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Abstract. The main purpose of this work is to contrast and analyze a large time-
stepping numerical method for the Swift-Hohenberg (SH) equation. This model re-
quires very large time simulation to reach steady state, so developing a large time step
algorithm becomes necessary to improve the computational efficiency. In this paper,
a semi-implicit Euler schemes in time is adopted. An extra artificial term is added to
the discretized system in order to preserve the energy stability unconditionally. The
stability property is proved rigorously based on an energy approach. Numerical exper-
iments are used to demonstrate the effectiveness of the large time-stepping approaches
by comparing with the classical scheme.
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1 Introduction

There have been many dynamical models of non-equilibrium system which often results
in highly complicated domain structures. There are many well-known models including
Cahn-Hilliard equation (for conservative system) [2] and Allen-Cahn model (for non-
conservative system) [1] which are used to describe the phase interface, molecular beam
epitaxy growth model [11] which is used to describe the height of the thin solid films,
the phase field crystal (PFC) equation which is used to describe the defects in crystal.
The Swift-Hohenberg (SH) model [10] is a non-conserved form of the PFC equation. Re-
cently, these models are developed to couple with incompressible fluids [3, 14], and the
corresponding energy laws are derived.

∗Corresponding author.
Email: zrzhang@bnu.edu.cn (Z. R. Zhang), yzma9017@126.com (Y. Z. Ma)

http://www.global-sci.org/aamm 992 c©2016 Global Science Press



Z. R. Zhang and Y. Z. Ma / Adv. Appl. Math. Mech., 8 (2016), pp. 992-1003 993

The SH model can account for elastic and plastic deformations of the lattice, dislo-
cations, grain boundaries, and many other observable phenomena, see [12]. The mod-
els that are minimized by periodic functions were accounted for the periodic structure
of a crystal lattice as free energy functionals. This model differs from the CH and AC
models in that the stable phase is periodic, see [4]. For SH models, the order parameter
is viewed as capturing the inhomogeneities in a fluid associated with Rayleigh-Bénard
convection. The theory of the SH problem has been studied for decades. However, both
the fourth-order and the nonlinear term make the SH equation stiff and difficult to solve
numerically.

The standard Euler integration is known to be unstable for time step ∆t above a
threshold fixed by lattice spacing ∆x [9]. In CH and AC systems, to maintain an in-
terfacial profile, the lattice spacing must be smaller than the interfacial width. As we
know for these models such as CH or AC equation, molecular beam epitaxy model and
SH model, it takes large time to reach steady state. So developing large time stepping
method becomes necessary. The large time stepping idea proposed by Xu and Tang [13]
for the molecular beam epitaxy simulation allows rather larger time step than the clas-
sical time discretizations, and has been used to solve CH equation by He and Tang [6].
Another method to avoid small time step is to use adaptive time step strategy, which
is successfully applied to molecular beam epitaxy model [8] and CH model [15]. The
time steps are chosen based on the variation of the energy functional with respect to time
variable. In SH system, the time step ∆x must be smaller than the periodicity selected
by the system. In this paper, we will apply the similar idea in [13] to the simulation of
SH model. A large time-stepping method for the SH equation is proposed with an extra
term added to the classical Euler approach, which is consistent with the order of the time
discretization. The fourth order term is treated implicitly and the concave part is approx-
imated explicitly. The proposed difference scheme is proved to preserve energy stability
unconditionally. In this work the energy means the free energy functional corresponding
to the SH model in stead of the traditional L2-norm as discussed in our recent work for
epitaxial growth model [7].

This paper is organized as below. In Section 2, the SH model is introduced and the
numerical scheme is proposed. In Section 3, we establish the stability analysis about
the numerical algorithm. Numerical experiments are presented in Section 4 to show the
effectiveness of the proposed scheme. Finally, in Section 5, some concluding remarks are
made.

2 The SH model and the unconditionally stable scheme

Both the SH and PFC models come from minimizing the free energy functional that de-
scribes the configurational cost of periodic phase in contact with isotropic phase [5, 10]:

E(φ)=
∫

Ω

{1

4
φ4+

1−ǫ

2
φ−|∇φ|2+

1

2
(∆φ)2

}

dx, (2.1)
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where the Ω⊂RD, D=2 or 3, here we consider D=2, Ω=(0,L)×(0,L), φ : Ω→R is the
density field, ǫ is a given small positive constant, ∇ and ∆ are the gradient and Laplacian
operators, respectively.

