(
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(1)
i h,q

(1)
i

) Î11√
h

,

Qn+1=Qn+h
s

∑
i=1

αig(p
(0)
i )

(3.8)

for n=1,··· ,N−1 with P0= p, Q0=q and

p
(0)
i =Pn+h

s

∑
j=1

A0
ij f (tn+c

(0)
j h,q

(0)
j )+

s

∑
j=1

B0
ijσ

(
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(1)
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j

)
Î1,

q
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s

∑
j=1

A0
ijg(p

(0)
j ),

p
(1)
i =Pn+h

s

∑
j=1

A1
ij f (tn+c

(0)
j h,q

(0)
j )+

s

∑
j=1

B1
ijσ

(
tn+c

(1)
j h,q

(1)
j

)√
h,

q
(1)
i =Qn+h

s

∑
j=1

A1
ijg(p

(0)
j ).

(3.9)

These SRK methods can be characterized by the tableau

c(0) A0 B0

c(1) A1 B1

αT β(1)T
β(2)T

Accordingly, we present the following theorem without proof.

Theorem 3.2. For SHS (3.1) and (2.1) with a single noise, if the coefficients of SRK methods
(3.8) and (3.9) satisfy

αiαj−αj A
0
ji−αi A

0
ij=0, (3.10)

αiβ
(1)
j −αiB

0
ij−β

(1)
j A1

ji=0, (3.11)

αiβ
(2)
j −β

(2)
j A1

ji=0 (3.12)

for all i, j=1,··· ,s, then it preserve symplectic structure, i.e., dPn+1∧dQn+1=dPn∧dQn.
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It has been shown in [30] that SRK methods (3.8)-(3.9) will have weak global order 2.0
if

1. αTe=1, 2. β(2)T
e=0, 3. β(1)T

B1e=0, 4. (β(1)T
e)2=1,

5. β(2)T
(B1(B1e))=0, 6. αT A0e=

1

2
, 7. β(1)T

(B1(B1(B1e)))=0,

8. β(1)T
((B1e)(A1e))=0, 9. β(1)T

(B1(B1e)2)=0, 10. β(1)T
(B1(B1e))=0,

11. (β(1)T
e)(β(1)T

(B1e)2)=
1

2
, 12. β(1)T

(B1(A1(B0e)))=0,

13. αT((B0e)(B0(B1e)))=0, 14. β(1)T
((B1e)(A0(B1e)))=0,

15. β(1)T
(A1(B0(B1e)))=0, 16. β(1)T

((B1e)(B1(B1e)))=0,

17. β(1)T
(B1e)3 =0, 18. β(1)T

(A1(B0e))=0, 19. αT(B0(B1e))=0,

20. β(1)T
(B1(A1e))=0, 21. (β(1)T

e)(αB0e)=
1

2
, 22. β(2)T

(A1e)=0,

23. αT(B0e)2=
1

2
, 24. β(2)T

(B1e)2=0, 25. β(2)T
(A1(B0e)2)=0,

26. β(2)T
(B1e)=1, 27. (β(1)T

e)(β(1)T
A1e)=

1

2
, 28. β(2)T

(A1(B0e))=0

are satisfied. Using both the order conditions 1–28 and symplectic conditions (3.10)-
(3.12), we construct stochastic symplectic Runge-Kutta methods, for instance, a class of
weak order 2.0 three-stage SRK methods with tableau

3
4 −a21

1
4

1
2−a21 0 1 0 0

1
4 +a21 a21

1
4 0 0 0 0

a31+a32 a31 a32 0 1 1 b33
3
2 1 1

2 0 1 1
2+2b −1−2b

1 1
2

1
2 0 1

2
1
2+b − 3

2−b

1 1
2

1
2 0 1

2 b −1−b
1
2

1
2 0 −1 1 1 0 1 −1

which is said SRKw4 methods, where a21,a31,a32,b33,b∈R.

3.2 Symplectic conditions of strong order SRK methods

For SDEs (1.1) with a single noise in the sense of Itô, a class of SRK methods with Y0= x0

is given by Küpper, Kværnø and Rößler [20]
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αia
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√
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for n=0,1,··· ,N−1 with supporting values
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√
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)
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)

for i=1,··· ,s, where I1=
∫ tn+1

tn
dwt, I11=

∫ tn+1

tn

∫ t
tn

dwτdwt. Applying SRK methods (3.13) to
SHS (3.1), we obtain
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(3.14)

These SRK methods can be characterized by the tableau

c A B1 B2 B3

αT β(1)T
β(2)T

β(3)T

Accordingly, we present the following theorem without proof.

