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Abstract. We develop a numerical method to simulate a two-phase compressible flow
with sharp phase interface on Eulerian grids. The scheme makes use of a levelset to
depict the phase interface numerically. The overall scheme is basically a finite volume
scheme. By approximately solving a two-phase Riemann problem on the phase inter-
face, the normal phase interface velocity and the pressure are obtained, which is used
to update the phase interface and calculate the numerical flux between the flows of
two different phases. We adopt an aggregation algorithm to build cell patches around
the phase interface to remove the numerical instability due to the breakdown of the
CFL constraint by the cell fragments given by the phase interface depicted using the
levelset function. The proposed scheme can handle problems with tangential sliping
on the phase interface, topological change of the phase interface and extreme contrast
in material parameters in a natural way. Though the perfect conservation of the mass,
momentum and energy in global is not achieved, it can be quantitatively identified in
what extent the global conservation is spoiled. Some numerical examples are present-
ed to validate the numerical method developed.

AMS subject classifications: 65M10, 78A48
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1 Introduction

Many problems in nature and engineering involve multiphase flows where the flows in
different phases are depicted by an immiscible model. Numerical methods to accurately
track/capture the interface between two fluids have been an area of research for decades.
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Tryggvason et al. [17] provided a detailed review on various methods used for direct sim-
ulation of multiphase flows. Broadly, these schemes can be classified into two categories:
(a) Lagrangian and (b) Eulerian approach.

Lagrangian methods use marker-points connected to each other representing the
phase interface, which is tracked by advecting the marker points. In one class of La-
grangian methods [1, 11, 18], the governing equations of the flow are solved on a fixed
grid in an Eulerian frame. In another class of Lagrangian methods, the interface is repre-
sented by Lagrangian points and the flow field is also evaluated on these points, such as
moving particle-methods [5], vortex in cell methods [6,12], and smoothed-particle hydro-
dynamics [7]. Pure Lagrangian methods are promising as they avoid enormous memory
requirements for a three-dimensional mesh. Some of these methods automatically pro-
vide adaptive resolution in the high-curvature region [6] and have been applied success-
fully to many two-phase flow problems [4,19,20]. Although the accuracy of these method
is promising, the topological change of the phase interface is not handled automatically,
resulting in increased complexity of the algorithm for three-dimensional reconstruction
of the interface from marker-points [17], high cost of finding nearest neighbors in the
zone of influence of a Lagrangian point, true enforcement of continuity (or incompress-
ibility) conditions, and problems associated with accurate one-sided interpolations near
boundaries [6].

Eulerian approaches such as the volume-of-fluid (VOF) [8, 13] or the levelset
method [9, 14, 16] are used extensively for two-phase flow computations, which are s-
traightforward in implementation. In the simulation of incompressible flows, the levelset
approach is criticized since it does not preserve the volume of the fluids. The VOF for-
mulation, on the other hand, conserves the fluid volume but lacks in the sharpness of the
interface. Several improvements to these methods involve combination of the two [15],
and particle-levelsets [3] to improve the accuracy.

The method to be developed in this paper is a certain combination of the front track-
ing method and the levelset method. We use levelset function to represent the phase
interface, which is advected by its normal velocity. To calculate the exchange of the flux
between two fluids due to the interaction of the fluids on the phase interface and its dis-
placement, we are tracking the characteristic lines of the flow particles. Interiori to the
bulk of both fluids, the traditional conservative finite volume method is adopted. The e-
volving of the phase interface is following the standard approach of the levelset method.
This makes us concentrate on the calculation of the interface flux. By studying the one
dimensional two-phase Riemann problem, we derive an approximated flux contributed
at the phase interface, including the terms both from the phase interface movement and
the mass interaction. Using this approximated flux, we take the tracking along the char-
acteristic line as a one dimensional problem locally. An aggregation algorithm is adopted
to build cell patches around the phase interface so that the CFL constraint can be satisfied
even some of the cells in the mesh are cut into smaller fragments by the phase interface.
Numerical examples are presented to validate our numerical methods.

The rest of this paper is arranged as follows. In Section 2, the model of the two-
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phase flow governed by the Euler equations is introduced. In Section 3, we study the
one dimensional case to derive an approximated flux contributed by the phase interface.
The numerical scheme is detailed in Section 4 and the numerical examples are given in
Section 5.

2 Governing equations

Let us consider a two-phase compressible flow in a two/three dimensional domain Ω.
We are assuming that for any t≥0, the domain Ω is divided into two sub-domains Ω−(t)
and Ω+(t)

Ω−(t)
⋃

Ω+(t)= Ω̄, Ω−(t)∪Ω+(t)=Γin(t),

where Γin(t) is the sharp interface between the fluids of two different phases, referred as
phase 0 and phase 1, which are immiscible. We denote the state of the fluid by density ρ,
velocity u and pressure p, and the flow variables are governed by the compressible Euler
equations

∂U

∂t
+∇·F(U)=0,

where

U=





ρ
ρu

T

E



, F(U)=





ρu

ρu⊗u+pI

(E+p)u



,

and the relation of the total energy E per unit volume to the other flow variables is given
as the equation of state for ideal gas

E=
ρ‖u‖2

2
+

p

γ−1
,

where the polytropic index γ satisfies the convection equation

∂γ

∂t
+ũ·∇γ=0, (2.1)

with interface velocity ũ which is clarified later on. The initial value is given as

U(x,t=0)=U0(x), γ(x,t=0)=

{

γ0, x∈Ω−(t=0),
γ1, x∈Ω+(t=0),

where γ0 and γ1 are two constants for the fluids of two different phases. Here we omit
the discussion of the boundary condition on ∂Ω.
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Due to (2.1), the domain interface Γin is convected by the interface velocity ũ, and the
solution of γ is always as

γ(x,t)=

{

γ0, x∈Ω−(t),
γ1, x∈Ω+(t).

