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Abstract. In this paper, an inverse source problem for the time-fractional diffusion e-
quation is investigated. The observational data is on the final time and the source term
is assumed to be temporally independent and with a sparse structure. Here the spar-
sity is understood with respect to the pixel basis, i.e., the source has a small support.
By an elastic-net regularization method, this inverse source problem is formulated in-
to an optimization problem and a semismooth Newton (SSN) algorithm is developed
to solve it. A discretization strategy is applied in the numerical realization. Several
one and two dimensional numerical examples illustrate the efficiency of the proposed
method.
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1 Introduction

Let Ω ⊆Rd, d = 1,2,3 be an open bounded domain with C1-boundary, we consider the
following time-fractional diffusion equation with homogeneous Dirichlet boundary con-
dition:















∂αu(x,t)

∂tα
=∆u+ f (x), (x,t)∈Ω×(0,T),

u(x,t)=0, (x,t)∈∂Ω×(0,T],

u(x,0)=u0(x), x∈Ω.

(1.1)
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The fractional derivative ∂αu(x,t)/∂tα is the Caputo fractional derivative which is defined
by

∂αu(x,t)

∂tα
=

1

Γ(1−α)

∫ t

0
(t−η)−α ∂u

∂η
dη, 0<α<1, (1.2)

where Γ(1−α) is the Gamma function. The time-fractional diffusion equation has been
successfully applied in many fields. For instance, in [24] it is applied to describe the
diffusion in fractional geometry. The time-fractional diffusion is also closely related to a
non-Markovian diffusion process [22] or continuous time random walks on fractals [27].
A comprehensive review on it can be found in [3], see also [15, 25].

In last decades, the mathematical analysis and the numerical realization to the time-
fractional diffusion equation have been studied in many literatures, see e.g., [4, 10, 12,
18, 19, 23, 28] and references cited there. Meanwhile, many scholars consider the inverse
problem corresponding to time-fractional diffusion equation. For example, based on the
eigenfunction expansion and the Gel’fand-Levitan theory, the uniqueness of identifying
the order of the fractional derivative and diffusion coefficient was established in Chen
et al. [1] for one-dimensional time fractional diffusion equation. In [14], Jin and Run-
dell proposed an algorithm of the quasi-Newton type to reconstruct a spatially varying
potential term in a one-dimensional time-fractional diffusion equation and the unique
identifiability of the inverse problem had been established in the case where the time
is sufficiently large and the set of input sources forms a complete basis in L2(0,1). Liu
and Yamamoto proposed a numerical scheme for the backward problem based on the
quasi-reversibility method in [20] and derived error estimates for the approximation un-
der a priori smoothness assumption on the initial condition. In [34], Wang and Liu ap-
plied the data regularizing technique to deal with the backward problem, under the a
priori information about the bound on initial function, the Hölder convergence result
was established. An regularization method was proposed to solve a time fractional or-
der backward heat conduction problem and the optimal stability error estimation was
obtained in Xiong et al. [37]. Ye and Xu proposed a time-space spectral approximation
algorithm based on the optimal control framework to solve the backward problem and
they obtained a priori error estimate for the spectral approximation in [38]. By applying
the separation of variables, Wang et al. [33] reconstructed a space-dependent source for
the time-fractional diffusion equation by Tikhonov regularization method and provid-
ed the convergence estimates under an a priori and a posteriori parameter choice rule.
In [36], Wei and Zhang transformed the time-dependent inverse source problem into a
first kind Volterra integral equation and used a boundary element method combined with
a generalized Tikhonov regularization to solve the Volterra integral equation. Based on
the method of the eigenfunction expansion, the uniqueness of the inverse problem was
proved by analytic continuation and Laplace transform in Zhang and Xu [39]. Zheng and
Wei considered Fourier regularization method to solve the sideway problem for the time
fractional advection-dispersion equation in a quarter plane in [40] and they obtained the
convergence under a priori bound assumptions for the exact solution.
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In these studies, the reconstructed solution is assume to be smooth and some algo-
rithms work for one dimensional spatial domain but not easy to generalize to two (or
three) dimensional spatial domain. In this work, we consider the reconstruction of the
time independent source term f (x) by the noisy final time measurement gδ(x)≈u(x,T; f ),
with a priori sparsity constraint for the source f (x). The sparsity of f (x) is understood
in the sense that supp f (x) is small, which is a reasonable assumption when we consider
the (nearly) pointed source term. To handle the sparse constraint of f (x), we propose an
elastic-net type regularization formulation as:

min
1

2
‖u(x,T; f )−gδ(x)‖2+β‖ f‖L1 (Ω)+

γ

2
‖ f‖2, (1.3)

where u(x,t; f ) is the solution of Eq. (1.1) with source term f . The elastic-net regular-
ization has been widely applied for inverse problem in sequence space [13, 41] and the
optimal control in functional space [2, 29, 30] Due to the superposition principle to the
Eq. (1.1), we may assume the initial data u0(x)=0 in later discussion. Then for any given
source function f (x), by solving Eq. (1.1) we can formally define a forward linear opera-
tor

M : f (x) 7→u(x,T; f ), (1.4)

and the optimization problem (1.3) can be equivalently rewritten as

min Jβ,γ( f )=
1

2
‖M f −gδ(x)‖2+β‖ f‖L1(Ω)+

γ

2
‖ f‖2. (1.5)

The regularization problem (1.5) is a nonsmooth optimization problem, we will apply
a semismooth Newton method to solve it. For a large class of nonsmooth optimization
problems, such as the optimal control problem with control/state constraints, the optimal
control problem with L1-cost functional or the inverse problem with sparse constraint, the
semismooth Newton method was known to be an efficient, locally superlinearly conver-
gent technique; see e.g., [8, 9, 16, 17, 30]. Recall the notation of Newton differentiability:
Let X and Y be two Banach spaces, with D an open set in X and a map F from D to Y.

Definition 1.1. F : D 7→Y is called Newton (slantly) differentiable at x∈D, if there exists
an open neighborhood Nx ⊂D and mappings G : Nx 7→L(X,Y) (bounded linear operator
from X to Y) such that

lim
‖h‖X→0

‖F(x+h)−F(x)−G(x+h)(h)‖Y

‖h‖X
=0. (1.6)

The mapping G is called the Newton derivative of F at x.

For a Newton differentiable (in properly chosen function space) operator equation
F(x)=0, the semismooth Newton method is Newton type algorithm which replaces the
Frechét derivative by Newton derivative during each iteration. In the function space set-
ting, we will prove the locally superlinear convergence of semismooth Newton method
to problem (1.5).
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Problem (1.5) is an infinite-dimensional optimization problem. Both an optimization
algorithm and a discretization of the governing equation are needed in the numerical re-
alization. There exist two different approaches: ”optimization-then-discretization” and
”discretization-then-optimization”. Since semismooth Newton method has been given
in the function space setting, it is natural to apply ”optimization-then-discretization” ap-
proach. However during each Newton iteration, one needs to solve a coupled fractional
diffusion system, which involves all unknowns in both spatial and temporal direction.
This leads to a huge linear system, which is very expensive to solve it for every Newton
iteration. To overcome this difficulty, we introduce a different strategy for discretization.
More precisely, the whole algorithm in this article is divided into two steps. Firstly we
compute the explicit form of the discrete operator Mh,τ, i.e., given a basis {ϕi} of the dis-
cretization space Wh̃ of the source term f , then for any ϕi we compute Mh,τ ϕi by solving
a discrete fractional diffusion equation, see also [35]. This step is quite expensive since
a lot of discrete fractional diffusion equations need to be solved, but it can be computed
in a parallel manner. Once the explicit expression of Mh,τ is derived, we can discrete the
Newton iteration by using the explicit form Mh,τ. In general the discrete operator Mh,τ is
a full matrix. Thanks to the a priori sparse information, by using the standard P1 finite
element discretization, the discrete optimal solution is also sparse. Therefore the semis-
mooth Newton method (or equivalently primal dual active set method) is very attractive:
at each iteration one needs to solve a least square problem only on a small size subset (on
the active set). Combining with a continuation strategy, the second step (semismooth
Newton iteration) is very efficient, see also [7, 31]. It should be noticed that to determine
the regularization parameter, one needs to solve the optimization problem (1.5) several
times with different parameters. By using the explicit form of the discrete operator Mh,τ

and discrete semismooth Newton algorithm, it is quite cheap to solve problem (1.5) with
given parameters β and γ.

