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Abstract. In this paper we extend the idea of interpolated coefficients for a semilinear
problem to the quadratic triangular finite volume element method. At first we intro-
duce quadratic triangular finite volume element method with interpolated coefficients
for a boundary value problem of semilinear elliptic equation. Next we derive conver-
gence estimate in H1-norm, L2-norm and L∞-norm, respectively. Finally an example is
given to illustrate the effectiveness of the proposed method.
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1 Introduction

The finite volume element method is a discretization technique for solving partial dif-
ferential equations, especially for those that arise from physical laws including mass,
momentum, and energy. The method has been widely used in computational fluid me-
chanics and other applications because it keeps the mass conservation [2, 5–7, 11, 12, 14,
15, 17, 18, 21, 22, 25–28, 34]. As far as the method is concerned, it is identical to the special
case of the generalized difference method or GDM proposed by Li-Chen-Wu [21].

The finite element method with interpolated coefficients is an economic and graceful
method. This method was introduced and analyzed for semilinear parabolic problems
in Zlamal [35]. Later Larsson-Thomee-Zhang [19] studied the semidiscrete linear trian-
gular finite element with interpolated coefficients and Chen-Larsson-Zhang [10] derived
almost optimal order convergence on piecewise uniform triangular meshes by use of su-
perconvergence techniques. Xiong-Chen studied superconvergence of finite element for
some semilinear elliptic problems [29–31]. Xiong-Chen first put the interpolation idea

∗Corresponding author.
Email: zgxiong@hnust.edu.cn (Z. G. Xiong), kdeng@hnust.edu.cn (K. Deng)

http://www.global-sci.org/aamm 186 c©2017 Global Science Press



Z. G. Xiong and K. Deng / Adv. Appl. Math. Mech., 9 (2017), pp. 186-204 187

into the finite volume element method and studied the finite volume element with in-
terpolated coefficients of the two-point boundary problem [32] and the linear triangular
finite volume element method for a class of semilinear elliptic equations [33].

Li [20] has considered the finite volume element method for a nonlinear elliptic prob-
lem and obtained the error estimate in H1-norm. Chatzipantelidis-Ginting-Lazarov [8]
have studied the finite volume element method for a nonlinear elliptic problem, estab-
lished the error estimates in H1-norm, L2-norm and L∞-norm. Bi [3] obtains the H1

and W1,∞ superconvergence estimates between the solution of the finite volume element
method and that of the finite element method for a nonlinear elliptic problem. In this
paper, we put the excellent interpolating coefficients idea into the finite volume element
method on triangular mesh for a semilinear elliptic equation.

We denote Sobolev space and its norm by Wk,r(Ω) and ‖·‖k,r , respectively [1]. If r=2,
simply use Hk(·) and ‖·‖k and ‖·‖= ‖·‖0 is L2-norm. Further we denote with r′ the
adjoint of r, i.e.,

1

r
+

1

r′
=1, r≥1.

We assume that the exact solution u is sufficiently smooth for our purpose. Throughout
this paper, the constant C denotes different positive constant at each occurrence, which is
independent of the mesh size h.

The rest of the paper is organized as follow. First we introduce the quadratic trian-
gular finite volume element method with interpolated coefficients in Section 2 and give
preliminaries and some lemmas in Section 3. Next we derive optimal order H1-norm,
L2-norm and L∞-norm estimates, respectively, in Section 4. Finally the theoretical results
are tested by a numerical example in Section 5.

2 Quadratic finite volume element method with interpolated

coefficients

Let Ω⊂R
2 be a bounded polygonal domain. Consider the second-order semilinear ellip-

tic boundary value problem:
{

−∆u+ f (u)= g in Ω,

u=0 on ∂Ω.
(2.1)

It is assumed that f (s) is the sufficiently smooth function with respect to s, and f ′(s)>0
for finite interval.

Let V⊂Ω be any control volume with piecewise smooth boundary ∂V. Integrate (2.1)
over control volume V, then by the Green’s formula, the conservative integral of (2.1)
reads, finding u, such that

−
∫

∂V

∂u

∂n
ds+

∫

V
f (u)dxdy=

∫

V
gdxdy, V⊂Ω. (2.2)
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Figure 1: Illustration for a dual element VP0
and its modes.

The FVE method of (2.2) consists of replacing by finite-dimensional space of piece-
wise smooth function and using a finite set of volumes. In this paper, we shall consider
triangular partition of Ω and piecewise quadratic triangle interpolation with interpolated
coefficients, for u.