The SH model is the non-conserved type dynamics as below

∂φ

∂t
=−M(φ)µ, (2.2)

where M(φ) is a mobility and µ is the chemical potential as

µ=
δE

δφ
=φ3+(1−ǫ)φ+2∆φ+∆

2φ, (2.3)

where δE/δφ denotes the variational derivative of E with respect with φ.

The PFC model is the conserved dynamics of (2.2):

∂φ

∂t
=∇·(M(φ)∇µ). (2.4)

In [12], a conservative finite difference scheme based on energy splitting was proposed to
solve the PFC equation in two space dimension. It is proved that their proposed scheme
is stable in the sense that the decay of energy is preserved numerically. Here, we study
the numerical scheme of SH equation (2.2) with periodic boundary condition and also
suppose that ∆φ and ∇φ are periodic on Ω. Our main interest is to design an appropriate
scheme that allows large time steps.

The classical first order semi-implicit scheme is of the form

φk+1−φk

∆t
=−2∆hφk−∆

2
hφk+1−(1−ǫ)φk+1−(φk)3, k≥0, (2.5)

where ∆t is the time step and tk=k∆t, φk is an approximation to φ(x,tk). ∆h is the standard
central difference approximation to Laplacian operator. In practice, it is known that the
semi-implicit treatment in time allows a consistently larger time-step size. Their numeri-
cal simulations indicate that the time step in a semi-implicit method can be two orders of
magnitude larger than that in an explicit method. To further improve the stability prop-
erty of the semi-implicit method (2.5), we propose to add an O(∆t) term to the scheme
(2.5):

φk+1−φk

∆t
+A(φk+1−φk)=−2∆hφk−∆

2
hφk+1−(1−ǫ)φk+1−(φk)3, (2.6)

where A is a positive constant to be determined later. The purpose for adding the extra
terms is to improve the stability condition so that larger time steps can be used. This can
be proved theoretically, and will be demonstrated by our numerical results.
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3 Stability analysis

We will show the energy stability analysis for the proposed scheme (2.6) and give the
choice of the artificial parameter A. We first state the following existing result:

Lemma 3.1. If φ(x,t) is a solution of (2.2), then the following energy identity holds:

d

dt
E(φ(t))≤0, ∀t≥0, (3.1)

where E(φ) is defined in (2.1).

We briefly sketch the proof of Lemma 3.1, which is useful in deriving its discrete case.

Proof. It follows from (2.2) that

(φt,ϕ)=(−2∆φ−∆
2φ−φ3−(1−ǫ)φ,ϕ), (3.2)

where (·,·) denotes the standard inner product in the L2-space.
Taking ϕ=−φt=2∆φ+∆

2φ+φ3+(1−ǫ)φ in (3.2), we have

(φt,−φt)=(φt,2∆φ)+(φt,∆
2φ)+(φt,φ

3+(1−ǫ)φ).

We obtain by integration by parts

−
d

dt

∫

Ω

|∇φ|2dx+
1

2

d

dt

∫

Ω

(∆φ)2dx+
d

dt

∫

Ω

(1

4
φ4+

1−ǫ

2
φ2

)

dx=−‖φt‖
2≤0.

Note the definition of energy functional E(φ), this completes the proof.

Theorem 3.1. For any A>0 and ∆t>0, the finite difference scheme (2.6) is solvable.

Proof. The numerical scheme (2.6) leads to a linear algebra system, and the coefficient
matrix is of the form

( 1

∆t
+A

)

I+∆
2
h,

which always has positive eigenvalues. So the system is solvable.

Theorem 3.2. If the constant A in (2.6) is sufficiently large, then the following energy inequality
holds:

Eh(φ
k+1)≤Eh(φ

k), (3.3)

where Eh is the discrete form of the energy functional defined in (2.1). More precisely, the positive
constant A satisfies

A≥max
x∈Ω

{1

2
((φk)2+1−ǫ)+

1

4
(φk+1+φk)2

}

, (3.4)

where φk and φk+1 are the numerical solutions of (2.6).