The rest of this paper is organized as follows. The notations are introduced at the
end of this section. In Section 2, the elastic-net regularization is introduced, the semis-
mooth Newton method is given and its local superlinear convergence is proved. The
discretization of governing equation and a discretization algorithm is proposed in Sec-
tion 3. Several numerical examples are given in Section 4 to show the efficiency of the
proposed algorithm.

The standard Sobolev spaces Lq(Ω), q ≥ 1 and Hs(Ω), s ∈N are equipped with the
norm

‖ f‖Lq(Ω)=
(

∫

Ω
| f (x)|qdx

)1/q
, ‖ f‖Hs(Ω)=

(

∑
|α|≤s

∥

∥

∥

∂|α| f

∂xα1
1 ···∂xαd

d

∥

∥

∥

2

L2(Ω)

)1/2
,

where Ω can be omitted without confusion and ‖·‖L2(Ω) is denoted by ‖·‖ for simplicity.

The inner product in L2(Ω) induced by its norm reads

〈 f ,g〉=
∫

Ω
f (x)g(x)dx.



Z. S. Ruan, Z. J. Yang and X. L. Lu / Adv. Appl. Math. Mech., 8 (2016), pp. 1-18 5

Throughout the paper, the constant C and c are generic constants that might be different
at different places.

2 Elastic-net regularization and semismooth Newton method

2.1 Elastic-net regularization

For any given f (x) ∈ L2(Ω), recall the operator M : f (x) 7→ u(x,T; f ), where u(x,t; f ) is
the unique solution of Eq. (1.1) with initial condition u0 = 0. Let {λk}

∞
k=1 (0<λ1 ≤λ2 ≤

··· , k = 1,··· ,∞), {χk}
∞
k=1 be the eigenvalues and the L2 orthonormal eigenfunctions of

negative Laplace operator −∆ with homogeneous Dirichlet boundary condition, respec-
tively. Then M f can be expressed as (see [28]):

M f (x)=u(x,T; f )=
∞

∑
k=1

(

∫ T

0
(T−τ)α−1Eα,α(−λk(T−τ)α)dτ

)

〈 f ,χk〉χk, (2.1)

where Eα,θ(z) is the double-parameter Mittag-Leffler function:

Eα,θ(z) :=
∞

∑
k=0

zk

Γ(αk+θ)
, z∈C, α>0, θ≥0.

With the help of the above expression of M and the property of the Mittag-Leffler function
(see e.g., [15]), we can prove the property of the forward operator M.

Lemma 2.1. M is a self-adjoint injective bounded linear operator from L2(Ω) to L2(Ω). More-
over c‖ f‖≤‖M f‖H2 ≤C‖ f‖ holds for some 0<c<C<+∞ and hence M is a compact operator.

Proof. Due to (2.1) and the property of Mittag-Leffler function [15], the solution u(x,T; f )
can be represented by

M f (x)=u(x,T; f )=
∞

∑
k=1

(

∫ T

0
(T−τ)α−1

Eα,α(−λk(T−τ)α)dτ
)

〈 f ,χk〉χk

=
∞

∑
k=1

1

λk
(1−Eα,1(−λkTα))〈 f ,χk〉χk.

By the orthogonality of {χk}
∞
k=1 and the complete monotonicity of the function

Eα,1(−t) [26] and the fact that 0 ≤ Eα,1(−t)≤ 1 for t ∈ [0,+∞), we can deduce that the
operator M is self-adjoint, injective and bounded linear operator. Moreover

‖∆u(·,t)‖2
L2 =

∞

∑
k=1

λ2
k

(1−Eα,1(−λktα)

λk

)2
〈 f ,χk〉

2=
∞

∑
k=1

(1−Eα,1(−λktα))2〈 f ,χk〉
2,
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and

‖ f‖2 =
∞

∑
k=1

〈 f ,χk〉
2≥

∞

∑
k=1

(1−Eα,1(−λktα))2〈 f ,χk〉
2

≥
∞

∑
k=1

(1−Eα,1(−λ1tα))2〈 f ,χk〉
2=(1−Eα,1(−λ1tα))2‖ f‖2.