Give a quasi-uniform triangulation Jh for Ω with h=maxhK , where hK is the diameter
of the triangle K∈Jh. Let QK be the barycentre of K∈Jh. The vertexes of the triangles
and the midpoints of the sides are taken as the nodes. Ω̄h denotes the set of the vertexes
of all the triangular elements, M̄h the set of the midpoints of the sides of all elements.
All the control volumes constitute the dual partition J ∗

h , consisting of the polygons K∗
P0

surrounding the node P0∈ Ω̄h and K∗
M surrounding M∈ M̄h. Their detailed construction

is as follows [21]:

1) Construction of K∗
P0

. Suppose that P0∈Ω̄h, that Pi are its adjacent vertexes, and that

P0i is a point on P0Pi such that P0P0i=
1
3 P0Pi. Connect successively P0i to obtain a polygon

KP0
(see Fig. 1).

2) Construction of K∗
M. Let M∈ M̄h be a midpoint of a common side of two adjacent

triangular elements KQ1
=△P0P1P2 and KQ2

=△P0P1P3. Denote by Q12, Q13, Q02, Q03 the
midpoints of P01P02, P01P03, P10P12 and P10P13 respectively. A polygon K∗

M surround M is
obtained by connecting successively P10, Q03, Q2, Q13, P01, Q12, Q1, Q02, P10 (see Fig. 2).

For boundary nodes, their control volumes should be modified correspondingly.

Let Sh ⊂ H1(Ω) and S0h ⊂ H1
0(Ω) be both the piecewise quadratic triangular finite

element subspace over the partition Jh, and S∗
h be the piecewise constant space over the

dual partition J ∗
h . Denote φP by basic function of Sh at the node P ∈ Ω̄h∪M̄h. For an

arbitrary node P ∈ Ω̄h∪M̄h, denote χP or χM by characteristic function over VP or VM.
Define standard Lagrangian interpolation operator Ih : C(Ω)→Sh by

Ih ϕ= ∑
P∈Ω̄h∪M̄h

ϕ(P)φP, ∀ϕ∈C(Ω), (2.3)
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Figure 2: Illustration for a dual element VM and its modes.

and interpolation operator I∗h : C(Ω)→S∗
h by

I∗h ϕ= ∑
P∈Ω̄h∪M̄h

ϕ(P)χP, ∀ϕ∈C(Ω). (2.4)

The standard finite volume element scheme of (2.2) can read, finding ūh∈S0h, such that

−
∫

∂VP

∂ūh

∂n
ds+

∫

VP

f (ūh)dxdy=
∫

VP

gdxdy, ∀P∈ Ω̄h∪M̄h.

For the sake of simplicity, we now define quadratic triangular finite volume element
scheme with interpolated coefficients, finding uh∈S0h, such that

−
∫

∂VP

∂uh

∂n
ds+

∫

VP

Ih f (uh)dxdy=
∫

VP

gdxdy, ∀P∈ Ω̄h∪M̄h. (2.5)

Eq. (2.5) can be further written as difference equation which is simpler than that of stan-
dard finite volume element method [32]. Notice that Ih f (uh)=∑P∈Ω̄h∪M̄h

f (uh(P))φP and
one can be solved by the Newton iteration method in which its tangent matrix can be
calculated simply.

3 Preliminaries and lemmas

In the preceding section, we give the finite volume element scheme with interpolated
coefficients. We will give preliminary work and some lemmas in this section. Letting

a(u,I∗h ϕh)=− ∑
P∈Ω̄h∪M̄h

ϕh(P)
∫

∂VP

∂u

∂n
ds, ∀ϕh∈S0h,

(u,I∗h ϕh)= ∑
P∈Ω̄h∪M̄h

ϕh(P)
∫

VP

udxdy, ∀ϕh∈S0h,
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Figure 3:

and taking V=VP, (2.2) can be written as, finding u∈H1
0(Ω), such that

a(u,I∗h ϕh)+( f (u),I∗h ϕh)=(g,I∗h ϕh), ∀ϕh∈S0h. (3.1)

Analogously, (2.5) is equivalent to finding uh ∈S0h, such that

a(uh,I∗h ϕh)+(Ih f (uh),I
∗
h ϕh)=(g,I∗h ϕh), ∀ϕh∈S0h. (3.2)

For the sake of simplicity in our analysis in the paper, we still denote the bilinear form by

a(u,v)=
∫

Ω
∇u·∇vdxdy, ∀u,v∈H1

0(Ω).