Theorem 3.3. For SHS (3.1) and (2.1) with a single noise, if the coefficients of SRK methods
(3.8) and (3.9) satisfy (2.16) and (2.17) for all i, j=1,··· ,s, k=1,2,3, then it preserve symplectic
structure, i.e., dPn+1∧dQn+1=dPn∧dQn.
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It has been shown in [20] that SRK methods (3.13)-(3.14) will have strong global order
1.0 if

1. αTe=1, 2. β(1)T
e=1, 3. β(3)T

e=0, 4. β(2)T
e=0,

5. β(1)T
B1e=

λ

2
, 6. β(3)T

B3e=−λ

2
, 7. αTB3e=0,

8. β(2)T
B3e+β(3)T

B2e=1−λ, 9. β(1)T
B3e+β(3)T

B1e=0,

10. β(2)T
B2e=0, 11. β(1)T

B2e+β(2)T
B1e=0, 12. β(3)T

Ae=0,
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+
1

2
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(B1(B1e))+β(3)T

(B3(B3e))=0.

Using both the order conditions 1–14 and symplectic conditions (2.16)-(2.17), we con-
struct stochastic symplectic Runge-Kutta methods, for instance, a class of strong order
1.0 three-stage SRK methods with tableau

0 0 0 0 0 a b 0 0 0 d2−d3 0 d3−d2− 1
4d1

0 0 0 0 a 0 b 0 0 0 d2 d3
1

4d1
−d2−d3

1
2 0 0 1

2 0 0 1
2 0 0 0 d1 −d1 0

0 0 1 0 0 1 0 0 0 d1 −d1 0

which is said SRKs2 methods, where a,b,d1,d2,d3 ∈R, d1 6= 0. Comparing with symplec-
tic Runge-Kutta methods in [23], because of the larger amount of calculation, in theory,
SRKs2 methods with strong order one are devoid of advantage in the calculations. In or-
der to obtain more effective Runge-Kutta methods, we will consider another SRK meth-
ods in the following.

For SDEs (1.1) with multiple multiplicative noise in the sense of Itô, a class of SRK
methods with Y0= x0 is given by Rößler [33]
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for n=0,1,··· ,N−1 with supporting values
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for i = 1,··· ,s and k = 1,··· ,m, where Ik =
∫ tn+1

tn
dwk

t , Ilk =
∫ tn+1

tn

∫ t
tn

dwl
τdwk

t . Applying SRK
methods (3.15) to SHS (3.1), we obtain
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for n=1,··· ,N−1 with P0= p, Q0=q and
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(3.16)

These SRK methods can be characterized by the tableau

c(0) A0 B0

c(1) A1 B1

αT β(1)T
β(2)T

Accordingly, we present the following theorem without proof.

Theorem 3.4. For SHS (3.1) and (2.1), if the coefficients of SRK methods (3.15) and (3.16)
satisfy (3.10), (3.11) and (3.12) for all i, j = 1,··· ,s, then it preserve symplectic structure, i.e.,
dPn+1∧dQn+1=dPn∧dQn.

It has been shown in [33] that SRK methods (3.15)-(3.16) will have strong global order
1.0 if

1. αTe=1, 2. β(1)T
e=1, 3. β(2)T

B1e=0,

4. β(1)T
B1e=0, 5. β(2)T

B1e=1, 6. β(2)T
A1e=0,

7. β(2)T
(B1e)2=0, 8. β(2)T

(B1(B1e))=0.

Using both the order conditions 1–8 and symplectic conditions (3.10)-(3.12), we construct
stochastic symplectic Runge-Kutta methods, for instance, a class of strong order 1.0 two-
stage SRK methods with tableau
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a a 0 0 0
1
2+a 2a 1

2−a 0 0
1 2a 1−2a b1 b2

1 2a 1−2a −b2 b1

2a 1−2a b2−b1
2b2

b2+b1
2b2

1
2(b1+b2)

− 1
2(b1+b2)

which is said SRKs3 methods, where a ∈ R,b2 6= 0,b1+b2 6= 0. It shown that we have
found a class of strong 1.0 order symplectic Runge-Kutta methods for SHS with multiple
multiplicative noise.

Remark 3.1. SRK methods (3.15) also convergent to the solution of Stratonovich SDEs
(1.1), see [33], but under the corresponding order conditions these SRK methods can not
preserve symplectic structure for SHS (1.2) with general nonseparable Hamiltonians.

