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Abstract. For the iteration solution of singular generalized saddle point problems, a
fast shift-splitting iteration method based on shift-splitting technique and symmetric
and skew-symmetric splitting with respect to the upper-left block of the system ma-
trix is proposed in this paper. Semi-convergence of the proposed method is carefully
studied for singular case, and the conditions guaranteeing the semi-convergence are
derived. Numerical experiments of a class of linearized Navier-Stokes equations are
implemented to demonstrate the feasibility and effectiveness of the proposed method.
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1 Introduction

Consider the solution of systems of linear equations with the following block 2×2 struc-
ture

[

A BT

−B C

][

x
y

]

=

[

f
g

]

, or Au=b, (1.1)

where A ∈ R
n×n is a nonsymmetric positive definite matrix, B ∈ R

m×n is a rectangular
matrix with m ≤ n, C ∈ R

m×m is a symmetric positive semi-definite matrix, f ∈ R
n and

g∈R
m are given vectors.

The generalized saddle point problems, i.e., the systems of the form (1.1) arise in a va-
riety of scientific computing and engineering applications, including computational fluid
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dynamics [7], mixed finite element approximation of elliptic partial differential equa-
tions [17], weighted and equality constrained least squares estimation [9], inversion of
geophysical data [20] and others.

If the matrix B is of full column rank, i.e., rank(B)=m≤n, the generalized saddle point
matrix A is nonsingular. If the matrix B is rank deficient and null(C)∩null(BT) 6= {0},
the generalized saddle point matrix A is singular. Here, null(·) denotes the null space of
the corresponding matrix. In this work, we are particularly interested in the latter. And,
for the singular case, we suppose that b is in the range of A, that is, the singular saddle
point problems are consistent in this paper.

In many cases A,B and C are large sparse matrices and iterative techniques are prefer-
able for solving (1.1). In recent years, many effective methods have been proposed for
solving singular saddle point problems in the literature, for example, the Uzawa-type
methods [5,26,27], Hermitian and skew-Hermitian splitting type methods [1–3,14,21,22],
and Krylov subspace methods [18,25]. Parameterized Uzawa method was studied in [27],
and the semi-convergence of this method was proved when it was applied to solve the
singular saddle point problems. Minimum residual and conjugate gradient methods
were proposed for solving the rank-deficient saddle point problems in [18, 25], respec-
tively. Inexact Uzawa method, which covers the Uzawa method, the preconditioned
Uzawa method, and the parameterized method as special cases, was discussed for sin-
gular saddle point problems in [26], and the semi-convergence result under restrictions
was proved by verifying two necessary and sufficient conditions. Moreover, sufficient
conditions for the semi-convergence of several Uzawa-type methods were also provided
in [26].

In this paper, we construct a fast shift-splitting iteration method for singular gener-
alized saddle point problems based on the ideas of the shift-splitting iteration method
[6, 12] and the Hermitian and skew-Hermitian splitting technique [4, 21, 28]. The idea of
shift-splitting iteration method was first proposed by Bai, Yin and Su in [6] for solving
a class of non-Hermitian positive definite linear systems. Then it was extended by Cao,
Du and Niu in [11] to solve saddle point problems, and it was generalized by Salkuyeh
for saddle point problems in [23]. After that, for nonsymmetric saddle point problems,
Cao and Miao in [13] proposed the generalized shift-splitting (GSS) method. Recently,
Shen and Shi applied the GSS iteration method to solve a broad class of nonsingular and
singular generalized saddle point problems in [24]. In this paper, a fast shift-splitting it-
eration method is studied. Semi-convergence of this method for singular case is carefully
analyzed. Numerical experiments further show that the proposed method is efficient and
feasible.