Combining above inequality with standard elliptic estimation, there exist positive con-
stants c, C such that

c‖ f‖≤‖u(x,T; f )‖H2 ≤C‖ f‖. (2.2)

Then compactness of the map M follows by Sobolev compact embedding theorem.

From Lemma 2.1, we find the forward operator M is a smoothing operator and hence
the associated inverse problem is ill-posed. By exploiting the sparse structure of the solu-
tion, we introduce the elastic-net regularization and obtain the nonsmooth optimization
problem (1.5). The two regularization parameters β and γ are used to balance the fidelity
term, sparsity level and smoothness of the solution. Since the operator M is linear, β‖ f‖L1

is convex, the cost functional Jβ,γ( f ) is strongly convex. Therefore the unique existence
of the minimizer of (1.5) can be obtained by standard arguments, see e.g., [5].

Theorem 2.1. For any positive β, γ, there exists a unique minimizer to problem (1.5).

2.2 Semismooth Newton algorithm

We first derive the optimality system of problem (1.5). Let f ∗ be the optimal solution of
problem (1.5), then there exists d∗∈∂‖·‖L1 | f ∗ which satisfies

Mt(M f ∗−gδ)+βd∗+γ f ∗=0.

One may observe that d∗∈∂‖·‖L1 | f ∗⇔ f ∗=Tc( f ∗+cd∗) for any positive constant c (see [5]),
where Tc(·) is the soft-thresholding operator with Tc( f )=sgn( f )max(| f |−c,0), see Fig. 1.
By introducing the adjoint variable p∗, the optimality system can be written as

p∗=−Mt(M f ∗−gδ), p∗=βd∗+γ f ∗, f ∗=Tc( f ∗+cd∗).

It is known that the operator Tc is Newton differentiable from Lq 7→L2 for any q>2 (cf. [9]).
To apply semismooth Newton algorithm, we may choose c= β/γ and eliminate d∗ from
the optimality system:







p∗=−Mt(M f ∗−gδ),

f ∗=Tc

( 1

γ
p∗
)

.
(2.3)

Let

F(z)=





p+Mt(M f −gδ)

f −Tc

( 1

γ
p
)



,
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0
f

−c c

0

Figure 1: soft-thresholding operator.

where

z=

(

p
f

)

.

Since M is a smoothing operator, due to the regularity gap between p∗/γ and f ∗, F(z)
is Newton differentiable from any Lq to L2 with q > 2. One step semismooth Newton
iteration reads

zk+1−zk =−[∇N F(zk)]−1F(zk),

where ∇N F is the Newton derivative of F. In particular, let

A=
{

x :
∣

∣

∣

1

γ
p(x)

∣

∣

∣
> c

}

, I=
{

x :
∣

∣

∣

1

γ
p(x)

∣

∣

∣
≤ c

}

,

then ∇N F

(

p
f

)

can be chosen as

∇N F

(

p
f

)

=





I MtM

−
1

γ
χA I



,

where χA is the characteristic function on A.
Similar as in [9, 30], semismooth Newton method can be equivalently represented by

an active set approach, see Algorithm 1 for the details. The stopping condition at line 5
can be chosen as Ak

±=Ak+1
± , where

Ak
±=

{

x :±
1

γ
pk−1(x)> c

}

.

It is easy to see that Ak
±=Ak+1

± implies the convergence of the solution.
Now we will prove the locally superlinear convergence of semismooth Newton

method. Denoted by ek = f k− f ∗, sk = pk−p∗, subtracting Eq. (2.3) from (2.4) we obtain
the error equation:

Mt Mek+sk =0, (2.5a)

ek−
1

γ
χAk sk =Tc

( 1

γ
pk−1

)

−Tc

( 1

γ
p∗
)

−
1

γ
χAk sk−1,Rk−1. (2.5b)
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Algorithm 1 Semismooth Newton method algorithm.