4 The symplecticity of SRK methods for SHS with multiple

additive noise

In this section we will consider the SHS with multiple additive noise, namely

dP= f (t,P,Q)dt+
m

∑
k=1

σk(t)dwk
t , P(t0)= p,

dQ= g(t,P,Q)dt+
m

∑
k=1

γk(t)dwk
t , Q(t0)=q

(4.1)

with

f i =− ∂H

∂Qi
, gi =

∂H

∂Pi
i=1,··· ,d,

where P,Q,p,q are d-dimensional vectors. Such SHS can be written as the form as follow-
ing SDEs

dXt = a(t,Xt)dt+
m

∑
k=1

bk(t)dwk
t , Xt0 = x0, (4.2)

where X,a(t,X) are r-dimensional column-vectors, and r=2d.

4.1 Symplectic conditions of high strong order SRK methods

For SDEs (4.2) with multiple noise in the sense of Itô, a class of SRK methods with Y0=x0

is given by Rößler [33]

Yn+1=Yn+h
s

∑
i=1

αia(tn+c
(0)
i h,Gi)

+
m

∑
k=1

s

∑
i=1

(
β
(1)
i Ik+β

(2)
i

Ik0

h

)
bk(tn+c

(1)
i h) (4.3)
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for n=0,1,··· ,N−1 with stage values

Gi=Yn+h
s

∑
j=1

Aija(tn+c
(0)
j h,Gj)+

m

∑
l=1

s

∑
j=1

Bijb
l(tn+c

(1)
j h)

Il0

h

for i= 1,··· ,s, where Il0 =
∫ tn+1

tn

∫ s
tn

dwl
s1

ds. Applying SRK methods (4.3) to SHS (4.1), we
obtain

Pn+1=Pn+h
s

∑
i=1

αi f (tn+c
(0)
i h,p

(0)
i ,q

(0)
i )+

m

∑
k=1

s

∑
i=1

(
β
(1)
i Ik+β

(2)
i

Ik0

h

)
σk
(
tn+c

(1)
i h

)
,

Qn+1=Qn+h
s

∑
i=1

αig(tn+c
(0)
i h,p

(0)
i ,q

(0)
i )+

m

∑
k=1

s

∑
i=1

(
β
(1)
i Ik+β

(2)
i

Ik0

h

)
γk

(
tn+c

(1)
i h

) (4.4)

for n=1,··· ,N−1 with P0= p, Q0=q and

p
(0)
i =Pn+h

s

∑
j=1

Aij f (tn+c
(0)
j h,p

(0)
j ,q

(0)
j )+

m

∑
l=1

s

∑
j=1

Bijσ
l
(
tn+c

(1)
j h

) Il0

h
,

q
(0)
i =Qn+h

s

∑
j=1

Aijg(tn+c
(0)
j h,p

(0)
j ,q

(0)
j )+

m

∑
l=1

s

∑
j=1

Bijγ
l
(
tn+c

(1)
j h

) Il0

h

(4.5)

for i=1,··· ,s. These SRK methods can be characterized by the tableau

c(0) A B c(1)

αT β(1)T
β(2)T

Accordingly, we present the following theorem without proof.

Theorem 4.1. For SHS (4.1) and (2.1), if the coefficients of SRK methods (4.4) and (4.5) satisfy

αiαj−αj Aji−αi Aij =0 (4.6)

for all i, j=1,··· ,s, then it preserve symplectic structure, i.e., dPn+1∧dQn+1=dPn∧dQn.

It has been shown in [33] that SRK methods (4.4)-(4.5) will have strong global order
1.5 if

1. αTe=1, 2. β(1)T
e=1, 3. β(2)T

e=0,

4. αTBe=1, 5. αT Ae=
1

2
, 6. αT(Be)2=

3

2
,

7. β(1)T
c(1)=1, 8. β(2)T

c(1)=−1.

Using both the order conditions 1–8 and symplectic conditions (4.6), we construct stochas-
tic symplectic Runge-Kutta methods, for instance, a class of strong order 1.5 two-stage
SRK methods with tableau
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1
3

1
3 0 3

2 0 1+ β1−1
β2

5
6

2
3

1
6 b −b 1+ β1

β2
2
3

1
3 β1 1−β1 β2 −β2

which is said SRKs4 methods, where β1,b∈R,β2 6=0.

Remark 4.1. The software package Maple was used in the generation process of SRKw2,
SRKw4, SRKs2, SRKs3 and SRKs4 methods to aid in algebraic computation. This involves
the solutions of large numbers of order and symplectic conditions.