Depicted as in Fig. 3, we convert the integral on the edge of dual partition to the related
element K=△PiPjPk ∈Jh, then

a(u,I∗h ϕh)=− ∑
K∈Jh

∑
l=i,j,k

[

ϕh(Pl)
∫

∂VPl
∩K

∂u

∂n
ds+ϕh(Ml)

∫

∂VMl
∩K

∂u

∂n
ds

]

, ∀ϕh∈S0h. (3.3)

Similarly, we can obtain

(u,I∗h ϕh)= ∑
K∈Jh

∫

K
uI∗h ϕhdxdy

= ∑
K∈Jh

∑
l=i,j,k

[

ϕh(Pl)
∫

VPl
∩K

udxdy+ϕh(Ml)
∫

VMl
∩K

udxdy
]

, ∀ϕh∈S0h. (3.4)

Denote ‖·‖s and |·|s be continuous norm and continuous semi-norm of order s in Sobolev
space Hs(Ω), respectively. Let us introduce the discrete zero norm, semi-norm and full-
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norm, respectively, by

‖ϕh‖0,h =
{

∑
K∈Jh

‖ϕh‖
2
0,h,K

}1/2
, (3.5a)

|ϕh|1,h =
{

∑
K∈Jh

|ϕh|
2
1,h,K

}1/2
, (3.5b)

‖ϕh‖1,h =
(

‖ϕh‖
2
0,h+|ϕh|

2
1,h

)1/2
, (3.5c)

for ϕh∈S0h, where K=△PiPjPk, shown as in Fig. 3, and

‖ϕh‖0,h,K =
[1

6
(ϕ2

Pi
+ϕ2

Pj
+ϕ2

Pk
+ϕ2

Mi
+ϕ2

Mj
+ϕ2

Mk
)SK

]1/2
,

|ϕh|1,h,K =[(ϕPi
−ϕMi

)2+(ϕPj
−ϕMj

)2+(ϕPk
−ϕMk

)2

+(ϕMi
−ϕMj

)2+(ϕMj
−ϕMk

)2]1/2.

From [21], we have the following lemma.

Lemma 3.1. For all ϕh∈S0h, |ϕh|1,h and |ϕh|1 are identical and ‖ϕh‖0,h and ‖ϕh‖1,h are equiv-
alent with ‖ϕh‖0 and ‖ϕh‖1 respectively, i.e., there exist positive constants C1, C2, C3, C4 inde-
pendent of h such that

C1|ϕh|0,h ≤|ϕh|0≤C2|ϕh|0,h, ∀ϕh∈Sh, (3.6a)

C3‖ϕh‖1,h ≤‖ϕh‖1≤C4‖ϕh‖1,h, ∀ϕh∈Sh. (3.6b)

From [7, 9, 21], we have three lemmas.

Lemma 3.2. There exist positive constants C1, C2 such that

a(ϕh,I∗h ϕh)≥C1|ϕh|
2
1, ∀ϕh∈S0h, (3.7a)

|a(u−Ihu,I∗h ϕh)|≤C2h2‖u‖3|ϕh|1, ∀u∈H1
0(Ω), ϕh∈S0h. (3.7b)

Lemma 3.3. The semi-norm |·|1 and the norm ‖·‖1 are equivalent in the space H1
0(Ω), that is,

there exists a positive constants C such that

|ϕh|1≤‖ϕh‖1≤C|ϕh|1, ∀ϕh∈S0h. (3.8)

Lemma 3.4. The interpolation operator I∗h has the following properties

‖I∗hvh‖e,∞≤‖vh‖e,∞, ∀vh ∈S0h for any side e of K∈Jh, (3.9a)

‖ϕh−I∗h ϕh‖0,p,K ≤Ch|ϕh|1,p,K, ∀ϕh∈S0h, 1≤ p≤∞. (3.9b)

In addition in [9], for the interpolation operator Ih, the following lemma is derived.
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Lemma 3.5. Assume that w, ϕ are sufficiently smooth functions. Let Ih ϕ∈S0h be the Lagrangian
interpolation of ϕ, then

|(ϕ−Ih ϕ,ψh)|≤Ch3‖ϕ‖2,p‖ψh‖1,p′ , ∀ψh ∈S0h, (3.10)

for

1

p
+

1

p′
=1, 1< p≤∞.

Lemma 3.6. Assume u∈H1
0(Ω), then there exists a positive constant C, independent of the mesh

size h, such that

|(u−Ihu,I∗h ϕh)|≤Ch3‖u‖2‖ϕh‖0, ∀ϕh∈S0h. (3.11)

Proof. In view of the Schwartz inequality, we easily give the desired (3.11).

In addition in [7, 8], the following lemma is derived.

Lemma 3.7. Let e be a side of a triangle K∈Jh. Then for u∈H1(K) there exists a constant C>0
independent of h such that

∣

∣

∣

∫

e
u(vh−I∗hvh)ds

∣

∣

∣
≤Ch2‖u‖1,K‖vh‖1,K, ∀vh ∈Sh. (3.12)

Moreover, for u∈H1 and vh ∈S0h,

(u,vh−I∗hvh)≤Ch2‖u‖1‖vh‖1. (3.13)

For our theoretical analysis, we also need two lemmas as follows.

