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Abstract. Let G be a finite group and x € G. The nilpotentiser of x in G is defined to
be the subset Nilg(x) ={y € G: (x,y) isnilpotent}. G is called an N'-group (n-group) if
Nilg(x) is a subgroup (nilpotent subgroup) of G for all x € G\ Z*(G) where Z*(G) is
the hypercenter of G. In the present paper, we determine finite A/-groups in which the
centraliser of each noncentral element is abelian. Also we classify all finite n-groups.
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1 Introduction

Consider x € G. The centraliser, nilpotentiser and engeliser of x in G are
Co(x)={y€G:(x,y) isabelian}, Nilg(x)={y € G:(x,y) isnilpotent }
and
Ec(x)={yeG:[ynx]=1 for somen}
respectively. Obviously
Cg(x) CNilg(x) CEg(x) foreach x€G.

Note that Nilg(x) and Eg(x) are not necessarily subgroups of G. So determining the
structure of groups by nilpotentisers ( or engelisers) is more complicated than the cen-
tralisers. Let G be a finite group. Let 1 <Z;(G) < Z2(G) < --- be a series of subgroups of
G, where Z;(G) =Z(G) is the center of G and Z;;1(G), for i > 1, is defined by

Zia(G) G
z©) ~“z@)
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Let Z*(G)=U; Zi(G). The subgroup Z*(G) is called the hypercenter of G. We say a group
is n-group in which Nil(x) is a nilpotent subgroup for each x € G\ Z*(G).

Now a group is \/-group in which the nilpotentiser of each element is subgroup and
a CA-group is a group in which the centraliser of each noncentral element is abelian
(see [16] or [5]). The class of N-groups were defined and investigated by Abdollahi and
Zarrin in [1]. In particular they showed that every centerless CA-group is an N -group.
In this paper, we shall prove the following generalisation of this result.

Theorem 1.1. Let G be a nonabelian CA-group. Then G is an N -group if and only if we have
one of the following types:

1. G has an abelian normal subgroup K of prime index.

2. % is a Frobenius group with Frobenius kernel § and Frobenius complement %, where

K and L are abelian.

3. % is a Frobenius group with Frobenius kernel & and Frobenius complement %, such
that K= PZ, where P is a normal Sylow p-subgroup of G for some prime divisor p of |G|,
Pisa CA-group, Z(P)=PNZ and L=HZ, where H is an abelian p’-subgroup of G.

4. % >~ PSL(2,q) and G' = SL(2,q) where q >3 is a prime-power number and 169> —1.

5. % ~PGL(2,9) and G' = SL(2,q) where q> 3 is a prime and 81q+3.

6. G=P x A where A is abelian and P is a nonabelian C A-group of prime-power order.

A group is said to be an E-group whenever engeliser of each element of such group is
subgroup. The class of E-groups was defined and investigated by Peng in [13,14]. Also
Heineken and Casolo gave many more results about them (see [3,4,6]). Now recall that
an engel group is a group in which the engeliser of every elements is the whole group. If
G is an E-group such that the engeliser of every element is engel, G is an n-group since
every finite engel group is nilpotent. This result motivates us to classify all finite n-groups
in following theorem.

But before giving it, recall that the Hughes subgroup of a group G is defined to be
the subgroup generated by all the elements of G whose orders are not p and denoted by
H,(G) where p is a prime. Also a group G is said to be of Hughes-Thompson type, if for
some prime p it is not a p-group and H,(G) #G.

Theorem 1.2. Let G be a nonnilpotent group. Then G is an n-group if and only if % satisfies
one of the following conditions:

(1) % is a group of Hughes-Thompson type and

Nil_¢ (xZ*(G))|=p

G
Z%(0)

forall xZ*(G) € % \Hp(z*((;c;) );
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(2) % is Frobenius group with Frobenius complement % and H is an n-group of G;

(3) 7 =5z(q);

(4) e = PSL(22"), m>1.

Our notations are standard and can be found mainly in [15]. In particular PSL(2,q),
PGL(2,q) and Sz(q) are the projective special linear group, projective general linear group
of degree 2 over the finite field of size g and the Suzuki simple group over the finite field
of size g respectively. Also in this paper G is a finite group and p is a prime.