996 Z. R. Zhang and Y. Z. Ma / Adv. Appl. Math. Mech., 8 (2016), pp. 992-1003

Proof. For any L-periodic H2(Ω) function ϕ, it follows from (2.6) that

1

∆t
(φk+1−φk,ϕ)h+A((φk+1−φk),ϕ)h+ I(ϕ)=0, (3.5)

where (·,·)h denotes the standard discrete inner product in the L2-space, and

I(ϕ)=(∆2
hφk+1+2∆hφk+(φk)3+(1−ǫ)φk+1,ϕ)h. (3.6)

Letting ϕ=φk+1−φk, observe that

1

∆t
‖φk+1−φk‖2

h+A(φk+1−φk,φk+1−φk)h+ I=0, (3.7)

where ‖·‖h denotes the discrete L2-norm and

I=(∆2φk+1+2∆hφk+(φk
h)

3+(1−ǫ)φk+1,φk+1−φk)h.

Below we always use the equalities

b(a−b)=
1

2
(a2−b2−(a−b)2) and a(a−b)=

1

2
(a2−b2+(a−b)2).

We divide I into three parts as I= I1+ I2+ I3, where

I1=(∆2
hφk+1,φk+1−φk)h =(∆hφk+1,∆h(φ

k+1−φk))h

=
1

2
‖∆hφk+1‖2

h−
1

2
‖∆hφk‖2

h+
1

2
‖∆h(φ

k+1−φk)‖2
h, (3.8a)

I2=2(∆hφk,φk+1−φk)h =−2(∇hφk,∇h(φ
k+1−φk))h

=−‖∇hφk+1‖2
h+‖∇hφk‖2

h+‖∇h(φ
k+1−φk)‖2

h, (3.8b)

and

I3=((φk)3+(1−ǫ)φk+1,φk+1−φk)h

=((φk)2,φk(φk+1−φk))h+(1−ǫ)(φk+1,φk+1−φk))h

=
1

2
((φk)2,(φk+1)2−(φk)2−(φk+1−φk)2)h

+
1

2
(1−ǫ)((φk+1)2−(φk)2+(φk+1−φk)2,1)h

=
1

4
((φk+1)4−(φk)4−((φk+1)2−(φk)2)2,1)h−

1

2
((φk)2,(φk+1−φk)2)h

+
1

2
(1−ǫ)((φk+1)2−(φk)2+(φk+1−φk)2,1)h

=K+
1

4
‖(φk+1)2+1−ǫ‖2

h−
1

4
‖(φk)2+1−ǫ‖2

h, (3.9)
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where

K=
(

−
1

2
((φk)2−(1−ǫ))−

1

4
(φk+1+φk)2,(φk+1−φk)2

)

h
.

With the above estimation for I1, I2 and I3, we re-estimate (3.7) to get

1

∆t
‖φk+1−φk‖2

h+Eh(φ
k+1)−Eh(φ

k)+
1

2
‖∆h(φ

k+1−φk)‖2
h+‖∇h(φ

k+1−φk)‖2
h

+
(

A−
1

2
((φk)2−1+ǫ)−

1

4
(φk+1+φk)2,(φk+1−φk)2

)

h
=0. (3.10)

Note that the last term in (3.10) can be made nonnegative provided that

A≥max
x∈Ω

{1

2
((φk)2−1+ǫ)+

1

4
(φk+1+φk)2

}

. (3.11)

This completes the proof.

We point out that the condition for A, i.e., (3.4), is not a satisfactory one in the sense
that the expression of A depends also on the unknown solution. In other words, A is
given in an implicit form. An ideal condition is expected that the right-hand side of
(3.4) depends only on the values of φk instead of φk+1. If this is the case, we can obtain
an explicit way to compute the value of A (which depends only on time) at each time
level. In any case, the condition (3.4) only serves as some intuited way in computations.
Moreover, if the numerical solution is convergent in L∞((0,T),W∞

1 (Ω)) as ∆t→ 0, then
the constant A can be chosen to satisfy

A≥
3

2
|φk|2−

1

2
(1−ǫ) a.e. in Ω×(0,T]. (3.12)

Remark 3.1. The numerical scheme (2.6) with the parameter A satisfying (3.4) is uncon-
ditionally stable in the sense that energy decays with respect to time.