The rest of this paper is organized as follows. In Section 2, a fast shift-splitting iter-
ation method for singular generalized saddle point problems is established. In Section
3, the semi-convergence of the proposed method for singular case is studied. Numerical
experiments are presented in Section 4. Finally, a brief conclusion is given in Section 5.
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2 The fast shift-splitting iteration method

The coefficient matrix A can be split as follows

A=M−N =

(

αI+H BT

−B αI+C

)

−

(

αI−S 0
0 αI

)

,

where α> 0 is a constant, the matrices H and S are the symmetric (Hermitian) part and
skew-symmetric (skew-Hermitian) part of the matrix A, respectively, i.e., H = 1

2 (A+

AT), S = 1
2(A−AT). I is the identity matrix with appropriate dimension. By this spe-

cial splitting, the fast shift-splitting iteration method can be defined as follows.

The fast shift-splitting (FSS) iteration method: Given an initial guess ((x(0))T,(y(0))T)T,
for k=0, 1, 2, .. . until ((x(k))T,(y(k))T)T converges, compute

(

αI+H BT

−B αI+C

)(

x(k+1)

y(k+1)

)

=

(

αI−S 0
0 αI

)(

x(k)

y(k)

)

+

(

f
g

)

. (2.1)

For the singular saddle point problems, the matrix M is invertible because of

(

I 0
B(αI+H)−1 I

)(

αI+H BT

−B αI+C

)(

I −(αI+H)−1BT

0 I

)

=

(

αI+H 0
0 (αI+C)+B(αI+H)−1BT

)

.

Thus, the iteration scheme (2.1) can be rewritten as

(

x(k+1)

y(k+1)

)

=Γ

(

x(k)

y(k)

)

+M−1

(

f
g

)

, (2.2)

where

Γ=

(

αI+H BT

−B αI+C

)−1(
αI−S 0

0 αI

)

(2.3)

is the iteration matrix of the FSS iteration method.

As a matter of fact, any matrix splitting not only can automatically lead to a split-
ting iteration method, but also can naturally induce a splitting preconditioner for Krylov
subspace methods like GMRES, or its restarted version. The splitting preconditioner cor-
responds to the FSS iteration method (2.1) is given by

M=

(

αI+H BT

−B αI+C

)

, (2.4)

which is called the FSS preconditioner for the saddle point matrix A.
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At each step of the FSS iteration (2.1) or applying preconditioner M within a Krylov
subspace methods, a linear system with M as the coefficient matrix needs to be solved.
That is to say, linear systems of the form

Mz= r (2.5)

needs to be solved for a given vector r at each step, where r=(rT
1 ,rT

2 )
T and z=(zT

1 ,zT
2 )

T(r1, z1

∈R
n, r2, z2∈R

m). The following algorithmic version can be derived to solve (2.5).

Algorithm 2.1. For a given vector r=(rT
1 ,rT

2 )
T, the vector z=(zT

1 ,zT
2 )

T can be computed
according to the following steps:

1. Solve (αI+C)w= r2 for w;
2. Compute w1= r1−BTw;
3. Solve (αI+H+BT(αI+C)−1B)z1=w1;
4. Solve (αI+C)v=Bz1 for v;
5. z2=v+w.

In the Algorithm 2.1, a linear system with coefficient matrices αI+H+BT(αI+C)−1B
and αI+C are required to be solved at each iteration. Since the coefficient matrices are
symmetric positive definite for any α>0, the sub-linear systems with the coefficient ma-
trices αI+C and αI+H+BT(αI+C)−1B can be solved by the conjugate gradient (CG)
method or some direct methods, such as, the Cholesky or LU factorization in combina-
tion with AMD or column AMD reordering.

For the singular matrix A, only the semi-convergence of the FSS iteration scheme (2.2)
is required [8]. In the following discussion, we discuss the semi-convergence of the FSS
method for singular saddle point problems.

3 Semi-convergence analysis

To analyze the semi-convergence, some notations are given firstly. Let ρ(A), σ(A), null(A),
rank(A) and index(A) be the spectral radius, the spectral set, the null space, the rank and
the index of the matrix A, respectively. Next, the semi-convergence about the iteration
scheme (2.2) is described in the following lemma.