Since γ is contant in both sub-domains Ωi(t), i=0,1, it is clear that the value of ũ interiori
of the sub-domains is irrelevant to the evolving of γ in time. This makes one consider the
value of ũ on the phase interface Γin(t) only. Since the fluid velocity may not be a single-
valued function on the phase interface Γin(t) due to the discontinuity of the solution, the
convective velocity ũ of γ in (2.1) can not be simply assigned as u. For a point x on the
phase interface Γin(t), we denote the unit normal of Γin(t) at x as n(x,t) pointing to the
interiori of Ω+(t). The conservative variables of the fluids on both side of Γin(t) at x are
denoted as

U
−=[ρ−,ρ−u

− ·n,E−]T, [ρ−,ρ−u
−,E−]T = lim

τ→0
U(x−τn,t), (2.2a)

U
+=[ρ+,ρ+u

+ ·n,E+]T, [ρ+,ρ+u
+,E+]T = lim

τ→0
U(x+τn,t). (2.2b)

We propose a one dimensional Riemann problem

∂

∂t





ρ
ρu
E



+
∂

∂x





ρu
ρu2+p
(E+p)u



=0, (2.3a)

∂γ

∂t
+u

∂γ

∂x
=0, (2.3b)

where

p=(γ−1)(E−ρu2/2),








ρ
ρu
E
γ









t=0

=















[

U
−

γ0

]

, x<0,

[

U
+

γ1

]

, x>0.

Due to the conservative structure of the equations, the two-phase Riemann problem ad-
mits a self-similar solution as





ρ
ρu
E



(x,t)=





ρ
ρu
E



(x/t).

Particularily, we are pursuing the self-similar solution that the polytropic index is follow-
ing the translation of the mass, thus

γ(x,t)=γ(x/t).
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Since the two fluids are immiscible, the self-similar solution has to equip with a con-
stant velocity V(U−,U+) of the phase interface point. The phase interface point is then
located on

x/t=V(U−,U+).

As the result, the expression of γ following the movement of the mass is

γ(x,t)=

{

γ0, x/t<V(U−,U+),
γ1, x/t>V(U−,U+).

The phase interface is a contact discontinuity, connecting two constant states U−
⋆

and
U+

⋆
, thus the flow velocity across the contact discontinuity is constant. The Rankine-

Hugoniot condition then provides us that the pressure is constant across the contact dis-
continuity, denoted as P(U−,U+).

We then assign the value of ũ at x as

ũ(x,t)=V(U−,U+)n(x,t).

The flux across the contact discontinuity is thus as

[0,P(U−,U+)n(x,t),P(U−,U+)V(U−,U+)]T .

Remark 2.1. To circumvent even subtle Riemann solution structure, we assume that no
cavitation appears in the fluid, particularly on the phase interface Γin.

3 Interface flux

We consider a one dimensional model to demonstrate how to approximate the flux on
the phase interface used in the numerical scheme. Given a sequence of one dimensional
grid points xk ∈R as

x−1< x0< ···< xn−1< xn,

we try to obtain the approximated flux to every cell in the grid contributed by a Riemann
solution from t = 0 up to t = T in one time step in a numerical style. Precisely, if the
knowledge of the whole structure of the Riemann fan is not available †, except for the
velocity of the phase interface and the pressure there, the flux contributed to the grid
points and the phase interface is to be approximated. Without loss of generality, the
phase interface at t=0 is assumed to be x⋆∈(x−1,x0) and the phase interface at t=T is to
be x⋆∈ (xn−1,xn). As the initial value, we have

[ρ,ρu,E]t=0=

{

U
−=[ρl ,ρlul,El], x< x⋆,

U
+=[ρr,ρrur,Er], x> x⋆.

†It is too expansive to have the complete structure of the Riemann fan.
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The self-similar Riemannian solution developed from such an initial value may result
in a phase interface with velocity V =V(U−,U+) = X/T, where X = |x⋆−x⋆|, and cor-
responding pressure on the phase interface P= P(U−,U+). In front and behind of the
phase interface, the structure of the Riemannian solution gives a piece of constant area as

U
−,⋆=

[

ρ⋆l ,ρ⋆l V,
1

2
ρ⋆l V2+

P

γl−1

]

,

U
+,⋆=

[

ρ⋆r ,ρ⋆r V,
1

2
ρ⋆r V2+

P

γr−1

]

,

which is not available without the knowledge of the full structure of the Riemannian
solution. For stability based on CFL constraint, we consider the case that |x⋆−x−1| and
|xn−x⋆| are great enough that the Riemann fan is restricted in (x−1,xn).