1: Given initial guess p0, f 0.
2: for k=1,2,··· , do

3: Define the active set Ak and inactive set Ik respectively by

Ak=
{

x :
∣

∣

∣

1

γ
pk−1(x)

∣

∣

∣
> c

}

, Ik=
{

x :
∣

∣

∣

1

γ
pk−1(x)

∣

∣

∣
≤ c

}

.

4: Let (pk, f k) solves following equation:







Mt M f k+pk =Mtgδ,

f k|Ik =0,
( 1

γ
pk− f k

)∣

∣

∣

Ak
= c·sgn(pk−1(x))|Ak .

(2.4)

5: Check the stopping criterion.
6: end for

By noticing that χAk /γ is Newton derivative of Tc(pk−1/γ), the remainder term Rk−1 can
be represented by

Rk−1=Tc

( 1

γ
pk−1

)

−Tc

( 1

γ
p∗
)

−DNTc

( 1

γ
pk−1

)

(pk−1−p∗),

and hence (see [9]):
‖Rk−1‖= o(‖pk−1−p∗‖Lq), ∀q>2.

In particular, by Sobolev embedding theorem, one has

‖Rk−1‖L2 = o(‖sk−1‖H2). (2.6)

Now we multiply (2.5a) with ek and (2.5b) with sk and subtract each other

‖Mek‖2+
1

γ
‖χAk sk‖2=−〈Rk−1,sk〉. (2.7)

Now, due to the regularity estimate (2.2) and the self-adjointness of the operator M, we
have

‖sk‖H2 =‖Mt(Mek)‖H2 ≤C‖Mek‖.

By Young’s inequality we deduce that

‖Mek‖≤δ‖sk‖2+Cδ‖Rk−1‖2.

Therefore,
‖sk‖H2 ≤C‖Rk−1‖= o(‖sk−1‖H2).
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The estimate for ek can be obtained from (2.5b):

‖ek‖≤
1

γ
‖sk‖+‖Rk−1‖.

Then we have the following theorem:

Theorem 2.2. If (p0, f 0) closes to (p∗, f ∗) enough, then (pk, f k) converges to (p∗, f ∗) superlin-
early.

3 Discretization

In this section, we consider the numerical discretization of the semismooth Newton
method. To do this, we introduce a new variable u = M f , then the Newton iteration
can be rewritten as



















uk=M f k,

Mt(uk−gδ)+pk =0,

f k|Ik =0,
( 1

γ
pk− f k

)∣

∣

∣

Ak
=(c·sgn(pk−1))|Ak .

(3.1)

One may find that each Newton iteration involves a system of differential equations. By
any discretization, one needs to solve a very large linear system which involves all degree
of freedom in temporal-spatial space. It can be very expensive.

Further, we notice that the operator M only involves the spacial variable and the op-
timal solution is supposed to be sparse. Therefore we use a different approach: Firstly,
we give an explicit form of the discretization of the operator M, then use the explicit ex-
pression of discrete operator Mh,τ in the iterative algorithm. In principle this approach
does not depend on the discretization in temporal-spatial variables. But to keep the s-
parse constraint, the finite element discretization is a natural choice. We will use finite
element approximation in spatial variable (but the finite element spaces can be differen-
t for the source term and the final observation data) and a (weighted) finite difference
approximation for fractional time derivative.

3.1 Discretization of the forward operator

Firstly we consider the discretization for the governing Eq. (1.1) with any f ∈ L2(Ω). Let
Th be a quasi-uniform triangulation of Ω and Vh be the finite element spaces over Th (for
simplicity we consider continuous P1 element), i.e.,

Vh=
{

v : v∈C0(Ω), v|∆h
∈P1(∆h), ∀∆h ∈Th

}

.