4.2 Symplectic conditions of weak order SRK methods

For SDEs (4.2) with multiple noise in the diffusion autonomous case, a class of SRK meth-
ods with Y0= x0 is given by Debrabant [11]

Yn+1 = Yn+h
s

∑
i=1

αia(tn+cih,Gi)+
m

∑
k=1

bk Îk (4.7)

for n=0,1,··· ,N−1 with stage values

Gi=Yn+h
s

∑
j=1

Aija(tn+cjh,Gj)+
m

∑
k=1

bk(d1,i Îk+d2,i Îk+m)

for i= 1,··· ,s, where bk are constants for k= 1,··· ,m, Îk and Îk+m satisfy (2.4). Applying
SRK methods (4.7) to SHS (4.1) in the diffusion autonomous case, we obtain

Pn+1=Pn+h
s

∑
i=1

αi f (tn+cih,p
(0)
i ,q

(0)
i )+

m

∑
k=1

σk Îk,

Qn+1=Qn+h
s

∑
i=1

αig(tn+cih,p
(0)
i ,q

(0)
i )+

m

∑
k=1

γk Îk

(4.8)

for n=1,··· ,N−1 with P0= p, Q0=q and

p
(0)
i =Pn+h

s

∑
j=1

Aij f (tn+cjh,p
(0)
j ,q

(0)
j )+

m

∑
k=1

σk(d1,i Îk+d2,i Îk+m),

q
(0)
i =Qn+h

s

∑
j=1

Aijg(tn+cjh,p
(0)
j ,q

(0)
j )+

m

∑
k=1

γk(d1,i Îk+d2,i Îk+m)

(4.9)

for i= 1,··· ,s, where σk and γk are constants for k= 1,··· ,m. These SRK methods can be
characterized by the tableau

c A d1 d2

αT
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Accordingly, we present the following theorem without proof.

Theorem 4.2. For SHS (4.1) and (2.1), if the coefficients of SRK methods (4.8) and (4.9) satisfy
(4.6) for all i, j=1,··· ,s, then it preserve symplectic structure, i.e., dPn+1∧dQn+1=dPn∧dQn.

It has been shown in [11] that SRK methods (4.8)-(4.9) will have weak global order 2.0
if

1. αTe=1, 2. αT Ae=
1

2
, 3. αT(d2

1+d2
2)=

1

2
, 4. αTd1=

1

2
.

Using both the order conditions 1–4 and symplectic conditions (4.6), we construct stochas-
tic symplectic Runge-Kutta methods, for instance, a weak order 2.0 one-stage SRK method
with tableau

1
2

1
2

1
2

1
2

1

which is said SRKw5 method.

Remark 4.2. Debrabant presented the weak third order conditions of SRK methods (4.7)
in [11]. Even now, using both the weak third order conditions and symplectic conditions
(4.6), we hard to find a weak third order symplectic Runge-Kutta method with a smaller
stage number. For instance, we can not find it when the stage number s<7.

5 Numerical experiments

In this section, we applying derived symplectic Runge-Kutta methods to several numer-
ical examples in order to confirm our theoretical results.

5.1 Example 1: A linear stochastic oscillator with additive noise

Let us consider the example given in [39]:

dx(t)=y(t)dt, x(t0)= x0∈R,

dy(t)=−x(t)dt+σdwt , y(t0)=y0∈R,
(5.1)

where σ>0 is a constant. For SDE (5.1), its Itô and Stratonovich form are identical. It is
obvious that (5.1) is a stochastic Hamiltonian system with

H0(x,y)=
x2+y2

2
, H1(x,y)=−σx,

such that

y=
∂H0

∂y
, x=

∂H0

∂x
, σ=−∂H1

∂x
,
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so the phase flow of (5.1) preserves the symplectic structure (2.1). Stømmen and Higham
[39] have shown that (5.1) has the linear growth property of the second moment, i.e.,

Me(t)=E(x2(t)+y2(t))= x2
0+y2

0+σ2t.

For symplectic Runge-Kutta methods, we want to utilise numerical tests to check their
ability of preserving the linear growth property of the second moment. The coefficients
of Eq. (5.1) is chosen as σ=1, x0 =0, y0 =1 and fix stepsize h=0.2. The second moment
E(X2

n+Y2
n) of the numerical solution is approximated by taking sample average of K

sample trajectories, i.e.,

Men =
1

K

K

∑
i=1

(X2
n(ωi)+Y2

n(ωi)),

where K=1000,000. To compare our symplectic integrators with nonsymplectic ones, we
use the Euler-Maruyama method [19, 28] and Heun method [6, 19]:

Y=yn+ha(tn ,yn)+b(tn,yn)∆wn,

yn+1=yn+
1

2
h(a(tn ,yn)+a(tn,Y))+

1

2
(b(tn,yn)+b(tn,Y))∆wn.