Let tk = |xk−x⋆|/V, for k = 1,··· ,n−1, t0 = 0, tn = T, and denote δtk = tk−tk−1, for
k=1,··· ,n. Correspondingly, we denote δxk= |xk−xk−1|, k=1,··· ,n−1, δx0= |x0−x⋆| and
δxn = |x⋆−xn−1|.

At t = 0, the flux at x−1 is ulU
− since x−1 is located in the bulk of phase 0 and the

flux at xk, 0≤ k≤n−1, is urU
+ since xk is located in the bulk of phase 1. For t>0 that xk,

0≤k≤n−1, is located in the constant area vicinity to the phase interface in the Riemannian
solution, the flux at the xk is as VU

−,⋆ and VU
+,⋆ for phase 0 and phase 1, respectively.

Since U
−,⋆ and U

+,⋆ are not available, the flux at grid point xk at any time t is always
approximately taken as VU

− if it is located in phase 0 and VU
+ if it is located in phase

1. Such formula is a mixture of the phase interface velocity and the initial value, which is
the data assumed to be available in a reasonable way. The time period is |x⋆−xk|/V for
xk located in phase 0, and is |xk−x⋆|/V for xk located in phase 1, 0≤ k≤n−1. Then the
approximated flux at a point xk, 0≤ k≤n−1, is

(x⋆−xk)U
− and (xk−x⋆)U

+

for phase 0 and phase 1, respectively.

The flux at the phase interface (x⋆+tV,t) is always F̂ =[0,P,PV]. The time of period
that the phase interface is located in the cell (xk−1,xk) is then δtk, thus the flux contributed
on (xk−1,xk) due to the phase interface is

−δtk F̂ and δtk F̂, 0≤ k≤n,

for phase 0 and phase 1, respectively.

Collecting the flux due to the phase interface flux and due to the convection interior
to both phases, the contribution of the flux on the cells is obtained as below:

• For phase 0:
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• in cell (x−1,x0):

F̂
−
0 =−(x⋆−x0)U

−−δt0 F̂

=(−X+δx0)U
−−δt0 F̂

=(−T+δt0)VU
−−δt0 F̂.

• in cell (xk−1,xk), 1< k<n−1:

F̂
−
k =(x⋆−xk−1)U

−−(x⋆−xk)U
−−δtk F̂

=δxkU
−−δtk F̂

=δtkVU
−−δtk F̂.

• in cell (xn−1,xn):

F̂
−
n =δxnU

−−δtn F̂=δtnVU
−−δtn F̂.

• For phase 1:

• in cell (x−1,x0):

F̂
+
0 =−(x0−x⋆)U

++δt0 F̂=−δt0VU
++δt0 F̂.

• in cell (xk−1,xk), 1< k<n−1:

F̂
+
k =(xk−1−x⋆)U

+−(xk−x⋆)U
++δtk F̂

=−δxkU
++δtk F̂

=−δtkVU
++δtk F̂.

• in cell (xn−1,xn):

F̂
+
n =(xn−1−x⋆)U

++δtn F̂

=(X−δxn)U
++δtn F̂

=(T−δtn)VU
++δtn F̂.

If we consider the case V<0 that the phase interface point is travelling left, the similar
formula can be derived. Precisely, the above procedure can be carried out on the grid
points

x−1> x0> ···> xn−1> xn

to have results with only slight differences. We collect the flux for both cases V > 0 and
V<0 into an unified formulation as

F̂
±
k =

(

δ±k,V T∓δtk

)

VU
±±δtk F̂, 0≤ k≤n,
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where if V>0,

δ−k,V =

{

−1, k=0,
0, 1≤ k≤n,

δ+k,V =

{

0, 0≤ k≤n−1,
+1, k=n,

else if V<0,

δ−k,V =

{

0, 0≤ k≤n−1,
−1, k=n,

δ+k,V =

{

+1, k=0,
0, 1≤ k≤n.

It is clear that

n

∑
k=0

F̂
±
k =±TF̂,

and

n

∑
k=0

{

F̂
−
k + F̂

+
k

}

=0.

Remark 3.1. If the structure of the Riemann fan includes only a single contact disconti-
nuity, the flux above is accurate.

4 Numerical scheme

We triangulate the domain into a conforming mesh T with simplex cells. The cells in the
mesh are denoted as τi, and

Ω̄=
N
⋃

i=1

τi.

The intersection of two different cells is empty set, τ̊i∪τ̊j=∅ if i 6= j. For two different cells
τi and τj, its common boundary

sij =τi∪τj

is an edge (two dimensional) or a face (three dimensional) in the mesh T if s 6=∅. For
two dimensional domain, sij is a line segment and for three dimensional domain, sij is a
triangle. The unit normal of sij pointing from τi to τj is denoted as nij, thus it is the unit
outer normal for τi.