Lemma 3.1. ([8]) When A is singular, then 1 is an eigenvalue of the iteration matrix Γ. Moreover,
when the spectral radius of the iteration matrix Γ is equal to 1, that is, ρ(Γ) = 1, the following
two conditions are necessary and sufficient for guaranteeing the semi-convergence of the iteration
scheme (2.2):
(1) The elementary divisors of the iteration matrix Γ associated with λ=1∈σ(Γ) are linear,

i.e., rank(I−Γ)2= rank(I−Γ), or equivalently, index(I−Γ)=1;
(2) If λ∈σ(Γ), the spectrum of the iteration matrix Γ, satisfying |λ|=1, then λ=1, i.e.,
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γ(Γ)<1, where

γ(Γ)=max{|λ|| λ∈σ(Γ), λ 6=1}.

Lemma 3.1 describes the semi-convergence property of the iteration scheme (2.2)
when A is singular. Therefore, to get the semi-convergence property of the FSS itera-
tion method, only the two conditions in Lemma 3.1 need to verify. To begin with, the first
condition is considered in the following Theorem 3.1.

3.1 The conditions for rank(I−Γ)2 = rank(I−Γ)

Theorem 3.1. Let A be nonsymmetric positive definite, B be rank deficient, C be symmetric
positive semi-definite and null(C)∩null(BT) 6= {0}. Assume that α> 0 and Γ is the iteration
matrix of the FSS iteration method, then rank(I−Γ)2= rank(I−Γ).

Proof. Since Γ=M−1N = I−M−1A, rank(I−Γ)2= rank(I−Γ) holds if

null((M−1A)2)=null(M−1A).

It is obvious that null((M−1A)2)⊇null(M−1A). Now, we only need to show

null((M−1A)2)⊆null(M−1A). (3.1)

Let p =

[

p1

p2

]

∈ null((M−1A)2) with p1 ∈R
n and p2 ∈R

m. Denote by q =M−1Ap. Let

q=

[

q1

q2

]

∈R
n+m. It must be satisfied

(M−1A)2p=(M−1A)q=0. (3.2)

To prove (3.1), we only need to prove q=0, i.e., q1=0 and q2 =0. On one hand, since the
matrix M is nonsingular, from (3.2) we have

{

Aq1+BTq2=0,
−Bq1+Cq2=0.

(3.3)

Since A is nonsymmetric positive definite, from the first equality of (3.3) we can easily
get q1 =−A−1BTq2. Then substituting this relationship into the second equality of (3.3),
we obtain (C+BA−1BT)q2=0 and qT

2 Cq2+(BTq2)T A−1BTq2=0. Owing to the symmetric
positive semi-definiteness of the matrix C and the positive definiteness of the matrix A−1,
we obtain Cq2=0 and BTq2=0. Taking BTq2=0 into the first equality of (3.3), we get q1=0.
On the other hand, from the relationship between the vectors p and q, we have

[

A BT

−B C

][

p1

p2

]

=

[

αI+H BT

−B αI+C

][

q1

q2

]

. (3.4)
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From above discussion, we know that q1 = 0 and q2 ∈null(C)∩null(BT). Then (3.4) can
be equivalently rewritten as

{

Ap1+BT p2=0,
−Bp1+Cp2=αq2.

(3.5)

Solving p1 from the first equality of (3.5) and substituting it into the second equality of
(3.5) gives

q2=
1

α
(C+BA−1BT)p2.

Owing to the positive definiteness of the matrix A−1 and q2∈null(C)∩null(BT), we have
(C+BA−TBT)q2=0 and

1

α2
pT

2 (C+BA−1BT)T(C+BA−1BT)p2=0,

which implies (C+BA−1BT)p2=0 and therefore q2=0. Thus, the proof is completed.

3.2 The condition for γ(Γ)<1

Now we consider the second condition γ(Γ)<1 for semi-convergence. For this purpose,
some analyses of iteration matrix Γ are first given. The matrix Γ is equivalent to the
following form:

Γ=

(

αI+H BT

B −αI−C

)−1(
αI−S 0

0 −αI

)

.

Denote

Ω=

(

αI
−αI

)

, H=

(

H BT

B −C

)

, S=

(

S 0
0 0

)

.