The time interval [0,T] is divided into L equal subintervals by 0=t0<t1<···<tL−1<tL=T,

with tk = kτ, τ=T/L, then the fraction time derivative
∂αu(x,t)

∂tα at tk can be approximated
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by

∂αu(x,t)

∂tα

∣

∣

∣t=tk
=

1

Γ(1−α)

∫ tk

0
(tk−η)−α ∂u(x,η)

∂η
dη

=
1

Γ(1−α)

k

∑
l=1

∫ tl

tl−1

(tk−η)−α ∂u(x,η)

∂η
dη

≈
τ−α

Γ(2−α)

k

∑
l=1

(u(x,tl)−u(x,tl−1))((k+1−l)1−α−(k−l)1−α)

=
τ−α

Γ(2−α)

k

∑
l=1

ωl(u(x,tk+1−l)−u(x,tk−l)),

where ωl = l1−α−(l−1)1−α, l=1,··· ,L. For {uk
h}⊆Vh, denoted by

Duα,k
h,τ =

τ−α

Γ(2−α)

k

∑
l=1

ωl(u
k+1−l
h −uk−l

h ).

Therefore for any given f ∈ L2(Ω), the discrete version of Eq. (1.1) reads: find {uk
h}⊆Vh,

such that

〈Duα,k
h,τ,ψh〉+〈∇uk

h,∇ψh〉= 〈 f ,ψh〉, ∀ψh∈Vh, k=1,··· ,L and u0
h=0. (3.2)

Next we consider the discretization to the source term f and the forward operator M.
One may choose a different finite element space (either P0 or continuous P1 element)
Wh̃ ⊂ L2(Ω) over another quasiuniform triangulation Th̃ for f . Then the discrete forward
operator Mh,τ is a linear transformation from Wh̃ to Vh. Let {φj}

n
j=1 and {ϕj}

m
j=1 form a

standard basis of Vh and Wh̃, respectively. For any ϕi, we can solve the Eq. (3.2) with f=ϕi

and find the representation to the corresponding solution: Mh,τ(ϕi)=uL
h(ϕi)=∑

n
j=1 aijφj.

Let the matrix Ψ∈Rn×m with explicit form:

Ψj,i = aij, i=1,··· ,m, j=1,··· ,n.

Therefore

Mh,τ(ϕi)=
n

∑
j=1

Ψj,iφj and Mt
h,τ(φi)=

m

∑
j=1

Ψi,j ϕj.

3.2 Discrete semi-smooth Newton method

Now we revisit the first line in Eq. (2.4): MtM f k+pk =Mtgδ. The discrete version of this
equation reads (we omit k for simplicity):

Mt
h,τ Mh,τ fh,τ+ph,τ =Mt

h,τgδ
h, (3.3)
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where gδ
h is the L2 projection of gδ to Vh, i.e., gδ

h =∑
n
i=1 giφi, such that 〈gδ

h,φj〉= 〈gδ,φj〉 for
all φj. Let fh,τ =∑

m
i=1 fi ϕi, ph,τ =∑

m
i=1 pi ϕi, then we have



















































Mt
h,τ Mh,τ fh,τ =Mt

h,τ Mh,τ

m

∑
i=1

fi ϕi=Mt
h,τ

( m

∑
i=1

n

∑
j=1

fiΨj,iφj

)

=
n

∑
j=1

( m

∑
i=1

fiΨj,i

)

Mt
h,τφj

=
n

∑
j=1

( m

∑
i=1

fiΨj,i

) m

∑
k=1

Ψj,k ϕk=
m

∑
k=1

[ n

∑
j=1

( m

∑
i=1

fiΨj,i

)

Ψj,k

]

ϕk,

ph,τ =
m

∑
i=1

pi ϕi,

Mt
h,τgδ

h =
n

∑
i=1

gi M
t
h,τφi=

n

∑
i=1

gi

m

∑
k=1

Ψi,k ϕk=
m

∑
k=1

( n

∑
i=1

Ψi,kgi

)

ϕk.

Substitute them into Eq. (3.3) and denote by

~f =





f1

···
fm



, ~p=





p1

···
pm



, ~g=





g1

···
gn



,

we have the matrix form of Eq. (3.3):

ΨtΨ~f +~p=Ψt
~g.