On the mesh T , we define the piecewise constant finite element space

W0
h (Ω)=

{

wh∈L1(Ω) : wh|τi
∈P

0(x)
}

and the piecewise linear finite element space

W1
h (Ω)=

{

wh∈C0(Ω) : wh|τi
∈P

1(x)
}

.
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At every time step tn, we adopt two sets of flow variables

U
−
h,n =







ρ−h,n

(ρu)−h,n

E−
h,n






, U

+
h,n =







ρ+h,n

(ρu)+h,n

E+
h,n






.

Each component of U
−
h,n and U

+
h,n is in W0

h (Ω). In every cell τ, the flow variables are

constant denoted as U
−
τ,n and U

+
τ,n. At the same time, we introduce a function φh,n ∈

W1
h (Ω). The domain Ω is divided into two parts

Ω−
h (tn)={x∈Ω : φh,n(x)<0} and Ω+

h (tn)={x∈Ω : φh,n(x)>0}.

We denote the zero levelset of φh,n as Γin
h,n. A cell τ in the mesh T is marked as phase

interface cells if Γin
τ,n 6=∅, where

Γin
τ,n,Γin

h,n∪τ̊.

Since φh,n is piecewise linear and the cell is simplex, Γin
τ,n can only be a linear manifold.

Precisely, Γin
τ,n is a line segment for two dimensional domain and is a triangle or a quad-

rangle for three dimensional domain. Γin
τ,n cuts the cell τ into two parts, denoted as

τ±
n =τ∪Ω±

h (tn).

The unit normal of Γin
τ,n pointing from τ−

n to τ+
n is denoted as nτ,n. For the common

boundary sij of cell τi and cell τj, the zero levelset of φh,n may divide it into two parts, too.
We denoted these two parts as

s±ij,n = sij∪Ω±
h (tn).

4.1 Initial value

Let us discuss the discretization of the initial value at first. For n=0 and t0=0, we define
that

φ(x,t=0)=

{

−dist(x,Γin(t=0)), x∈Ω−(t=0),

+dist(x,Γin(t=0)), x∈Ω+(t=0),

which is the levelset function. It is the signed distance from the point x to the phase
interface at t= 0. The function φh,0 is then assigned as the interpolation of φ|t=0 that for
every vertex X i of the cells in the mesh T ,

φh,0(X i)=φ(X i,0), ∀X i ∈T .
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On a cell τ in the mesh T , the values of the flow variables are set as

U
−
h,0

∣

∣

τ
=

1
∣

∣τ∪Ω−(0)
∣

∣

∫

τ∪Ω−(0)
U0(x)dx,

U
+
h,0

∣

∣

τ
=

1
∣

∣τ∪Ω+(0)
∣

∣

∫

τ∪Ω+(0)
U0(x)dx.

Assume that the numerical solution at time step n, t= tn, is obtained. In the following,
we give the numerical scheme to obtain the numerical solution for time step n+1. The
overall procedure of the scheme in one time step is as below:

Algorithm 4.1.

1. Evolving the phase interface to obtain φh,n+1;

2. Calculate the numerical flux and obtain an intermediate value for U
±,⋆
h,n+1;

3. Post-process the intermediate solution to get U
±
h,n+1;

4.2 The evolving of phase interface

As the first step, we numerically solve the Riemannian problem on the phase interface
Γin

τ,n in a cell τ. Let

U
−=







ρ−h,n|τ

(ρu)−h,n|τ ·nτ,n

E−
h,n|τ






, U

+=







ρ+h,n|τ

(ρu)+h,n|τ ·nτ,n

E+
h,n|τ






.

The Riemannian solver gives us Vτ,n=V(U−,U+) and Pτ,n=P(U−,U+). The flux on Γin
τ,n

is calculated as

F̂Γin
τ,n
=





0
Pτ,nnτ,n

Pτ,nVτ,n



.

The velocity Vτ,n given on all phase interface cells provides us a piecewise normal
velocity for the phase interface Γin

h,n. We carry out a certain extension of the normal veloc-

ity (such as the harmonic externsion following [2]) on Γin
h,n to obtain a piecewise constant

velocity field Vh,n on the whole domain Ω, which provides a velocity Vh,τ on every cell τ.
For every vertices X i∈ τ̄, the characteristic line tracking gives us a point

X i,τ =X i−(tn+1−tn)Vh,τ.

After that, we obtain φh,n+1 by set it as an algebraic averge as

φ⋆

h,n+1(X i)=
∑X i ,X i,τ∈τ̄ φh,n(X i,τ)

∑X i,X i,τ∈τ̄ 1
.



Y. H. Guo, R. Li and Y. C. Yao / Adv. Appl. Math. Mech., 8 (2016), pp. 187-212 197

The levelset function φh,n+1 is then obtained after the reinitialization of φ⋆

h,n+1 by numer-
ically solving the Eikonal equation

∂φ

∂t
+sign(φ)|1−∇φ|=0.

We solve this equation by using an explicitly positive coefficient scheme [2] within a
narrow band in our implementation.

4.3 Numerical flux

4.3.1 Phase interface flux

For the phase interface Γin
τ,n in a cell τ, we consider the patch convered by the line seg-

ments starting from Γin
τ,n and ending at Γh,n+1

δΩ±
τ,n,

{

x= x0+sV
±
τ,n : x0∈Γin

τ,n, φh,n(x)φh,n+1(x)≤0, s≥0
}

,

where

V
±
τ,n =τ

±
τ,n+Vτ,nnτ,n,

and τ
±
τ,n is the velocity of phase 0/1 in τ tangential to Γin

τ,n

τ
±
τ,n =u

±
τ,n−

(

u
±
τ,n ·nτ,n

)

nτ,n.