Without loss of generality, we assume that the symmetric positive semi-definite matrix C
has rank r and can be factorized as

C=
[

E F
]

[

D 0
0 0

][

ET

FT

]

,

where D ∈ R
r×r is a diagonal matrix, whose elements are nonzero eigenvalues of the

matrix C. [E F]∈R
m×m is orthogonal and columns of the matrix F∈R

m×(m−r) span the
null space of C.

Consider additionally the orthogonal matrix

Q1=

[

I 0 0
0 E F

]

.
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Then iteration matrix Γ is similar to the following matrix

Γ̂=QT
1 ΓQ1

=QT
1 (Ω+H)−1(Ω−S)Q1

=(QT
1 (Ω+H)Q1)

−1(QT
1 (Ω−S)Q1)

=





αI+H BTE BTF
ETB −αI−D 0
FTB 0 −αI





−1



αI−S 0 0
0 −αI 0
0 0 −αI





,

[

Ω+Ĥ B̂T

B̂ −αI

]−1[
Ω−Ŝ 0

0 −αI

]

,

where

Ĥ=

[

H BTE
ETB −D

]

, Ŝ=

[

S 0
0 0

]

∈R
(n+r)×(n+r), B̂T =

[

BTF
0

]

∈R
(n+r)×(m−r).

Since the matrix B is rank deficient, null(C)∩null(BT) 6= {0} and the columns of F span
the null space of the matrix C, the matrix BTF is also rank deficient. Without loss of
generality, we further assume that the rank of the matrix BTF is t(<m−r). Let the singular

value decomposition of the matrix B̂ be B̂=U

[

B̂t

0

]

VT where U ∈R
(m−r)×(m−r) and V ∈

R
(n+r)×(n+r) are orthogonal matrices, B̂t = [Σt 0]∈R

t×(n+r) with Σt =diag(σ1,σ2,. . .,σt)∈
R

t×t being a diagonal matrix.
Consider the block diagonal matrix

Q2=

(

V 0
0 U

)

∈R
(m+n)×(m+n),

which is an orthogonal matrix. Then Γ̂ is similar to

Γ̃=QT
2 Γ̂Q2

=





Ω+VTĤV B̂T
t 0

B̂t −αI 0
0 0 −αI





−1



Ω−VTŜV 0 0
0 −αI 0
0 0 −αI





=

[

QT
3 (Ω+H̃)−1(Ω−S̃)Q3 0

0 I

]

,

where

Q3=

[

V 0
0 I

]

, H̃=

[

Ĥ B̂T
t

B̂t 0

]

, S̃=

[

Ŝ 0
0 0

]

are all (n+r+t)×(n+r+t) matrices. Since the generalized shift-splitting matrix Γ is
similar to Γ̃, m−r−t eigenvalues of Γ are equal to one. At the same time, verifying the
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condition for γ(Γ)< 1 is equivalent to studying the conditions for the tenability of the
inequality ρ((Ω+H̃)−1(Ω−S̃))<1.

And, the matrix (Ω+H̃)−1(Ω−S̃) is equivalent to the iteration matrix of iteration
scheme

[

αI+Ĥ B̂T
t

−B̂t αI

][

x̂k+1

ŷk+1

]

=

[

αI−Ŝ 0
0 αI

][

x̂k

ŷk

]

+

[

f̂
ĝ

]

, (3.6)

which can be used to solve the following nonsingular saddle point problems

[

Â B̂T
t

−B̂t 0

][

x̂
ŷ

]

=

[

f̂
ĝ

]

, (3.7)

where

Â=

[

A BTE
ETB −D

]

∈R
(n+r)×(n+r),

and the iteration matrix of the iteration scheme (3.6) is

T =

[

αI+Ĥ B̂T
t

−B̂t αI

]−1[
αI−Ŝ 0

0 αI

]

. (3.8)

Hence, studying the tenable conditions of the inequality ρ(T )< 1 is transformed into
discussing the convergence of the iteration scheme (3.6) used to solve the saddle point
problems (3.7).

Lemma 3.2. Let λ be an eigenvalue of the matrix T and [û∗,v̂∗]∗ be the corresponding eigenvec-
tor, then λ 6=1.