Since Wh̃ is chosen as either P0 or nodal P1 element space, the active set in Algorithm 1
and the second line in Eq. (2.4) has a natural discrete version: active/inactive set is the
subset of indexes for standard basis and the second line in Eq. (2.4) can be computed
componentwise, see Algorithm 2 for details. The stopping condition in line 5 can be
chosen as Ak

±=Ak−1
± , where Ak

±={i :± 1
γ pk−1

i > c}.
One can verify that Eq. (3.5) can be rewritten as an equivalent form:















~f k|Ik =0,

(Ψt
Ak ΨAk+γIAk)~f k|Ak =Ψt

Ak
~g+γc·sgn(~pk−1)|Ak ,

~pk =Ψt(~g−Ψ~f k).

(3.4)

Remark 3.1. We make several comments on this approach.

(1) The most time consuming part in this method is to find the explicit form of the
discretization matrix Ψ. One needs to solve a large number of the forward problem
(3.2) with f = ϕi, i = 1,··· ,m. Fortunately, this can be done by a parallel manner.
Moreover when n≪ m one can further reduce the computational cost by: letting
f=φi, i=1,··· ,n to solve the forward problem n times, then finding the L2-projection
onto Vh for each ϕi to obtain the matrix Ψ.

(2) Once the matrix Ψ is computed, we do not need to solve any partial differential
equations. It is important for the inverse problem, since to pickup a good regular-
ization parameter one needs to solve optimization problem (1.5) several times for
different parameters β and γ.
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Algorithm 2 Discrete semismooth Newton method algorithm.

1: Given initial guess ~p0=





p0
1

···
p0

m



, ~f 0 =





f 0
1

···
f 0
m



.

2: for k=1,2,··· , do

3: Define the active set Ak and inactive set Ik respectively by

Ak =
{

i :
∣

∣

∣

1

γ
pk−1

i

∣

∣

∣
> c

}

, Ik=
{

i :
∣

∣

∣

1

γ
pk−1

i

∣

∣

∣
≤ c

}

.

4: Let (~pk,~f k) solves following equation:







ΨtΨ~f k+~pk =Ψt~g,

f k
i =0, ∀i∈ Ik,

1

γ
pk

i − f k
i = c·sgn(pk−1

i ), ∀i∈Ak.
(3.5)

5: Check the stopping criterion.
6: end for

(3) In general, Ψ is a large nonstructural dense matrix. But during the iteration, we
don’t need to solve a full linear system. The linear system in second line of Eq. (3.4)
is with size |Ak|, which is usually small.

4 Numerical examples

In this section several numerical examples in one dimensional and two dimensional do-
mains by the proposed algorithm 2 are given. First we will give the setting for the numer-
ical tests, which include computational domain, data generation and how to choose the
initial guess and the regularization parameter. Second we use five numerical examples
to show the efficiency of the algorithm.

4.1 Experiments setting

The computational domain Ω= (0,1) and Ω= (0,1)×(0,1) for all one dimensional and
two dimensional examples, respectively. The finite element space Vh (for final time mea-
surement) and Wh̃ (for the source term) are both continuous P1 over possible different tri-
angulations Th and Th̃. In one dimensional case, Th̃ is chosen as a uniform partition with
h̃ = 1/100, Th is also a uniform partition with either h= 1/100 or h= 1/50 (in Example
4.3). In the later case, the discrete matrix is 49×99, not a square matrix. In two dimen-
sional case, we let Th =Th̃ with 1024 triangles. The final time is chosen as T= 1 and the
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temporal discretization parameter τ is 1/100 and 1/80 in one or two dimensional case,
respectively. To obtain the (noisy) observation data gδ, we first give the true solution f †

and solve the direct problem (1.1), then add pointwise noise by gδ(xi)=uL
h(xi)∗(1+δξ),

where xi is the nodal point in Th, δ is the noise level and ξ is a uniform random variable
in [−1,1].

There are two regularization parameters β and γ in the elastic-net regularization (1.5),
where β controls the sparsity of the solution and γ improves the regularity of it. To en-
sure a good approximation of the elastic-net regularization, the properly chosen regular-
ization parameters play important role. Since in the semismooth Newton algorithm, the
free parameter c is chosen as β/γ, we will use the strategy as in [21] to choose parameters
β and γ. Firstly we fix the ratio of two regularization parameter η= β/γ and apply dis-
crepancy principle to choose a solution f (η), then apply quasi-optimality criterion [32]
to choose η. In the numerical tests, we give a decreasing sequence of {ηk} and choose ηk

as the minimizer of ‖ f (ηk)− f (ηk−1)‖.