As shown by Fig. 1, the linear growth of second moment of the numerical solutions pro-
duced by symplectic Runge-Kutta methods. The reference line (dotted) has slope 1, along
which the second moment of the solution should stretch. It can be seen that there are large
errors in the growth rates of the second moments by Euler-Maruyama and Heun meth-
ods. Here some coefficients of Runge-Kutta methods are chosen as the SRKw1 method
with b=0 (SRKw1I), SRKw2 method with b1=b2=b3=0 (SRKw2I), SRKw4 method with
a21 = a31 = a32 = b33 = b=0 (SRKw4I), SRKs1 method with a= 1

4 (SRKs1I), SRKs2 method

with a= b=0,d=0.5 (SRKs2I), SRKs3 method with a= 1
4 ,b1 = b2=1 (SRKs3I) and SRKs4

method with β1=b=0,β2=1 (SRKs4I). Further, we use the average of biases

ên =
1

n
|Me(tn)−Men|

to measure the accuracy of preserving the linear growth property of the second moment.
We observe Table 1 for all symplectic Runge-Kutta methods which confirm they all are
much better than nonsymplectic Euler-Maruyama and Heun methods in the sense of the
average of biases. Note that we observe the small errors (<0.005) of symplectic methods
are due to the Monte-Carlo errors, which could be further reduced by increasing the
number of samples.

Again, we consider weak convergence rates for numerical solutions of Eq. (5.1). The
SRKw5 method is applied and compared with the Euler-Maruyama method. According
to [39], the system (5.1) has the unique solution

x(t)= x0 cost+y0 sint+σ
∫ t

0
sin(t−s)dws,

y(t)=−x0 sint+y0 cost+σ
∫ t

0
cos(t−s)dws.
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Figure 1: Second moments of approximations for Eq. (5.1).

Hence,

E(x2(t))=(x0 cost+y0 sint)2+σ
∫ t

0
sin2(t−s)ds.

In Fig. 2(a), we plot the errors for E(x2) at time t=1 versus the timestep h=2−i , i=1,··· ,8.
To carefully check the accuracy of the methods, we numerically compute E(x2) using the
averages over 30 million trajectories. Further, some reference lines (broken) with slope
one and two are plotted for better comparison. We also consider strong convergence
rates for numerical solutions of Eq. (5.1). We arrange the simulations into M batches of
K simulations in the following way. Denoting by yi,j,N the numerical approximation to
yi,j(tN) at step point tN in the i× j-th simulation of all K×M simulations, we use means
of absolute errors

ǫ̂(y)=
1

KM

M

∑
j=1

K

∑
i=1

√√√√ r

∑
k=1

(
yk

i,j,N−yk
i,j(tN)

)2
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Table 1: The averages of biases of numerical methods for Eq. (5.1).

Methods 5000 steps 10000 steps 25000 steps

Euler 7.341241738e+082 5.403073301e+167 Inf

Heun 0.4442603325 2.505446702 443.9279506

SRKw1I 0.002511919556 0.001959065597 0.002088948678

SRKw2I 0.004204629157 0.004158916414 0.004082373282

SRKw3a 0.002140102824 0.001982949467 0.002059087292

SRKw3b 0.00006087204307 0.0002537318069 0.00003997775495

SRKw3c 0.0001602655490 0.0001341840902 0.0002845553792

SRKw3d 0.002078596062 0.001873222360 0.001956775823

SRKw3e 0.0002981423602 0.00004757943303 0.0002170102312

SRKw3f 0.00002076197241 0.0001974424086 0.0004457843294

SRKw4I 0.0001450897061 0.0001621590728 0.0002163903355

SRKw5 0.0003362889021 0.00002246683947 0.00005073875569

SRKs1I 0.0008899479199 0.001168208442 0.001150954402

SRKs2I 0.002090830473 0.002016024143 0.001959391097

SRKs3I 0.002626291461 0.002448442391 0.002179862105

SRKs4I 0.002417333345 0.002448624413 0.002313668062

to measure the accuracy and strong convergence property of numerical methods, where
r=2, M=20 and K=250. The SRKs4I method is applied and compared with the Euler-
Maruyama method. In Fig. 2(b), we plot the errors for ǫ̂(x) at time t = 1 versus the
timestep h = 2−i, i = 1,··· ,8. Some reference lines (broken) with slope 1.0 and 1.5 are
plotted for better comparison.