We point out that one may have x /∈ τ for x ∈ δΩ±
τ,n. For any x0 ∈ Γin

τ,n, the constraint
φh,n(x)φh,n+1(x)≤0 and s≥0 make s to be in an interval denoted as I±τ,n,x0

=[0,s±x0
]. This

interval is divided into a sequence of small intervals by the mesh as

I±τ,n,x0
= I±,0

τ,n,x0

⋃

I±,1
τ,n,x0

⋃

···
⋃

I
±,Kx0
τ,n,x0

↓ ↓ ↓ ↓

[s±,0
x0 ,s±,1

x0 ] [s±,1
x0 ,s±,2

x0 ] ··· [s
±,Kx0
x0 ,s

±,Kx0
+1

x0 ]

,

where

s±,0
x0

=0, s±,k
x0

≤ s±,k+1
x0

, s
±,Kx0

+1
x0 = s±x0

,

and every small interval I±,k
τ,n,x0

, 0≤ k≤Kx0 , gives a line segment

{x0+sV
±
τ,n : s∈ I±,k

τ,n,x0
},

which is in a single cell denoted as τ±,k
τ,x0

. It is clear that the cell τ±,0
τ,x0

is τ. Based on the
analysis of the approximated flux in the structure of a one dimensional Riemann fan in
the last section, we denote

F̂
±,k
τ,n,x0

,
(

δ±k,Vτ,n
|I±τ,n,x0

|∓|I±,k
τ,n,x0

|
)

Vτ,nU
±
τ,n±

|I±,k
τ,n,x0

|

|I±τ,n,x0
|
∆tn F̂Γin

τ,n
, 0≤ k≤Kx0 ,
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where |I±τ,n,x0
|= s±τ,n, |I±,k

τ,n,x0
|= s±,k+1

x0 −s±,k
x0 , and if Vτ,n>0

δ−k,Vτ,n
=

{

−1, k=0,
0, 1≤ k≤Kx0 ,

δ+k,Vτ,n
=

{

0, 0≤ k≤Kx0−1,
+1, k=Kx0 ,

else if Vτ,n<0

δ−k,Vτ,n
=

{

0, 0≤ k≤Kx0 −1,
−1, k=Kx0 ,

δ+k,Vτ,n
=

{

+1, k=0,
0, 1≤ k≤Kx0 .

By ∑
Kx0

k=0 |I
±,k
τ,n,x0

|= |I±τ,n,x0
|, we note that

Kx0

∑
k=0

F̂
±,k
τ,n,x0

=±∆tn F̂Γin
τ,n

. (4.1)

We choose a group of reprentative points {x1,x2,··· ,xL}, xl ∈Γin
τ,n and corresponding

weights {w1,w2,··· ,wL} that ∑
L
l=1wl = 1. These reprentative points and corresponding

weights give us a numerical quadrature formula on Γin
τ,n as

1

|Γin
τ,n|

∫

Γin
τ,n

f (x)ds≈
L

∑
l=1

wl f (xl),

for any function f (x) defined over Γin
τ,n with certain regularity. The contribution of the

numerical flux from the phase interface Γin
τ,n to a prescribed cell τ̂ is approximated by

using this numerical quadrature formula to have

F̂
±
Γin

τ,n→τ̂ = |Γin
τ,n|

L

∑
l=1

wl F̂
±,kl

τ,n,xl
, (4.2)

where kl is the index that the cell τ̂ is exactly the cell τ±,kl
τ,xl

. Summing the numerical flux in
the formation of (4.2) over all the phase interface Γin

τ,n, the contribution of the numerical
flux to a cell τ̂ due to this term is approximated by

F̂
±
τ̂,n = ∑

Γin
τ,n∈Γin

h,n

F̂
±
Γin

τ,n→τ̂. (4.3)

We note that only for those cell τ̂ that τ̂∪δΩ±
τ,n 6=∅, for some Γin

τ,n ∈Γin
h,n, the term F̂

±
τ̂,n is

not vanished.

4.3.2 Cell boundary flux

On every s±ij,n 6=∅, the flux is calculated as

F̂
±
ij,n =∆tn|s

±
ij,n|F̂

(

U
±
h,n

∣

∣

τi
,U±

h,n

∣

∣

τj
;nij

)

, (4.4)
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where F̂(U l,Ur;n) is a consistent monotonic numerical flux along n, such as the local
Lax-Friedrich flux as

F̂(U l,Ur;n)=
1

2

(

F(U l)+F(Ur)
)

·n−λ(Ur−U l),

where λ=max{λl ,λr}, λl and λr are the maximal signal speeds for U l and Ur, respec-
tively.