For any fixed ratio η= β/γ, to obtain a solution f (η) which satisfies the discrepancy
principle, we need to solve a sequence of minimization problem with different β. Mean-
while, a good initial guess is very important for the semismooth Newton method due to
its locally superlinear convergence property. Therefore we apply a continuation strategy
for the regularization parameter β (cf. [6,11]), i.e., given a decreasing sequence {βk}, then
we solve the regularization problem with β = βk sequentially by semismooth Newton
method, where the initial guess is chosen as the solution for β= βk−1. Once the discrep-
ancy principle ‖M fβk,βk/η−gδ‖≤ ρδ is satisfied (for a given constant ρ> 1), we stop the
algorithm and let fβk,βk/η be f (η).

4.2 Numerical tests

The first three examples are in one dimensional domain and the last two examples con-
sider two dimensional domain.

Example 4.1. Let α=0.7 and the exact source function to be

f (x)=







100(x−0.45), 0.45≤ x<0.5,
100(0.55−x), 0.5≤ x≤0.55,
0, otherwise.

Example 4.2. Let α=0.7, then choose 9 points randomly from the discrete grid points and
take the value as 5+10∗rand(9,1) as the exact source term.

The reconstruction for Examples 4.1 and 4.2 can be found in Figs. 2 and 3, respectively.
The noise level for Example 4.1 is chosen as δ=1%,2%,5% and for Example 4.2 is chosen
as 0.5%, 1%, 2%. From these two figures, we find the location of the support can be
approximately found and the reconstruction is reasonable.
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Figure 2: Reconstruction for Example 4.1.
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Figure 3: Reconstruction for Example 4.2.

Example 4.3. Let α=0.7, then choose 3 points randomly from the discrete grid points and
take the value as 5+10∗rand(3,1) as the exact source term.

In this example, we consider two different discretizations for the forward time-
fractional diffusion equation, i.e., h= 1/100 and h= 1/50. In the later case the discrete
matrix is a 49×99 matrix. The noise level is also chosen as 0.5%,1% and 2%, respectively.
Reconstruction by two discretizations can be found in Fig. 4.

Example 4.4. Let α=0.6 and the exact source function to be

f (x)=







100
( 1

100
−
(

x−
1

2

)2
−
(

y−
1

2

)2)

exp
[

−
(x− 1

2 )
2+(y− 1

2 )
2

2

]

,
(

x−
1

2

)2
+
(

y−
1

2

)2
≤

1

100
,

0, otherwise.

Numerical reconstructions with noise level δ = 1%,5% and the error function with
δ=5% are shown in Fig. 5. One may find the relatively error is small in this case.
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Figure 4: Comparison for different discretizations, h=1/100 (left panel) and h=1/50 (right panel).

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

x

exact solution

y
 

f(x,y)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) exact solution

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

x

inversion solution

y

 

f(x,y)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) reconstruction for δ = 1%

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

x

inversion solution

y
 

f(x,y)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) reconstruction for δ = 5%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

−0.06

−0.04

−0.02

0

0.02

0.04

0.06
 

error surface with δ=5%

x

y
 

f(x,y)

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

0.05

(d) error function for δ = 5%

Figure 5: Numerical Example 4.4.

Example 4.5. Let α=0.6, then choose 5 points randomly from the discrete grid points and
take the value as 5+10∗rand(5,1) as the exact source term.

Similar as Example 4.4, numerical results are showed in Fig. 6 with noise level δ=
1%,5% and the error function with δ=5%, respectively.
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Figure 6: Numerical Example 4.5.

5 Conclusions

In this paper, we study an inverse problem for identifying the temporally independent
source function for the time-fractional diffusion equation. By elastics-net regularization,
we transform the inverse problem into the optimization problem with L1-L2 penalties.
The discrete semismooth Newton method is applied to solve the optimization problem.
This approach is quite efficient by coupling with a continuation strategy on the regular-
ization parameter. Numerical examples are given to verify the efficiency of the proposed
algorithm.
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