4 Numerical experiments

In the previous sections, we discussed the time discretization for the SH model and its sta-
bility analysis. For discretization in space, we apply the central finite difference scheme.
The main objective of this section is to verify the stability of the proposed numerical
scheme dependent on the choice of the artificial parameter A. We carry out two numeri-
cal experiments, one is with smooth initial data and the other is with random initial data.

Example 4.1. The initial condition is

φ0(x,y)=0.025(sinx+cosy),

with Ω=[0,2π]×[0,2π]. Periodic boundary conditions are adopted. This example is used
to test the advantage of A in improving numerical stability.
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Table 1: Example 4.1: stability comparison with different parameter A in (2.6), ∆tmax denotes the maximum
time step allowed in the numerical computation.

A=0 A=1 A=2
ǫ=0.1 ∆tmax≈0.8 ∆tmax≈0.8 ∆tmax≈0.8

ǫ=0.01 ∆tmax≈0.3 ∆tmax≈0.8 ∆tmax≈0.8
ǫ=0.001 ∆tmax≈0.05 ∆tmax≈0.8 ∆tmax≈0.8

It is observed from the Table 1, the introduce of the parameter A may improve the
stability of the scheme. For large ǫ, the stability does not strongly depend on A, however,
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Figure 1: Example 4.1: Solution contours with ǫ=0.01 at t=0.1,1 and 5.0. Left: A=0, ∆t=0.3 (from top to
bottom); right: A=1, ∆t=0.8, N=128.
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Figure 2: Example 4.1: Same as Fig. 1, except with N=512.

for small ǫ, the A does improve the stability greatly and as a result the range of applicable
time steps is enlarged. In Figs. 1, we show the contour lines of the solution with ǫ =
0.01 at different times. It is obvious that the numerical solution obtained with larger
time step (corresponding to A= 1) is agree with the one obtained with small time step
(corresponding to A=0). To further confirm the correctness of the solution in Figs. 1, we
refine the mesh to do the same computation and present the results in Figs. 2.

Example 4.2. Consider the problem (2.2) in 2D with φ0 being random data. The simu-
lations are carried out in the domain Ω= [0,2π]2, with a double 2π-periodic boundary
condition. The initial condition is a random state by assigning a random number varying
from −0.05 to 0.05 to each grid point.

Let ∆tmax denote the largest possible time step which allows stable numerical com-
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Figure 3: Example 4.2: Solution contours with ǫ=0.01 at t=0.1,1 and 5. Left: A=0, ∆t=0.01; right: A=1,
∆t=0.1, N=128.

putation. To demonstrate convergence property of the proposed numerical schemes, we
present some numerical simulations for the SH equation (2.2) with different parameter
settings. In Figs. 3, we present the solution contour lines for ǫ = 0.01 at different time
levels. If we set A= 0, the largest time step allow is ∆tmax = 0.0001, while ∆tmax = 0.001
if we set the parameter A as A= 1. It is seen from Figs. 3, there is no significant differ-
ence caused by parameters (A,∆t)= (0,0.0001) and (A,∆t)= (1,0.001). We also test the
case ǫ=0.001 in (2.6). The solution contours are shown in Figs. 4, and it is seen that the
parameter A can improve the stability clearly.

In Figs. 5, we set the mesh as 512×512 with random data at each grid point, the same
observation as Figs. 4 is found.
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Figure 4: Example 4.2: Same as Fig. 3, except with ǫ=0.001.

5 Conclusions

In this work, we performed a preliminary study of large time stepping techniques for the
SH equation. It is known that the time steps in a semi-implicit method can be orders of
magnitude larger than that in an explicit method. In this work, it is demonstrated that
the classical semi-implicit method can be further improved by simply adding a linear
term consistent with the truncation errors in time. This treatment can be used to increase
the time step size a few times larger. Some stability analysis has been performed, which
provides simple conditions on choice of the parameter which depends on the numerical
solutions. High order time discretization is expected to further improve the stability,
which will be reported later. The method proposed here can be easily generalized to a
class of PDEs derived from the variational derivative of some energy functions, because
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Figure 5: Example 4.2: Same as Fig. 4, except N=512.

the energy laws are always expected to preserve in discrete sense.
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