Lemma 3.8. Let u∈H2. The following identities hold

∑
K∈Jh

∫

∂K

∂u

∂n
vhds=0, ∑

K∈Jh

∫

∂K

∂u

∂n
I∗hvhds=0. (3.14)

Proof. The first identity of (3.14) is obvious by rewriting the sum as integrals of jump
terms over the interior edges of Jh. These jumps obviously vanish because of the conti-
nuity of ∂u/∂n. A similar argument gives the second identity of (3.14).

Lemma 3.9. It holds

|a(uh,vh)−a(uh,I∗hvh)|≤C(h2‖uh‖1+h2‖u‖2+h‖u−uh‖1)‖vh‖1. (3.15)
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Proof. Using the Green’s formula, the identity

∫

VP∩K

( ∂

∂x
W

(1)
h +

∂

∂y
W

(2)
h

)

dxdy

=
∫

VP∩∂K
(W

(1)
h ,W

(2)
h )·nds+

∫

∂VP∩K
(W

(1)
h ,W

(2)
h )·nds (3.16)

holds for P∈Z0
h and K∈Jh, and hence we have

a(uh,I∗hvh)=− ∑
K∈Jh

∫

K

( ∂

∂x
W

(1)
h +

∂

∂y
W

(2)
h

)

I∗hvhdxdy

+ ∑
K∈Jh

∫

∂K
(W

(1)
h ,W

(2)
h )·nI∗hvhds. (3.17)

By use of the Green’s formula, we also obtain

a(uh,vh)

= ∑
K∈Jh

∫

K

(

W
(1)
h

∂vh

∂x
+W

(2)
h

∂vh

∂y

)

dxdy

=− ∑
K∈Jh

∫

K

( ∂

∂x
W

(1)
h +

∂

∂y
W

(2)
h

)

vhdxdy+ ∑
K∈Jh

∫

∂K
(W

(1)
h ,W

(2)
h )·nvhds. (3.18)

Subtracting (3.17) from (3.18) gives

a(uh,vh)−a(uh,I∗hvh)=− ∑
K∈Jh

∫

K

( ∂

∂x
W

(1)
h +

∂

∂y
W

(2)
h

)

(vh−I∗hvh)dxdy

+ ∑
K∈Jh

∫

∂K
(W

(1)
h ,W

(2)
h )·n(vh−I∗hv)ds. (3.19)

Lemma 3.8 gives the identity

∑
K∈Jh

∫

∂K

(

−W(1)−(W
(1)
h −W(1))e,−W

(2)
h −(W

(2)
h −W

(2)
h )e

)

·n(vh−I∗hv)ds=0,

where

(W
(i)
h −W(i))e = ai1(e)

∂uh−u

∂x
+ai2(e)

∂uh−u

∂y
, i=1,2.
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Employing this identity, (3.9) in Lemma 3.4, we get

a(uh,vh)−a(uh,I∗hvh)

=− ∑
K∈Jh

∫

K

( ∂

∂x
W

(1)
h −ξ1+

∂

∂y
W

(2)
h −ξ2

)

(vh−I∗hvh)dxdy

+ ∑
K∈Jh

∫

∂K

(

(W
(1)
h −W(1))−(W

(1)
h −W(1))e,(W

(2)
h −W

(2)
h )

−(W
(2)
h −W

(2)
h )e

)

·n(vh−I∗hv)ds

≡ ∑
K∈Jh

(IK+IIK), (3.20)

where ξ1 and ξ2 are the mean values of ∂
∂x W

(1)
h and ∂

∂yW
(2)
h over triangle K, respectively.

By using the Holder’s inequality, we can get

|IK|≤Ch(|W
(1)
h |1,K+|W

(2)
h |1,K)h‖vh‖1,K ≤Ch2‖uh‖1‖vh‖1,K. (3.21)

To bound IIK, we have

|IIK|≤Ch
( 2

∑
i=1

∣

∣

∣
(ai1−ai1(e))

∂(uh−u)

∂x
+(ai2−ai2(e))

∂(uh−u)

∂y

∣

∣

∣

1,K

)

‖vh‖1,K

≤Chmax|a′ij|(‖u−uh‖1,K+h‖u‖2)‖vh‖1,K. (3.22)

Summing up (3.21) and (3.22) over all triangles, we obtain the desired (3.15).

4 Error estimate of the finite volume element

We have given the definition of the finite volume element scheme with interpolated co-
efficients. Now we analyze the error of the scheme. To start our analysis, we introduce
an auxiliary bilinear form

A(u;w,I∗h ϕh)= a(w,I∗h ϕh)+( f ′(u)w,I∗h ϕh),

where u is the exact solution in (2.5). For the auxiliary bilinear form A(u;·,·), we have
following positive definite property.