Proof. From (3.8) we have

[

αI−Ŝ 0
0 αI

][

û
v̂

]

=

[

αI+Ĥ B̂T
t

−B̂t αI

][

λû
λv̂

]

, (3.9)

If λ=1, then from (3.9) we have

[

Â B̂T
t

−B̂t 0

][

û
v̂

]

=0.

Since the coefficient matrix is nonsingular, we have û=0 and v̂=0, which contradicts with
the assumption that [û∗,v̂∗]∗ is an eigenvector of the iteration matrix T . So λ 6=1.

Lemma 3.3. ([5]) Both roots of the complex quadratic equation λ2+φλ+ϕ= 0 have modulus
less than one if and only if |φ−φ̄ϕ|+|ϕ|2<1, where φ̄ denotes the conjugate number of φ.

By Theorem 3.1 in [15], the condition theorem of γ(Γ)<1 can be given as follow.
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Theorem 3.2. Let A be nonsymmetric positive definite, B be rank deficient, C be symmetric
positive semi-definite and null(C)∩null(BT) 6={0}. Suppose that α>0 is a given constant. Let
λ be an eigenvalue of the matrix T and [û∗,v̂∗]∗ be the corresponding eigenvector. Denote

a=
û∗Ĥû

û∗û
, b=

û∗B̂T
t B̂tû

û∗û
, is=

û∗Ŝ û

û∗û
, (3.10)

where i is the imaginary unit. Then the pseudo-spectral radius of the matrix Γ is less than 1, i.e.,
γ(Γ)<1 if and only if the parameter α satisfies the following conditions

{

α2s2
<α2a2+b2+2aα3+2bα2+2abα,

4a2α4+2aα3(a2+4b−s2)+(5a2b+4b2−3bs2)α2+4ab2α+b3
>0.

(3.11)

Proof. From (3.9) we have

{

(λ−1)αû+λB̂T
t v̂+λĤû+Ŝ û=0,

λB̂tû+(1−λ)αv̂=0.
(3.12)

By Lemma 3.2, we know that λ 6= 1. In addition, we can get û 6= 0. Otherwise, by (3.12)
we have (1−λ)αv̂=0. Then, it follows that v̂=0, which contradicts with the assumption
that [û∗,v̂∗]∗ is an eigenvector. Now, solving v̂ from the second equation of (3.12) and
substituting it into the first one, we have

α2(λ−1)2û+α(λ−1)(λĤ+Ŝ)û+λ2B̂T
t B̂tû=0. (3.13)

Multiplying û∗

û∗û to the two sides of the equation (3.13) from the left yields

(α2+aα+b)λ2+(−aα−2α2+isα)λ+α2−isα=0. (3.14)

(I) If α2+aα+b=0, then λ= aα+b+isα
aα+2b+isα , then |λ|<1 due to b>0.

(II) If α2+aα+b 6=0, the quadratic equation (3.14) can be written as λ2+φλ+ϕ=0, where

φ=
−aα−2α2+isα

α2+aα+b
, ϕ=

α2−isα

α2+aα+b
.

By Lemma 3.3, we know that |λ|<1 if and only if |φ−φ̄ϕ|+|ϕ|2<1, Define three auxiliary
functions

h1(α)=α4+α2s2,
h2(α)=(α2+aα+b)2,
h3(α)=(a2α2+abα+2aα3+2bα2−s2α2)2+α2s2b2,

then we have

|φ−φ̄ϕ|+|ϕ|2=
h1(α)+

√

h3(α)

h2(α)
,

and |φ−φ̄ϕ|+|ϕ|2<1 if and only if

h1(α)−h2(α)<0, and (h1(α)−h2(α))
2−h3(α)>0.
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By careful calculation, we obtain that the iteration scheme (3.6) is convergent if and only if
the parameter α satisfies the inequality (3.11). Hence, γ(Γ)<1 if and only if the parameter
α satisfies the inequality (3.11).

Finally, the semi-convergence theorem of the FSS iteration method for singular saddle
point problems readily follows from Lemma 3.1, Theorem 3.1 and Theorem 3.2.