4.3.3 Conservative variables updation

With the fluxes (4.3) and (4.4) given, the integration of the flow variables on a cell τi is
updated as

|τi|U
±,$
τi,n+1= |τ±

i,n|U
±
τi,n

+∑
j

F̂
±
ij,n+ F̂

±
τi,n

. (4.5)

The conservative variables of the flows on the cell τi is then assigned as

U
±,⋆
τi,n+1=











0, τ±
i,n+1=∅,

|τi|

|τ±
i,n+1|

U
±,$
τi,n+1, τ±

i,n+1 6=∅.
(4.6)

Before (4.6) is applied, we declare that the global conservation of the flow variables U
±,$
τ,n+1

are preserved without considering the flux on the domain boundary. Precisely, we have

Lemma 4.1. Assuming that

1. For every numerical quadrature point x in the scheme on Γin
τ,n, ∀Γin

τ,n ∈Γin
h,n, x+s±xl

V
±
τ,n is

not located on ∂Ω;

2. The overall numerical flux on ∂Ω is vanished.

Then we have

∑
τi∈T

|τi|U
±,$
τ,n+1= ∑

τi∈T

|τ±
i,n|U

±
τi ,n

±∆tn ∑
Γin

τ,n∈Γin
h,n

|Γin
τ,n|F̂Γin

τ,n
, (4.7)

i.e.,

∑
τi∈T

|τi|
{

U
−,$
τ,n+1+U

+,$
τ,n+1

}

= ∑
τi∈T

{

|τ−
i,n|U

−
τi,n

+|τ+
i,n|U

+
τi ,n

}

. (4.8)

Moreover, the gas density of the flow in both phases satisfies

∑
τi∈T

|τi|ρ
±,$
τ,n+1= ∑

τi∈T

|τ±
i,n|ρ

±
τi ,n

. (4.9)

Proof. By (4.5),

∑
τi∈T

|τi|U
±,$
τ,n+1= ∑

τi∈T

|τ±
i,n|U

±
τi,n

+ ∑
τi∈T

∑
j

F̂
±
ij,n+ ∑

τi∈T

F̂
±
τi,n

.
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It is clear that

∑
τi∈T

∑
j

F̂
±
ij,n =0,

due to the skew-symmetry of the numerical flux F(U l ,Ur;n) and the vanished overall
numerical flux on ∂Ω.

For a quadrature point x∈Γin
τ,n, ∀Γin

τ,n∈Γin
h,n, we recall (4.1) that

Kx

∑
k=0

F̂
±,k
τ,n,x=±∆tn F̂Γin

τ,n
,

thus by (4.2) and (4.3),

∑
τi∈T

F̂
±
τi,n

=± ∑
Γin

τ,n∈Γin
h,n

∆tn|Γ
in
τ,n|F̂Γin

τ,n
,

which provides us that

∑
τi∈T

(

F̂
+
τi,n

+ F̂
−
τi,n

)

=0. (4.10)

This gives (4.7) and (4.8) simultaneously. Noting that the first entry of F̂Γin
τ,n

is always

zero, the first entry of ∑τi∈T F̂
±
τi,n

has to vanish, thus (4.9) follows.

We point out that if there may be some cells in the mesh with U
±,$
τ,n+1 6=0 and τ±

n+1=∅,
the assignment in (4.6) will then break down the global conservation of the flow variables,

which is orginally preserved after U
±,$
τ,n+1 is obtained. Due to (4.6), it is clear that the

variation of the conservative variables is quantitively given as below:

Corollary 4.1. The variation of the conservative variables for either phase is exactly as

∑
τi∈T

|τ±
i,n+1|U

±,⋆
τi,n+1− ∑

τi∈T

|τi|U
±,$
τi,n

=− ∑
τi∈T ,τ±

i,n+1=∅

|τi|U
±,$
τi,n+1.

4.4 Post-processing

The scheme using (4.6) to update the solution is equivalent to solving the system on a
mesh coupled by the original mesh T and the phase interface. Since some of the cells
are splitted by the phase interface, the resulted cell fragments may have a size essentially
smaller than the typical cell size of the mesh T . This is against the CFL constraint and
numerical instability is not guaranteed. To remove the numerical instability, we post
process the intermediate solution U

±,⋆
τ,n by the method followed. We first build some cell

patches that every cell fragment is included in a patch, and at least one complete cell
interiori to the phase domain is included in every patch. The conservative flow variables
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on every patch are set as the mean values of the corresponding flow variables on the
whole patch calculated based on U

±,⋆
τ,n .

Let us introduce the aggregation algorithm we adopt to build the cell patches at first.
The cells with cell fragments are collected in a set

S±
n ,

{

τ∈T : τ±
n 6=τ or ∅

}

.

The cells interiori to the phase domain and neighboring to the cell fragment satisfy

B±
n ,

{

τ∈T : τ±
n =τ and τ∩τ̂ 6=∅ for some τ̂∈S±

n

}

.

A cell patch is build as a cluster of cells from S±
n and B±

n . As the starting point of the
aggregation algorithm, the cell patches are initialized as sets with a single cell from S±

n ,
denoted as

P
±
n ,

{

P±
n,i :P±

n,i={τi}, τi∈S±
n

}

.