Lemma 4.1. Assume f ′(s)> 0 for finite interval, then for fixed u∈ H1
0(Ω), A(u;wh,I∗hwh) is

positive definite for sufficiently small h, i.e., there exists a positive constant α, such that

A(u;wh,I∗hwh)≥α(u, f )‖wh‖
2
1, ∀wh∈S0h. (4.1)
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Proof. Rewrite A(u;wh,I∗hwh) as

A(u;wh,I∗hwh)= a(w,I∗hwh)+( f ′(uh)wh,wh)−[( f ′(u)wh,wh)−( f ′(u)wh,I∗hwh)]. (4.2)

Application of Lemma 3.2 and Lemma 3.3 yields

a(wh,I∗hwh)≥C1‖wh‖
2
1. (4.3)

Note that f ′(s)>0 and let C2= infP∈Ω f ′(uh(P)) for the fixed uh, then we have

( f ′(uh)wh,wh)≥C2‖wh‖
2
0≥0. (4.4)

In terms of (3.9) in Lemma 3.7, we obtain

|( f ′(uh)wh,wh)−( f ′(uh)wh,I∗hwh)|

=
∣

∣

∣ ∑
K∈Jh

∫

K
f ′(uh)wh(wh−I∗hwh)dxdy

∣

∣

∣

≤ ∑
K∈Jh

Ch| f ′(uh)wh|1,Kh|wh|1,K

≤max
Ω

(| f ′′(uh)∇uh|,| f
′(uh)|) ∑

K∈Jh

Ch2‖wh‖
2
1,K

≤C3h2‖wh‖
2
1. (4.5)

Together (4.3), (4.4) with (4.5) yields

A(uh;wh,I∗hwh)≥C1‖wh‖
2
1−C3h2‖wh‖

2
1 =(C1−C3h2)‖wh‖

2
1,

which implies the desired result (4.1) for sufficiently small h.

Lemma 4.2. Assume w ∈ H1
0(Ω), then for fixed uh ∈ S0h there exists a positive constant C,

independent of the mesh size h, such that

|A(uh;w−Ihw,I∗h ϕh)|≤Ch2‖w‖3‖ϕh‖1, ∀ϕh∈S0h. (4.6)

Proof. Rewrite A(uh;w−Ihw,I∗h ϕh) as

A(uh;w−Ihw,I∗h ϕh)=a(w−Ihw,I∗h ϕh)+( f ′(uh)(w−Ihw),ϕh)

+( f ′(uh)(w−Ihw),I∗h ϕh)−( f ′(uh)(w−Ihw),ϕh). (4.7)

Again application of Lemma 3.2 and Lemma 3.3 yields

|a(w−Ihw,I∗h ϕh)|≤C2‖w‖3‖ϕh‖1. (4.8)

By Lemma 3.5, we obtain

|( f ′(uh)(w−Ihw),ϕh)|≤Ch3‖w‖3‖ϕh‖1. (4.9)
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Recall Lemma 3.4,we also obtain the following inequality

|( f ′(uh)(w−Ihw),I∗h ϕh)−( f ′(uh)(w−Ihw),ϕh)|

≤ ∑
K∈Jh

‖ f ′(uh)(w−Ihw)‖0,K‖ϕh−I∗h ϕh‖0,K

≤max( f ′(uh)) ∑
K∈Jh

‖w−Ihw‖0,K‖ϕh−I∗h ϕh‖0,K

≤Ch4‖w‖2‖ϕh‖1. (4.10)

Together (4.8), (4.9) with (4.10) yields the desired results (4.6).

Now we state the main result of this section.

Theorem 4.1. Assume f ′(s)>0, f∈C2(R), g∈L2(Ω). Let u∈H1
0(Ω)∩H2(Ω) be the solution of

(2.1) and Jh be quasi-uniformly triangular partition of domain Ω, then the approximate solution
uh∈S0h of finite volume element method (2.5) with interpolated coefficients converges to the exact
solution u with the following estimate

‖u−uh‖1≤Ch2. (4.11)

Proof. Subtracting (3.2) from (3.1), we obtain the following error equation

a(u−uh,I∗h ϕh)+( f (u)−Ih f (uh),I
∗
h ϕh)=0. (4.12)

By expansion, we have

f (u)− f (uh)= f ′(uh)(u−uh)+(u−uh)
2
∫ 1

0
f ′′(uh−t(uh−u))(1−t)dt

≡ f ′(uh)(u−uh)+(u−uh)
2 f̄ ′′. (4.13)

Substituting (4.13) into (4.12), we find

A(uh;uh−Ihuh,I∗h ϕh)

=A(uh;u−Ihu,I∗h ϕh)+((u−uh)
2 f̄ ′′+ f (uh)−Ih f (uh),I

∗
h ϕh)α‖θ‖2

1

≤(C‖u−Ihu‖1+C‖ f (uh)−Ih f (uh)‖+C‖(u−uh)
2‖)‖θ‖1.