Theorem 3.3. Let A be nonsymmetric positive definite, B be rank deficient, C be symmetric
positive semi-definite and null(C)∩null(BT) 6= {0}. Suppose that α > 0 is a given constant.
Then the FSS iteration method is semi-convergent for solving singular saddle point problems if
the inequality (3.11) is valid.

Remark 3.1. The FSS iteration method is a stationary iteration. Even with the optimal
choice of the parameter, the convergence of the stationary iteration (2.1) is typically too
slow for the method to be competitive. For this reason, we propose using a nonsymmet-
ric Krylov subspace method like GMRES, or its restarted version GMRES(m), to acceler-
ate the convergence of the iteration. A clustered spectrum of the preconditioned matrix
M−1A often translates in rapid convergence of GMRES. Since M−1A= I−Γ, from The-
orem 3.3 we can see that the nonzero eigenvalues of the preconditioned matrix M−1A
are located in a circle centered at (1,0) with the radius strictly less than 1 under some
conditions, which is a desirable property for Krylov subspace acceleration.

4 Numerical experiments

In this section, some numerical experiments are presented to illustrate the feasibility and
effectiveness of the FSS iteration method for singular generalized saddle point problems
(1.1). The GSS iteration method studied recently [24] are compared with the FSS iteration
method from aspects of iteration steps (denoted by ’IT’) and the elapsed CPU time in sec-
onds (denoted by ’CPU’). In addition, numerical results of well-known GMRES method,
the GSS and the FSS preconditioned GMRES methods are also given, which can further
show that the induced FSS preconditioner is much better than the induced GSS precon-
ditioner for the generalized saddle point problems. The GSS iteration scheme is defined
as follows

1

2

(

αI+A BT

−B βI+C

)(

x(k+1)

y(k+1)

)

=
1

2

(

αI−A −BT

B βI−C

)(

x(k)

y(k)

)

+

(

f
g

)

, (4.1)

where α and β are two positive constants. The GSS preconditioner, which is induced by
the iteration (4.1), is defined by

PGSS=
1

2

(

αI+A BT

−B βI+C

)

. (4.2)

All experiments are performed in MATLAB on a personal computer with Intel Core i5
CPU 2.50 GHz, 4.0GB memory.
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Table 1: Numerical results of different iteration methods (ν=1).

Grids
Methods 8×8 16×16 32×32 64×64

α 0.8 0.4 0.2 0.2
β 0.1 0.01 0.001 0.0001

GSS IT 30 55 111 227
CPU 0.03 0.21 2.33 22.44
RES 7.87e-7 9.89e-7 9.73e-7 8.11e-7

α 0.001 0.001 0.001 0.0001
FSS IT 4 5 8 4

CPU 0.01 0.02 0.17 0.42
RES 3.46e-8 1.88e-7 8.00e-7 5.83e-7

Table 2: Numerical results of different preconditioned GMRES methods (ν=1).

Grids
Preconditioner 8×8 16×16 32×32 64×64

IT 50 108 209 386
I CPU 0.04 0.28 3.03 33.16

RES 9.73e-7 8.51e-7 9.91e-7 9.73e-7

α 0.2968 0.0764 0.0192 0.0048
PGSS IT 18 26 29 50

(β=0.25) CPU 0.01 0.04 0.49 7.82
RES 5.43e-7 6.59e-7 5.59e-7 9.02e-7

α 0.001 0.001 0.001 0.0001
IT 4 5 8 6

PFSS CPU 0.00 0.01 0.16 1.58
RES 6.25e-8 3.28e-7 2.22e-7 4.89e-7

Consider the following two dimensional linearized Navier-Stokes equation, namely,
Oseen equation [17]

{

−ν△u+(ω ·▽)u+▽p= f ,
▽·u=0,

(4.3)

in a bounded domain. Here the vector field ω is the approximation of u from the pre-
vious Picard iteration. The parameter ν> 0 represents viscosity. Various approximation
schemes can be used to discretize the Oseen problem (4.3), which can lead to a gener-
alized saddle point system of type (1.1). A is the discretization of the convection and
diffusion terms, which is nonsymmetric positive definite. BT is the discrete gradient, B
is the discrete divergence, C is the local stabilization matrix, which is symmetric positive
semi-definite. f and g contain forcing and boundary terms. The test problem using the
IFISS software package [16] is the leaky-lid driven cavity problem. The discretization
used is stabilized Q1-P0 finite elements. In all cases the default value of the stabiliza-
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Table 3: Numerical results of different iteration methods (ν=0.1).