5.2 Example 2: A stochastic harmonic oscillator

The stochastic harmonic oscillator model [29] in the sense of Stratonovich is described by

dx(t)= p(t)dt+σp(t)◦dwt , x(t0)= x0∈R,

dp(t)=−x(t)dt−σx(t)◦dwt , p(t0)= p0 ∈R,
(5.2)

It is obvious that (5.2) is a stochastic Hamiltonian system with

H0(x,p)=
1

2
(x2+p2), H1(x,y)=

1

2
σ(x2+p2),

such that

p=
∂H0

∂p
, x=

∂H0

∂x
, σp=

∂H1

∂p
, σx=

∂H1

∂x
,
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Figure 2: Comparison of convergence rates for numerical solutions of Eq. (5.1) (subplots (a) and (b)), Eq. (5.2)
(subplot (c)) and Eq. (5.3) (subplot (d)).

so the phase flow of (5.2) preserves the symplectic structure (2.1). For this system, the
energy function H0(x,p) is a conserved quantity. To compare our symplectic integra-
tors with nonsymplectic ones, we use the Milstein method and Heun method [19, 28].
Fig. 3 gives approximations of a sample phase trajectory of (5.2) simulated by the Mil-
stein method (top left), Heun method (top right), SRKs1I method (bottom left), SRKw1I
method (bottom middle) and SRKw2I method (bottom right), respectively. The initial
condition is x0=1, p0 =0. The corresponding exact phase trajectory belongs to the circle
with the center at the origin and with the unit radius. In [18], Jiang et al. presented the
exact solution of (5.2)

x(t)= p0 sin(t+σwt)+x0cos(t+σwt),

p(t)= p0 cos(t+σwt)−x0sin(t+σwt).
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Figure 3: The numerical flows produced by the Milstein method (top left), Heun method (top right), SRKs1I
method (bottom left), SRKw1I method (bottom middle) and SRKw2I method (bottom right), respectively.

T=100, h=0.01, σ=1 and (x0,p0)=(1,0) for Eq. (5.2).

Again, we consider weak convergence rates for numerical solutions of Eq. (5.2).
SRKw1I and SRKw2I methods are applied and compared with the Milstein method. In
Fig. 2(c), we plot the errors for E(x2) at time t=1 versus the timestep h=2−i, i=1,··· ,8.
To carefully check the accuracy of the methods, we numerically compute E(x2) using the
averages over 30 million trajectories. Further, some reference lines (broken) with slope
one and two are plotted for better comparison.

5.3 Example 3: A model for synchrotron oscillations of particles in storage
rings

The following model, studied in [25, 27, 28, 38], describes synchrotron oscillations of par-
ticles in storage rings under the influence of external fluctuating electromagnetic fields,

dP=−ω2sin(Q)dt−σ1 cos(Q)dw1
t −σ2sin(Q)dw2

t ,

dQ=Pdt.
(5.3)

Approximations of a sample trajectory of (5.3) simulated by the SRKw3a, SRKw3b,
SRKw3c, SRKw3d, SRKw3e, SRKw3f, SRKs3I methods and the Euler method are plot-
ted on Fig. 4. The trajectories obtained by the numerical methods with h= 0.02. Fig. 4
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Figure 4: A sample trajectory of approximations of Eq. (5.3) for ω=2, σ1 =0.2, σ2=0.1, h=0.02.

shows the oscillation property of the numerical solutions produced by symplectic Runge-
Kutta methods. It can be seen that the Euler method is unacceptable for simulation of the
solution to (5.3) on a long time interval.

Again, we consider strong convergence rates for numerical solutions of Eq. (5.3) with
ω=2, σ1 =0.2 and σ2=0.1. The SRKs3I method is applied and compared with the Euler-
Maruyama method. We have carefully implemented the above integrators in Matlab. In
Fig. 2(d), we plot the means of absolute errors for P at time t = 1 versus the timestep
h=2−i, i=1,··· ,8. The reference solution is computed using the small timestep h=2−14.
The error is calculated based on M batches with K trajectories in each, where M=20 and
K= 250. Further, some reference lines (broken) with slope one-half and one are plotted
for better comparison. We also consider weak convergence rates for numerical solutions
of Eq. (5.3) with ω=2, σ1=0.2 and σ2=0. SRKw3a and SRKw4I methods are applied and
compared with the Euler-Maruyama method. In Fig. 6(a), we plot the errors for E(P2)
at time t= 1 versus the timestep h= 2−i, i= 1,··· ,8. The reference solution is computed
using the small timestep h = 2−14. To carefully check the accuracy of the methods, we
numerically compute E(P2) using the averages over 20 million trajectories. Further, some
reference lines (broken) with slope one and two are plotted for better comparison.