2 Proofs of the Main Results

To prove our main results, we quote some lemmas that are required in the rest of the
paper. Following theorem by schmidt determine all CA-groups. We use improved form
of it due to Dolfi et al. ([5]).

Lemma 2.1. Let G be a nonabelian group and write Z=Z7(G). Then G is a CA-group if and
only if it is of one of the following types:

(I) G is nonabelian and has an abelian normal subgroup of prime index.

() % is a Frobenius group with Frobenius kernel % and Frobenius complement %, where K and
L are abelian.

(1) & is a Frobenius group with Frobenius kernel & and Frobenius complement %, such that
K=PZ, where P is a normal Sylow p-subgroup of G for some p € (G), P is a CA-group
(F-group), Z(P)=P(N\Z and L=HZ, where H is an abelian p'-subgroup of G.

(IV) $ =Sy and if ¥ is the Klein four group in &, then V is nonabelian.

(V) G=PxA, where P is a nonabelian CA-group (F-group) of prime-power order and A is
abelian.

(VI) $=PSL(2,p") or PGL(2,p") and G' ~SL(2,p") where p is a prime and p" > 3.
(VII) $2PSL(2,9) or PGL(2,9) and G' is isomorphic to the Schur cover of PSL(2, 9).
Lemma 2.2. Let G be a finite N'-group. Then all subgroups of G are N -groups.

Proof. The proof is clear. O

Lemma 2.3. Let G be a Frobenius group with Frobenius complement H. Then G is an N'-group
(n-group) if and only if H is an N-group (n-group).

Proof. The proof is similar to Proposition 3.1 of [12]. O
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Lemma 2.4. PGL(2,q) is an N -group if and only if g > 3 is a prime number and 84(q=+3).
Proof. See Proposition 3.4 of [12]. O
Lemma 2.5. PSL(2,q) is an N-group if and only if 16{¢> — 1.

Proof. See Lemmas 3.9 and 3.10 of [1]. O

Lemma 2.6. Let G be a group. Then G is an N'-group (n-group) if and only if < is an N-group
(n-group) for some normal subgroup K of G with K< Z*(G).

Proof. See Lemma 2.2 (1)-(4) of [1]. O

Proof of Theorem 1.1. First, note that every centerless CA-group K is an N'-group and in
particular Nilg(x) = Ck(x) for each x € K (see Lemma 3.6 of [1]). Suppose that G is a
CA-group. We apply Lemma 2.1 in order to establish our claim.

S4, the symmetric group of degree 4, is not an N -group since Nil, ((12)(34)) is not a
subgroup of S4. It follows that G does not satisfy (IV) of Lemma 2.1 by Lemmas 2.3 and
2.6. Similarly since PSL(2,9) and PGL(2,9) have some subgroups isomorphic to Sy, G
does not satisfy (VII).

Now, assume that G satisfies (I) of Lemma 2.1. Then G has an abelian normal sub-
group A of prime index p. If G= ng*(G), then G is nilpotent and so G is an N/-group.

Suppose that G # AZ*(G). Then 7 {c) has a normal abelian subgroup

2-4216)

of index p. Therefore -4~ is a centerless C A-group and so we have the result by Lemma

24(G)

2.6.

Next, suppose that G satisfies (II) or (Il) of Lemma 2.1. Then G is an N-group by
Lemmas 2.3 and 2.6.

Now, suppose that G satisfies (V). Then G is nilpotent and so G is an N -group.

Finally, if G satisfies (VI), then we get to parts (4) and (5) of our theorem by Lemmas
2.5,2.4 and 2.6.

The converse is clear by the previous lemmas and Lemma 2.1. O

Proof of Theorem 1.2. Suppose that G is an n-group and Nil(G) = NgegNilg(g). Let also
Nilg(x) and Nilg(y) be two distinct nilpotent subgroups of G for x,y € G\Nil(G). We
claim that

Nilg (x)(|Nilg(y) = Nil (G).

Suppose, for a contradiction, that there exists t € (Nilg(x)(Nilg(y))\Nil(G). Hence
Nilg(x)=Nilg(t)=Nilg(y) which gives a contradiction. Since Z*(G)=Nil(G) by Propo-

sition 2.2 of [1], we have
. Nilc(x) .
F_{ Z(G) .xeG}
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is a partition of - ( 7 Since G is not nilpotent is one of the followings by page 575

of [17].