Grids
Methods 8×8 16×16 32×32 64×64

α 0.1 0.1 0.05 0.05
β 0.25 0.06 0.01 0.001

GSS IT 69 103 161 418
CPU 0.06 0.32 2.52 32.02
RES 9.53e-7 9.47e-7 9.57e-7 8.28e-7

α 0.001 0.001 0.001 0.0001
FSS IT 6 5 6 4

CPU 0.02 0.02 0.11 0.31
RES 2.29e-7 1.53e-7 4.32e-7 3.24e-7

Table 4: Numerical results of different preconditioned GMRES methods (ν=0.1).

Grids
Preconditioner 8×8 16×16 32×32 64×64

IT 71 118 189 335
I CPU 0.09 0.30 1.81 17.53

RES 8.93e-7 9.07e-7 9.66e-7 9.84e-7

α 0.0299 0.0079 0.002 0.0005
PGSS IT 11 17 23 22

(β=0.25) CPU 0.01 0.02 0.36 5.80
RES 9.30e-7 6.94e-7 4.67e-7 9.34e-7

α 0.001 0.001 0.001 0.0001
IT 4 5 7 6

PFSS CPU 0.00 0.01 0.10 1.58
RES 6.25e-8 6.04e-7 2.99e-7 3.79e-7

tion parameter τ=0.25 is used. It should be mentioned that the generalized saddle point
matrix generated by this package is actually singular, since B has rank m−2 and the con-
dition null(C)∩null(BT) 6={0} is satisfied.

To get test problems, three viscosity values ν= 1, 0.1, 0.01 and four grids, 8×8, 16×
16, 32×32, 64×64, are considered. To implement these iteration methods efficiently and
get fast convergence rate of the corresponding preconditioned GMRES methods, the pa-
rameters involved in these methods should be chosen appropriately. In this paper, for
the FSS iteration, the parameters are the experimentally found optimal ones, which re-
sult in the least iteration steps. For the GSS preconditioner, the parameter α is chosen to
be the same as the parameter in [24]. In all the test problems discussed in this section,
the sub-linear systems are solved by direct methods, which corresponds to computing
the Cholesky or LU factorization in combination with AMD or column AMD reordering
in MATLAB. In all experiments, the initial vector x0 is set to be the zero vector and the
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Table 5: Numerical results of different iteration methods (ν=0.01).

Grids
Methods 8×8 16×16 32×32 64×64

α 0.05 0.03 0.02 0.01
β 1.0 0.04 0.008 0.002

GSS IT 151 283 416 693
CPU 0.11 0.85 6.48 54.29
RES 9.47e-7 9.82e-7 9.92e-7 9.91e-7

α 0.03 0.03 0.02 0.005
FSS IT 26 45 180 159

CPU 0.02 0.14 3.77 12.29
RES 8.48e-7 9.17e-7 9.69e-7 9.90e-7

Table 6: Numerical results of different preconditioned GMRES methods (ν=0.01).

Grids
Preconditioner 8×8 16×16 32×32 64×64

IT 123 279 489 784
I CPU 0.26 1.87 13.90 113.68

RES 9.37e-7 9.86e-7 9.94e-7 9.89e-7

α 0.0026 0.0008 0.0002 0.0001
PGSS IT 8 13 25 47

(β=0.25) CPU 0.01 0.07 0.40 12.49
RES 3.83e-7 3.67e-7 7.07e-7 7.92e-7

α 0.001 0.0001 0.0001 0.0001
IT 14 19 20 23

PFSS CPU 0.01 0.02 0.30 6.01
RES 6.25e-8 6.04e-7 2.99e-7 3.79e-7

relative residual error (denoted by ’RES’) is defined by RES := ‖b−Auk‖2/‖b‖2. Itera-
tions are terminated if the relative residual error satisfies RES :< 10−6 or the prescribed
iteration step is larger than 2500. Note that in the following given tables, ’I ’ denotes the
GMRES method without preconditioning.