Application of Lemma 4.1, Lemma 4.2 and Lemma 3.6 yields

‖θ‖1 ≤Ch2+C‖(u−uh)
2‖. (4.14)

By use of the property of the interpolation Ih, we obtain

‖(u−uh)
2‖≤2‖(u−Ihu)2‖1+2‖θ2‖1≤Ch4+2‖θ2‖.
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Substituting this into (4.14) yields

‖θ‖1 ≤Ch2+C‖θ2‖, (4.15)

where the constants are dependent of u, uh, f , g. Recalling for Bramble [4] that

‖θ‖0,∞ ≤C|lnh|1/2‖∇θ‖≤C|lnh|1/2‖θ‖1

holds for θ∈S0h, we get

‖θ2‖=
(

∫

Ω
θ4dxdy

)1/2
≤max

Ω
|θ|

(

∫

Ω
θ2dxdy

)1/2

=‖θ‖0,∞‖θ‖≤C|lnh|1/2‖θ‖1‖θ‖≤C|lnh|1/2‖θ‖2
1.

Substituting this into (4.15) yields

‖θ‖1 ≤C1h2+C2|lnh|1/2‖θ‖2
1. (4.16)

Now adopting a continuity argument by imitating the method by Frehse-Rannacher [16],
we show

‖θ‖1 ≤‖Ihu−uh‖1≤2C1h2. (4.17)

For s∈ [0,1] considering the auxiliary semilinear elliptic problems (Ps): Find us such that

−∆us+s f (us)= sg in Ω, us =0 on ∂Ω. (4.18)

Obviously, for s= 1 this is our original problem (2.1) and for s= 0 we have u0 ≡ 0 on Ω̄.
We shall assume the following condition on Ω. For any s∈ [0,1], there is a solution us of
problem (Ps) and there is a constant Γ such that set

NΓ =
{

ω
∣

∣

∣
ω∈H2(Ω)∩H1

0(Ω), max
Ω

|u−ω|<Γ
}

is some neighborhood of exact solution u in (2.1).
We approximate problem (Ps) by the discrete problems (Ps

h): Find us
h ∈S0h such that

a(us
h,I∗hvh)+s(Ih f (us

h),I
∗
hvh)= s(g,I∗hvh), ∀vh ∈S0h. (4.19)

We intend to show that (Ps
h) is solvable. For each h, we define the set Eh ⊂ [0,1] by

Eh={s∈ [0,1]|(Ps
h) has a solution us

h∈NΓ and there holds ‖Ihus−us
h‖1≤2C1h2},

where C1 is the constant appearing in (4.16).
(i) Eh is not empty. In fact, for s=0,us =0 and us

h =0 are the solutions of continuous
and the discrete problem, respectively.
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(ii) Eh is open in [0,1]. In fact, if s∈Eh then (Ps
h) is solvable and using the monotonicity

condition, we obtain the solvability of (Ps
h) for all t in a neighborhood of s via the implicit

function theorem. By the implicit function theorem ut
h depends continuously on t. Thus

properly shorten the neighborhood such that the strict inequality ‖Ihus−us
h‖1<2C1h2 and

us
h∈NΓ is still valid and we have t∈Eh for these t.

(iii) Eh is closed. Let s(j) ∈ Eh and s(j)→ s, j →∞. Since u
s(j)
h ∈ NΓ there is a cluster

point us
h which is the unique solution of (Ps

h) and satisfies ‖Ihus−us
h‖1 ≤2C1h2. Recalling

for (4.16) we conclude

‖Ihus−us
h‖1≤C1h2+4C2C2

1|lnh|1/2h4 ≤C1(1+4C1C2|lnh|1/2h2)h2,

then for h≤h∗(C1,C2), we have 4C1C2|lnh|1/2h2
<1 and ‖Ihus−us

h‖1<2C1h2, i.e., the strict
inequality.

From (i)-(iii), we know that for h≤h∗(C1,C2) the set Eh is not empty, closed and open
with respect to s ∈ [0,1] and thus must coincide with [0,1]. Note that for s = 1, (P1

h) is
solvable. We prove that inequality (4.17) and uh∈NΓ hold for appropriately small h.