’Z*()

a.

is a Frobenius group;
b. ZL is a group of Hughes-Thompson type;

C.

=PGL(2,p™), p being an odd prime;
d. 75 = PSL(2,p™), p being a prime;

e. % >~Sz(q),q=2", h>1.

N

To complete the proof in one direction it suffices to prove only two parts (1) and (4)
of our theorem. First, we claim that % 2 PGL(2,p™) for every odd prime p. Since

PGL(2,3) =Sy, G is not an N-group by Lemma 2.6. Suppose, for a contradiction, that

G
Z*(G)

By Lemmas 2.4 and 2.6, G is an N-group if and only if 81(g+3) (g >3 is prime). We
choose an element xZ*(G) € - ( 7{c) of order two. By page 575 of [17], C S (xZ*(G)) is

not nilpotent and therefore Nil_¢_(xZ*(G)) is not so. Since

~PGL(2,9) and g=p™ >3.

Z*(G)
Nilc(x)_ . %

by Lemma 2.2 (3) of [1], we deduce that Nilg(x) is not nilpotent which establishes the
claim.
Now, we claim that % = PSL(2,p™) for p™ € {5,2" :m > 1}. Suppose, for a con-

tradiction, that % =~ PSL(2,q) where g =p™ #5 is odd. By Lemmas 2.5 and 2.6, we

have 161¢> —1. It follows from Lemma 2.5 that Cpsr(2,q) (%) =Nilps(2,4)(x). Consequently
Nilpsp (2,4)(x) is either abelian or generalised dihedral group by Proposition 3.21 of [2].
Next by Satz 8.10 of [8], all Sylow p-subgroups of PSL(2,q) are abelian in this case. Now
if Cg(x) is a centraliser of PSL(2,q) isomorphic to generalised dihedral group D, then D
must be nilpotent and so it must be 2-group. This implies that Cs(x) is abelian. Therefore
g=3or5,a contradlctlon

Now, let ( ) be a group of Hughes-Thompson type. By Theorem 1 in [7], H,( ((EG))

has index pin ( 3 for some prime p. Also it was proved by Kegel in [10] that Hp( Z7(0) )

vz

Hy( Z*((;G)) isa mlpotentlser of index p of - ( o It follows that |Nil - (xZ*(G))|=p for

is nilpotent and in Satz 3 of [11], H ) is a component of partition of 7 G) and so

all xZ*(G) € ( 5 \H, (% 70 ). This completes the proof in one direction.
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Conversely assume that Z(GG) = PSL(2,2™) for an integer m >1 or Sz(q). Then it is
enough to show that PSL(2,2™) and Sz(gq) are n-groups by Lemma 2.6.

First, note that SZ(g) is an n-group by the proof of Theorem 3.8 of [1]. Since PSL(2,2™)
is a CA-group by Lemma 2.1, we have the result by the second part of Lemma 3.6 of [1]
and Lemma 2.6.

Now, suppose that ((3 o) is a Frobenius group such that its Frobenius complement is
an n-group. By Lemma 2.3, ( j is an n-group and so G is an n-group by Lemma 2.6.

Now let - ( 70 be a group of Hughes-Thompson type. Then

F:{Hp(z*?cﬂ)'zfﬁz)‘13'“3’}

is a partition of - ( VAI(O) ) H__|=p for each i. Then we claim that

G "
Hy(iay) =Nil ¢ (42°(@))
for each yZ*(G) € Hp(%)

If the equality does not occur, then there is some element xZ*(G) of order p such that
xZ*(G) € Nzl 5 (yZ*( ))\H )) Now since xZ*(G) belongs to some component
of partition of ( - say Z¥( and ]Nzl S (xZ*(G))|=p by assumption, we have

H:
VR N &1 *
Z(G) —Nzl%(xz (G)).

On the other hand yZ*(G) € Nil_¢_(xZ*(G)), which implies that

Z*(G)

Nil_¢_(x2(G))|>p,
a contradiction. This proves the claim.

Now, if tZ*(G) ¢ H ( ))) then Nil . (tZ*(G)) is a component of partition Zf(;c)

by hypothesis. Thus Z*(G) is an n-group and so G is an n-group by Lemma 2.6. This

completes the proof. O
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