Table 1 gives the iteration steps, the CPU time and the relative error of the GSS and
FSS methods with ν = 1. The optimal parameters of the FSS method are also listed in
Table 1. From Table 1, it can be seen that the iteration steps and the elapsed CPU time of
the proposed FSS iteration method are much less than those of the GSS method. These
results show that the proposed FSS iteration method is much efficient.

In Table 2, numerical results of the GMRES, the GSS and FSS preconditioned GMRES
methods are given for ν=1. The optimal parameters of the FSS preconditioned method
are also presented. Numerical results show that both GSS and FSS preconditioners can
accelerate the convergence rate of the GMRES greatly. Besides, both the iteration steps
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and the elapsed CPU time show that the proposed FSS preconditioner has advantages
over the GSS preconditioner.

In Tables 3 and 5, the numerical results and the optimal parameters of the GSS and
FSS iteration methods for ν=0.1 and ν=0.01 are given, respectively. From Tables 3 and 5,
it can be seen that FSS iteration method with the optimal iteration parameters succeed to
quickly produce approximate solutions. Moreover, the FSS method always outperforms
the GSS method considerably in iteration steps, CPU time.

Tables 4 and 6 give the iteration steps, the CPU time and the relative error for the
GMRES and two preconditioned GMRES methods for ν= 0.1 and ν= 0.01, respectively.
From Tables 4 and 6, it can be seen that the iteration steps and CPU time of the FSS
preconditioned GMRES method are less than those of the GSS preconditioned GMRES
method.

In order to investigate the dependence of the FSS iteration method on the iteration
parameter α, we illustrate the changing of its iteration steps with respect to different α in
Figure 1. Here, we choose three case with ν=1, 0.1 and 0.01 on a 8×8 grid. From Figure
1, it is seen that iteration steps get larger as the parameter increases when ν=1 and 0.1,
while ν=0.01 its iteration steps change dramatically with the varying of α. Besides, it is

(a) ν=1 (b) ν=0.1 (c) ν=0.01

Figure 1: Iteration steps of the FSS iteration method versus parameter α on a 8×8 grid.

(a) Original matrix (b) GSS preconditioned matrix (c) FSS preconditioned matrix

Figure 2: Eigenvalue of the original matrix and preconditioned matrices on a 32×32 grid(ν=1).
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(a) Original matrix (b) GSS preconditioned matrix (c) FSS preconditioned matrix

Figure 3: Eigenvalue of the original matrix and preconditioned matrices on a 32×32 grid(ν=0.1).

observed that the iteration steps of the FSS method increase greatly when the viscosity
parameter ν becomes small. The main reason is the Oseen problem usually becomes
harder to solve as the viscosity gets smaller.

Figure 2 shows the eigenvalue distribution of the original matrix and the precondi-
tioned matrices for ν=1 on a 32×32 grid. The graph on the left corresponds to the original
matrix, the one in the middle to the GSS preconditioned matrix and the one on the right
to the FSS preconditioned matrix. The eigenvalues of the original matrix and the precon-
ditioned matrices for ν= 0.1 on a 32×32 grid are displayed in Figure 3. From Figures 2
and 3, it is observed that all preconditioned matrices have much clustered eigenvalues
compared with original matrix. Note the strongest clustering of the eigenvalues for the
case with the FSS preconditioned matrix, which in turn leads to the fastest convergence
rate. In addition, the optimal parameter α is chosen to approximate to zero, and then
the condition of the semi-convergence is tenable, which means that the numerical results
verify the theoretical analyses.

5 Conclusion

In this paper, a fast shift-splitting iteration method is proposed for singular generalized
saddle point problems. Semi-convergence conditions are presented. Numerical results
show the proposed FSS iteration method is feasible and effective.
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