Finally, the desired estimate (4.11) follows from (4.17) and the interpolation property

‖u−Ihu‖1≤Ch2‖u‖2.

Thus, we complete the proof.

For the proof of the L2-norm estimate we shall employ a duality argument as the one
used in [7, 13], Let us consider the another auxiliary problem. Find ϕ∈H1

0 , such that

a(ϕ,v)+( f ′(uh)ϕ,v)=(u−uh,v), ∀v∈H1
0 . (4.20)

Then the solution of (4.20) satisfies the following elliptic regularity estimate

‖ϕ‖2≤C‖u−uh‖. (4.21)

Theorem 4.2. Assume f ′(s)>0, f∈C2(R), g∈L2(Ω), and Jh is quasi-uniform triangular parti-
tion of domain Ω. Let u∈H1

0(Ω)∩H2(Ω) be the solution of (2.1) and uh∈S0h be the approximate
solution of finite volume element method (2.5) with interpolated coefficients, respectively. Then

‖u−uh‖≤C(u, f ,g)h3. (4.22)

Proof. Firstly we note the following Taylor expansions

f (u)− f (uh)=(u−uh)
∫ 1

0
f ′(u−t(u−uh))dt≡ (u−uh) f̄ ′, (4.23a)

f (u)− f (uh)− f ′(uh)(u−uh)=(u−uh)
2
∫ 1

0
f ′′(uh−t(uh−u))(1−t)dt

≡ (u−uh)
2 f̄ ′′. (4.23b)
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Then, in view of (4.20), we have

‖u−uh‖
2=a(u−uh,ϕ)+( f ′(uh)(u−uh),ϕ)

=a(u−uh,ϕ)+( f (u)− f (uh),ϕ)+( f (uh)− f (u)+ f ′(uh)(u−uh),ϕ)

=
{

a(u−uh,ϕ−Ihϕ)+( f (u)− f (uh),ϕ−Ihϕ)
}

+
{

a(u−uh,Ihϕ)

+( f (u)− f (uh),Ih ϕ)
}

+
{

( f (uh)− f (u)+ f ′(uh)(u−uh),ϕ)
}

=I1+I2+I3. (4.24)

Using (4.23a) and the interpolation property, we can get

|I1|≤C(u, f )h‖u−uh‖1‖ϕ‖2. (4.25)

Using (4.23b) and the interpolation property, we can again get

|I3|≤C(u, f )‖(u−uh)
2‖‖ϕ‖1 ≤C(‖(u−Ihu)2‖+‖θ2‖)‖ϕ‖1 ≤Ch3‖ϕ‖1. (4.26)

Rewriting I2 as

I2=a(u−uh,Ih ϕ)+( f (u)− f (uh),Ihϕ)

=a(u,Ih ϕ)+( f (u),Ihϕ)−a(uh,Ih ϕ)−( f (uh),Ih ϕ)

=(g,Ih ϕ)−a(uh,Ih ϕ)−( f (uh),Ih ϕ)−(g,I∗h ϕ)+a(uh,I∗h ϕ)−(Ih f (uh),I
∗
h ϕ)

=(g,Ih ϕ−I∗h ϕ)−a(uh,Ihϕ−I∗h ϕ)−( f (uh)−Ih f (uh),Ih ϕ)−(Ih f (uh),Ih ϕ−I∗h ϕ),

and applying Lemma 3.5, Lemma 3.7 and Lemma 3.9, we get

|I2|≤C(h3+h‖u−uh‖1)‖ϕ‖1. (4.27)

Therefore, substituting (4.25), (4.26), (4.27) and (4.21) into (4.24) yields

‖u−uh‖
2≤|I1|+|I2|+|I3|≤C(h3+h‖u−uh‖1)‖u−uh‖.

Omitting the common factor ‖u−uh‖, this implies

‖u−uh‖≤C(h3+h‖u−uh‖1),

which gives the desired estimate (4.22) by using Theorem 4.1.

Theorem 4.3. Assume f ′(s)>0, f ∈C2(R), g∈L2(Ω), and that the coefficients a12, a21 in (2.1)
satisfy a12=a21 and Jh is quasi-uniform triangular partition of domain Ω. Let u∈H1

0(Ω)∩C(Ω)
be the solution of (2.1) and uh ∈S0h be the approximate solution of finite volume element method
(2.5) with interpolated coefficients, respectively. Then

‖u−uh‖0,∞ ≤C(u, f ,g)h3|lnh|. (4.28)
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Proof. By using the triangle inequality, we have

‖u−uh‖0,∞ ≤‖u−ũh‖0,∞+‖ũh−uh‖0,∞,

where ũh is the finite element approximation of u satisfying

a(ũh,vh)+( f (ũh),vh)=(g,vh), ∀vh ∈S0h. (4.29)

It has been shown in [7, 9, 23]

‖u−ũh‖0,∞ ≤C(u, f ,g)h3|lnh|. (4.30)

Next, we turn our attention to the estimate of ‖ũh−uh‖0,∞. Let P∗ ∈ K0 ⊂Jh such that
‖ũh−uh‖0,∞= |(ũh−uh)(P∗)| and δP∗∈C∞

0 (Ω) is a regularized Dirac δ-function satisfying

(δ,vh)=vh(P∗).