The aggregation algorithm is then as

Algorithm 4.2.

for every patch P±
n,i∈P

±
n do

for every cell τ∈S±
n do

if τ is neighbored to P±
n,i then

P±
n,i→P±

n,i

⋃

{τ}, S±
n →S±

n \{τ},

end if

end do

end do

This algorithm stops if no cell fragments are incorporated into the patches P±
n,i ∈P

±
n

any more. With the cell patches built, we set for every cell τ in a patch P±
n,i,

U
±
τ,n= ∑

τ̂∈P±
n,i

|τ̂±
n |U±,⋆

τ,n

/

∑
τ̂∈P±

n,i

|τ̂±
n |, ∀τ∈P±

n,i. (4.11)

It is clear we have the following result:

Lemma 4.2. The post-processing based on (4.11) satisfies

∑
τi∈T

|τ±
i,n|U

±,⋆
τ,n = ∑

τi∈T

|τ±
i,n|U

±
τ,n.
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Collecting Lemma 4.1, Corollary 4.1 and Lemma 4.2 from above, the overall algorithm
gives us the following quantification on global conservative error:

Theorem 4.1. The numerical solution of two successive time steps satisfies

∑
τi∈T

|τ±
i,n+1|U

±
τ,n+1− ∑

τi∈T

|τ±
i,n|U

±
τ,n= ∑

τi∈T

F̂
±
τi,n

− ∑
τi∈T ,τ±

i,n+1=∅

|τi|U
±,$
τi,n+1,

and

∑
τi∈T

{

|τ+
i,n+1|U

+
τ,n+1+|τ−

i,n+1|U
−
τ,n+1

}

− ∑
τi∈T

{

|τ+
i,n|U

+
τ,n+|τ−

i,n|U
−
τ,n

}

=− ∑
ι∈{+,−}

∑
τi∈T ,τι

i,n+1=∅

|τi|U
ι,$
τi,n+1.

Proof. The first equality is a direct inference of Lemma 4.1, Corollary 4.1 and Lemma 4.2.
The second equality is given by the summation of the first equality for both phase and
(4.10).

The post processing as (4.11) actually makes the numerical flux between the cells in
the same patch cancel each other. Thus the updation of (4.6) is revised to calculate the
numerical flux on the boundary of the cell patches instead of on the boundary of every
cell. Since there is at least one complete cell in every patch, the CFL constraint is thus
satisfied. This makes the whole numerical scheme to be stablized.

Remark 4.1. If a small patch of the gas is isolated from the bulk of the corresponding
phase, it is possible that the whole patch of gas can not cover even one single cell in the
mesh. As the result, the set S±

n is not empty after the Algorithm 4.2 is ended. In such
case, we incorporate all the remaining cells in S±

n connected to each other to be a single
patch. We refer such cell patches without complete cell at all as ”islet”.

Remark 4.2. If an islet is so small that its volume is less than a prescribed tolerence, we
directly assign the flow variables in the islet to be a default state. The default state is
with very low pressure that the islet is gradually shrinking and eventually automatically
disappers. This is very effective to eliminate too complex phase interface geometry due
to these small islets thus the both the overall computational cost and the quality of the
numerical solution are under control. As a negative side effect, the conservation of the
flow variables will be spoiled again by such an artificial technique.

5 Numerical results

Let us present some numerical examples to validate our numerical method. These nu-
merical examples include some Riemann problems and some shock impact problems.
Our simulations are carried out on h-type adaptive meshes, while the detailed techniques
are not presented here.



Y. H. Guo, R. Li and Y. C. Yao / Adv. Appl. Math. Mech., 8 (2016), pp. 187-212 203

5.1 Riemann problem

5.1.1 One-phase Riemann problem

In the first example, we study a simple one-phase problem, which is called Sod shock
tube problem, where a standard Eulerian scheme also works well with no oscillation.
The numerical results are compared with the exact solutions.

Let the domain Ω=(0.0,1.0)×(0.0,0.5). The initial value is

[ρ,u,v,p,γ]=

{

[1.0,0,0,1.0,1.4], x<0.5,

[0.125,0,0,0.1,1.4], x>0.5.

The boundary values for both phases are appointed that the problem is essentially
an one dimensional problem excepted for the tangential slip in the y direction for each
phase. Though there is actually only one fluid, we take it as a two-phase problem by
artifically embedding an interface at x=0.5 when t=0. We carry out the simulation to a
final time of 0.25s, and adaptive mesh refinement is adopted to capture the interface and
shock front. Fig. 1 shows the numerical results for respective density, velocity, pressure
and internal energy obtained, for comparison to the exact solutions. In these figures we
see that the numerical results behave in perfect agreement with the exact solutions. Fig. 2
shows the location and shape of the interface at different times, which shows that both
the interface and the shock front are resolved correctly.

5.1.2 Two-phase Riemann problem

In this example, we study a two-phase problem, which has the same intial values as the
first example except for the value of γ in phase 1. Similaly, let the domain Ω=(0.0,1.0)×
(0.0,0.5). The initial value is

[ρ,u,v,p,γ]=

{

[1.0,0,0,1.0,1.2], x<0.5,

[0.125,0,0,0.1,1.4], x>0.5.

The boundary conditions for both phases are the same as the first example. The sim-
ulation is ended at a final time of 0.152s. Fig. 3 shows the numerical results obtained for
comparison to the exact solutions, where we see that there is no non-physical osillation
in the vicinity of the interface. Fig. 4 shows the location and shape of the interface at
different times, in which the interface can be kept approximately as a straight line during
its evolving.