5.4 Example 4: A stochastic rigid body model

Finally, we consider a randomly perturbed rigid body problem, i.e., the motion of a rigid
body in R

3 subject to a single Stratonovich noise perturbation [1, 7, 21, 22, 24]
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dX= X̂IXdt+µX̂e1◦dwt,

dQ=QÎXdt+µQê1◦dwt,
(5.4)

where

X̂=




0 −X[3] X[2]

X[3] 0 −X[1]

−X[2] X[1] 0




for all X=(X[1],X[2],X[3])
T, e1 =(1,0,0)T , µ≥0 is a parameter, I=diag(I1, I2, I3), and the

constants I1, I2, I3>0 are the moments of inertia which characterize the rigid body. In the
case where µ=0, we recover the standard deterministic equations of motion of an asym-
metric rigid body [13]. Notice that the function X(t) represents the angular momentum
in R

3 in the body frame, and it satisfies

dX[1]=
( 1

I3
− 1

I2

)
X[2]X[3]dt,

dX[2]=
( 1

I1
− 1

I3

)
X[3]X[1]dt+µX[3]◦dwt,

dX[3]=
( 1

I2
− 1

I1

)
X[1]X[2]dt−µX[2]◦dwt.

SRKw1I, SRKw2I, and SRKs1I methods are applied and compared with the Mil-
stein and Heun methods. We set T = 40, h = 0.02 and (X[1](0),X[2](0),X[3](0)) =
(cos(1.1),0,sin(1.1)), and I1 = 0.8, I2 = 0.6, I3 = 0.2 and µ= 0.1. It can be observed from
Fig. 5 that the numerical solutions produced by Milstein and Heun methods show an
unacceptable qualitative behaviour and even drift away form the sphere, while the nu-
merical solutions obtained by SRKw1I, SRKw2I, and SRKs1I methods lie on the sphere
exactly as we expected.

Again, we consider weak convergence rates for numerical solutions of Eq. (5.4).
SRKw1I and SRKw2I methods are applied and compared with the Milstein method. In
Fig. 6(b), we plot the errors for E(X2

[1]) at time t=1 versus the timestep h=2−i, i=1,··· ,8.

The reference solution is computed using the small timestep h=2−14. To carefully check
the accuracy of the methods, we numerically compute E(X2

[1]) using the averages over

20 million trajectories. Further, some reference lines (broken) with slope one and two are
plotted for better comparison. Note that for small timesteps (h<0.125) the zigzag that we
observe is due to the Monte-Carlo error, which could be further reduced by increasing
the number of samples.

6 Conclusion

In this paper, we have investigated stochastic symplectic Runge-Kutta methods for
three types of SHS. We gave conditions to construct SRK methods preserving the sym-
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Figure 5: A sample trajectory of approximations of Eq. (5.4) for the stochastic rigid body with noise size µ=0.1.
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Figure 6: Comparison of weak convergence rates for numerical solutions of Eq. (5.3) (subplot (a)) and Eq. (5.4)
(subplot (b)).

plectic property with weak and strong convergence order, respectively. Based on the
weak/strong order and symplectic conditions, some effective schemes are derived. In
particular, we obtained two classes of high weak order symplectic Runge-Kutta methods
for SHS with a single multiplicative noise, and two classes of high strong order sym-
plectic Runge-Kutta methods for SHS with multiple multiplicative and additive noise,
respectively, with the help of computer algebra. This involves the solutions of large num-
bers of order and symplectic conditions. Four stochastic models are tested to verify our
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analysis and show that the schemes have good long time behaviour as expected in the
simulation. Future work will consider constructing high order symplectic Runge-Kutta
methods for nonseparable SHS with multiple multiplicative noise, for instance, strong
order 1.0 methods or weak order 2.0 methods.

Appendix: Proof of Theorem 2.1

Introduce the temporary notations

fi = f (tn+c
(0)
i h,p

(0)
i ,q

(0)
i ), gi = g(tn+c

(0)
i h,p

(0)
i ,q

(0)
i ),

σk
i =σk(tn+c

(1)
i h,p

(k)
i ,q

(k)
i ), γk

i =γk(tn+c
(1)
i h,p

(k)
i ,q

(k)
i ).

Differentiating (2.6), we obtain

dPn+1=dPn+h
s

∑
i=1

αid fi+
m

∑
k=1

s

∑
i=1

β
(1)
i Îkdσk

i ,

dQn+1=dQn+h
s

∑
i=1

αidgi+
m

∑
k=1

s

∑
i=1

β
(1)
i Îkdγk

i .