Consider the corresponding regularized Green’s function G∈H1
0(Ω), defined by

a(G,v)+( f ′(ũh)G,v)=(δP∗ ,v), ∀v∈H1
0(Ω). (4.31)

Let Gh∈Sh
0 be the finite element approximation of G, i.e.,

a(G−Gh,v)+( f ′(ũh)(G−Gh),v)=0, ∀v∈H1
0(Ω).

Then, in terms of (3.2) and (4.29), we can get

‖ũh−uh‖0,∞ =(δP∗ ,ũh−uh)= a(ũh−uh,Gh)+( f ′(ũh)(ũh−uh),Gh)

=(g,Gh)−( f (ũh),Gh)−a(uh,Gh)+( f ′(ũh)(ũh−uh),Gh)

+a(uh,I∗hG)+(Ih f (uh),I
∗
hGh)−(g,I∗hGh)

=
{

(g,Gh−I∗hGh)−a(uh,Gh−I∗hGh)
}

+
{

(Ih f (uh),I
∗
hGh)

−( f (uh),Gh)
}

+( f ′(ũh)(ũh−uh)− f (ũh)+ f (uh),Gh)

=I4+I5+I6. (4.32)

Using Lemma 3.7, Lemma 3.9 and Theorem 4.1, we can get

|I4|≤Ch3‖g‖1‖Gh‖1+C(h‖u−uh‖1+h3‖u‖2)‖Gh‖1≤C(u,g)h3‖Gh‖1. (4.33)

Using Lemma 3.7 and the interpolation property, we have

|I5|= |( f (uh),Gh−I∗hGh)|+|( f (uh)−Ih f (uh),I
∗
hGh)|≤C(u, f )h3‖Gh‖1. (4.34)

Using (4.23b) and (4.34) and Theorem 4.1, we get

|I6|≤|( f ′(ũh)(ũh−uh)− f (ũh)+ f (uh),Gh)|

≤C‖(ũh−uh)
2‖‖Gh‖≤C1h3‖Gh‖. (4.35)
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Table 1: Errors of FVEM with interpolated coefficients.

H1-seminorm L2-norm L∞-norm
h Error Rate Error Rate Error Rate

1/4 3.0209e−6 5.2118e−6 5.9708e−6
1/8 9.5310e−7 3.17 7.2956e−7 7.14 7.7624e−7 7.69

1/16 2.4847e−7 3.84 8.6112e−8 8.47 9.9410e−8 7.81
1/32 6.2020e−8 4.01 9.7218e−9 8.86 1.1723e−8 8.48

In addition in view of [7, 24] we get

‖Gh‖1≤C|lnh|1/2. (4.36)

Combining of (4.33)-(4.35), we obtain

‖ũh−uh‖0,∞ ≤Ch3|lnh|1/2.

From this and (4.30) we get

‖u−uh‖0,∞ ≤C(1+|lnh|−1/2)h3|lnh|,

which gives the desired estimate (4.28) for sufficiently small h.

5 Numerical example

In this section we present a numerical experiment to verify the theoretical investigations.
Let Ω = (0,1)×(0,1). We choose f (u) = u3 and g(x,y) = 2(x(1−x)+y(1−y))cos(x(1−
y))+y(1−x)(x2+(1−y)2)sin(x(1−y))+y3(1−x)3sin3(x(1−y)) in the problem (2.1) so
that the exact solution is: u(x,y)=y(1−x)sin(x(1−y)).

Place a right triangular decomposition on the domain Ω=(0,1)×(0,1) with the right-
angle-side length

h=
1

N
, xi =

i

N
, yj =

j

N
, i, j=0,1,2,··· ,N,

depicted as Fig. 4.

Compute it by the quadratic triangular finite volume element method with interpo-
lated coefficients. The results are listed in Table 1. As observed, the error between the
quadratic triangular finite volume element solution with interpolated coefficients and
the exact solution is minor and stable at the nodes. The H1-norm error is of the 2-order
accuracy and the L2-norm error and L∞-norm error are of the 3-order accuracy. This
agrees well with the theoretical analysis.
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Figure 4: The right triangulation of Ω=(0,1)×(0,1) with the right-angle-side length h=1/5.
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