5.1.3 Strong shock two-phase Riemann problem

In this example, we explore a strong shock tube problem, where phase 0 and phase 1
across the interface have quite big density ratio ρl/ρr = 1000 and pressure ratio pl/pr =
1000. We still let the domain Ω=(0.0,1.0)×(0.0,0.5). The initial value is

[ρ,u,v,p,γ]=

{

[1000,0,0,108 ,1.2], x<0.5,

[1,0,0,105,1.4], x>0.5.
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Figure 1: Solution at time=0.25s.
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Figure 2: Phase interface at different times.
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Figure 3: Solution at time=0.152s.
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206 Y. H. Guo, R. Li and Y. C. Yao / Adv. Appl. Math. Mech., 8 (2016), pp. 187-212

0.0 0.2 0.4 0.6 0.8 1.0

0

200

400

600

800

1000

 

 

 numerical

D
en

si
ty

X  /  m

(a) Density

0.0 0.2 0.4 0.6 0.8 1.0

0

200

400

600

800

1000

1200
 

 

 numeircal

V
el

oc
ity

X  /  m

(b) Velocity

0.0 0.2 0.4 0.6 0.8 1.0

0.0

2.0x107

4.0x107

6.0x107

8.0x107

1.0x108

 

 

numerical

P
re

ss
ur

e

X  /  m

(c) Pressure

0.0 0.2 0.4 0.6 0.8 1.0

2.0x105

4.0x105

6.0x105

8.0x105

1.0x106

 

 

 numerical
In

te
rn

al
  E

ne
rg

y

X  /  m

(d) Internal energy

Figure 5: Solution at time=0.00013s.

X / m

Y
/

m

0.4 0.6
0

0.2

0.4

(a) t=0

X / m

Y
/

m

0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

(b) t=0.00013s

Figure 6: Phase interface at different times.
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The boundary values for both phases are the same as the first example again. The
simulation is ended at a final time of 0.00013s. Fig. 5 shows the numerical results ob-
tained, in which we see that there is also no non-physical osillation around the interface.
Fig. 6 shows the location and shape of the interface at different times, which shows that
the interface is kept quite well.

5.2 Planar shock impact

Let the domain be the two-dimensional plane as Ω={(x,y) : x∈ (−10,10), y∈ (−10,10)}.
The initial value is

[ρ,u,v,p,γ]=

{

[100,0,0,1010,1.2],
√

x2+y2<0.3,

[1.29,0,0,105,1.4],
√

x2+y2>0.3.

The boundary values for both phases are set as outflow boundary conditions. Fig. 7
shows the field pressure contours obtained at different times, where we see that the shock
wave propagates as a finite speed into the around gas. Fig. 8 shows the location and shape
of the interface at different times, which shows that interface is approximately kept as a
circle, in agreement with the corresponding physical process.
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Figure 7: Pressure contours at different times.

5.3 Spherical shock impact

Let the domain to be the cylinder as Ω={(r,z) : r∈ (0,5000), z∈ (0,1.0×104)}. The initial
value is

[ρ,u,v,p,γ]=

{

[618.935,0,0,6.314×1012 ,1.2],
√

r2+(z−5000)2 <0.3,

[1.29,0,0,105,1.4],
√

r2+(z−5000)2 >0.3.
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Figure 8: Phase interface at different times.

The Euler equations for this configuration is reformulated into a cylinderical forma-
tion as

∂U

∂t
+

∂F(U)

∂r
+

∂G(U)

∂z
=S(U),

where

U=









rρ
rρu
rρv
rE









, F(U)=









rρu
r(ρu2+p)

rρuv
r(E+p)u









, G(U)=









rρv
rρuv

r(ρv2+p)
r(E+p)v









, S(U)=









0
p
0
0









,

and here u is the radical velocity. The source term S(U) is due to the cylinderical coordi-
nate transformation.
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(a) t=0.13s (b) t=0.60s

Figure 9: Pressure contours at different times.
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(d) Positive time duration

Figure 10: Shock wave parameters in distance from the center.

This example is actually used to simulate the blast waves from one kiloton nuclear
charge. Fig. 9 shows the field pressure contours obtained at different times, where one
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Figure 11: Pressure in time at fixed points.

may see the propagation and decay of the shock front, qualitatively in agreement with
the corresponding physical process. Fig. 10 shows the calculated blast wave parameters
at different radii, compared with the ”point explosion solution” [10]. Fig. 11 shows the
curves of overpressure in time at some fixed radii away from the burst point. In these
figures, it is clear that when a shock wave arrives, the pressure increases rapidly to a peak
value, then reduces to a low pressure smaller than its initial value. When the secondary
shock wave arrives, the pressure increases again but comparatively slowly. After the
secondary shock wave propagates away, the pressure eventually goes back to its initial
value.

6 Conclusions

We developed a numerical method to simulate two-phase compressible flows on Eulerian
grids. The scheme is a combination of the front tracking method and the levelset method.
The implementation of the scheme is straightforward and some preliminary numerical
examples validate our method.
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