From the exterior products, we have

dPn+1∧dQn+1=dPn∧dQn+h
s

∑
i=1

αidPn∧dgi+
m

∑
k=1

s

∑
i=1

β
(1)
i ÎkdPn∧dγk

i

+h
s

∑
i=1

αid fi∧dQn+
m

∑
k=1

s

∑
i=1

β
(1)
i Îkdσk

i ∧dQn

+h2
s

∑
i,j=1

αiαjd fi∧dgj+
m

∑
k=1

s

∑
i,j=1

αkβ
(1)
j Îkd fi∧dγk

i

+
m

∑
k=1

s

∑
i,j=1

αjβ
(1)
i Îkdσk

i ∧dgj+
m

∑
k,l=1

s

∑
i,j=1

β
(1)
i β

(1)
j Îk Îldσk

i ∧dγk
i . (A.1)

Differentiating (2.7), we obtain

dp
(0)
i =dPn+h

s

∑
j=1

A0
ijd f j+

m

∑
l=1

s

∑
j=1

B0
ij Îldσl

j ,

dq
(0)
i =dQn+h

s

∑
j=1

A0
ijdgj+

m

∑
l=1

s

∑
j=1

B0
ij Îldγl

j,

dp
(k)
i =dPn+h

s

∑
j=1

A1
ijd f j+

s

∑
j=1

B1
ij Îkdσl

j +
m

∑
l=1,l 6=k

s

∑
j=1

B3
ij Îldσl

j ,

dq
(k)
i =dQn+h

s

∑
j=1

A1
ijdgj+

s

∑
j=1

B1
ij Îkdγl

j+
m

∑
l=1,l 6=k

s

∑
j=1

B3
ij Îldγl

j.

(A.2)
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By (A.2), for i=1,··· ,s, we obtain

dPn∧dgj =dp
(0)
i ∧dgj−h

s

∑
i=1

A0
jid fi∧dgj−

m

∑
l=1

s

∑
i=1

B0
ji Îldσl

i ∧dgj,

d fi∧dQn =d fi∧dq
(0)
i −h

s

∑
j=1

A0
ijd fi∧dgj−

m

∑
l=1

s

∑
j=1

B0
ij Îld fi∧dγl

j,

dPn∧dγk
j =dp

(k)
i ∧dγk

j −h
s

∑
i=1

A1
jid fi∧dγk

j −
s

∑
i=1

B1
ji Îkdσk

i ∧dγk
j −

m

∑
l=1

s

∑
i=1

B3
ji Îldσl

i ∧dγk
j ,

dσk
i ∧dQn =dσk

i ∧dq
(k)
i −h

s

∑
j=1

A1
ijdσk

i ∧dgj−
s

∑
j=1

B1
ij Îkdσk

i ∧dγk
j −

m

∑
l=1

s

∑
j=1

B3
ij Îldσl

k∧dγl
j .

(A.3)

Substituting (A.3) into (A.1) yields

dPn+1∧dQn+1=dPn∧dQn+h
s

∑
i=1

αi(dp
(0)
i ∧dgj+d f j∧dq

(0)
i )

+
m

∑
k=1

s

∑
i=1

β
(1)
i Îk(dp

(k)
i ∧dγk

j +dσk
i ∧dq

(k)
i )

−h2
s

∑
i,j=1

(αiαj−αj A
0
ji−αi A

0
ij)d fi∧dgj

+h
s

∑
i,j=1

m

∑
k=1

Îk(αiβ j−αiB
0
ij−β j A

1
ji)d fi∧dγk

j

+h
s

∑
i,j=1

m

∑
k=1

Îk(αiβ j−αiB
0
ij−β j A

1
ji)dσk

i ∧dgj

+
s

∑
i,j=1

m

∑
k=1

Îk Îk(βiβ j−β jB
1
ji−βiB

1
ij)dσk

i ∧dγk
j

+
s

∑
i,j=1

m

∑
k,l=1

Îk Îl(βiβ j−β jB
3
ji−βiB

3
ij)dσk

i ∧dγl
j. (A.4)

Consider the second term in the right-hand side of (A.4). We have

dp
(0)
i ∧dgj+d f j∧dq

(0)
i =

d

∑
k=1

(dp
(0)k
i ∧dgk

j +d f k
j ∧dq

(0)k
i )

=
d

∑
k,l=1

(
∂gk

i

∂p
(0)
l

dp
(0)k
i ∧dp

(0)l
i +

∂gk
i

∂q
(0)
l

dp
(0)k
i ∧dq

(0)l
i

+
∂ f k

i

∂p
(0)
l

dp
(0)l
i ∧dq

(0)k
i +

∂ f k
i

∂q
(0)
l

dq
(0)l
i ∧dq

(0)k
i

)
. (A.5)
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Taking into account that the exterior product is skew-symmetric and f and g satisfy con-
dition (2.2), it is not difficult to see that this expression vanishes. In the similar way as in
the proof of (A.5), we can deduce that

dp
(k)
i ∧dγk

j +dσk
i ∧dq

(k)
i =0. (A.6)

Inserting (2.8), (2.9), (2.10), (2.11), (A.5) and (A.6) into (A.1), we see that

dPn+1∧dQn+1=dPn∧dQn.

The proof of the theorem is complete.
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