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Abstract. An implicit discontinuous Galerkin method is introduced to solve the time-
domain Maxwell’s equations in metamaterials. The Maxwell’s equations in metamate-
rials are represented by integral-differential equations. Our scheme is based on discon-
tinuous Galerkin method in spatial domain and Crank-Nicolson method in temporal
domain. The fully discrete numerical scheme is proved to be unconditionally stable.
When polynomial of degree at most p is used for spatial approximation, our scheme is
verified to converge at a rate of O(72+hP*1/2). Numerical results in both 2D and 3D
are provided to validate our theoretical prediction.
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1 Introduction

The metamaterials are artificially structured electromagnetic materials. It has some ex-
otic properties, such as negative refractive index and amplification of evanescent waves,
which may not be found in nature. Since it was first constructed in 2000, there are a
number of works on the study of metamaterials and their applications in different areas.

To our knowledge, the numerical simulation of metamaterials plays an important
role in the design of new metamaterials and discovery of new phenomenon of them [5].
Among them, the widely used numerical methods for the simulation of metamaterials are
finite difference time domain method (FDTD) [9, 24], finite element method (FEM) [19]
and the commercial packages, such as HFSS and COMSOL et al..
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Since the discontinuous Galerkin (DG) method was first proposed in 1973 [23], it has
become one of the most popular methods for solving various partial differential equa-
tions [2,11]. Actually, the DG method uses discontinuous piecewise polynomials as both
trial and test functions. In this approach, the discontinuities at the element interfaces al-
low the design of suitable inter-element boundary treatments to obtain highly accurate
and stable methods in many difficult situations. It is well known that the DG method has
several distinctive advantages, e.g., applicability for non-conforming mesh, high-order
accuracy, flexibility in handling material interface and high parallelizability. We refer to
the survey papers [1,4] and the books [6,11] and their references therein for more details
about it.

The DG methods have been investigated for Maxwell’s equations in both free space [3,
7,8,27] and dispersive media [12, 14, 15, 18, 21, 25, 26] whose permittivity depends on
the wave frequency. In [25], Wang et al. introduce a semi-discrete divergence-free DG
method for solving Maxwell’s equations in dispersive media under a unified framework.
It is proved that the convergence rate of the semi-discrete method is O(h?+1/2). Actually
the discretization of the spatial domain, leads to a Volterra integro-differential system in
time t. Then a continuous Galerkin method is used to solve this reduced system. In [27],
Xie et al. develop an unconditionally stable space-time DG method for solving Maxwell’s
equations in free space and obtain the convergence rate of O (P! +hP*1/2) in the L2-
norm when the polynomials of degree at most p are used in both temporal and spatial
discretization. In [26], Wang et al. extend this space-time DG method to dispersive media
and give both the theoretical analysis and numerical examples.

Recently, Li in [16] develop a DG method in space for solving Maxwell’s equations
in metamaterials and perfectly matched layers with Runge-Kutta method in time. In
it several numerical examples were given to show that this method is efficient, but the
theoretical analysis is missing. In [20], Li et al. develop a leap-frog type DG method
for solving the time-domain Maxwell’s equations in metamaterials, and provide both the
stability and convergence analysis. In [18], Li et al. develope a leap-frog type DG method
for solving the time-domain Maxwell’s equations in metamaterials based on an auxiliary
differential equations (ADE) method, and prove that, under some CFL condition, this
method is stable and convergent.

The main aim of this paper is to develop a new scheme for solving time-domain
Maxwell’s equations in metamaterials. The model problem is the first-order Maxwell’s
equations in metamaterials where the dispersive character is taken into account via an
integral term. Our scheme is based on discontinuous Galerkin method in spatial domain
and Crank-Nicolson method in temporal domain. Then the unconditional stability and
convergence rate of O(t?+h"*1/2) are obtained for our scheme. Theoretical results are
validated by some numerical examples.

The rest of this paper is organized as follows. In Section 2, we present the govern-
ing equations for metamaterials. The fully-discrete scheme is introduced in Section 3.
Both the L?-stability and L2-error estimate are proved in Section 4. In Section 5, some
numerical results are provided to support our theory analysis.
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2 The governing equation

The governing Maxwell’s equations in metamaterials, which is defined in Q2 x [0,T], can
be written as follows [18],

eggf:VxH—], (2.1a)
yoa;:—VxE—K, (2.1b)
2+Fe]:egw§eE, 2.10)
E;It<+r,ﬂl<= powy, H, (2.1d)

where €p and o are the permittivity and permeability of free space, respectively, wp,
and wy,;, are the electric and magnetic plasma frequency, respectively, I'. and T, are the
electric and magnetic damping frequency, respectively. For simplicity, we assume that
is a bounded and convex domain with the boundary of dQ) perfect conducting, i.e.,

nxE=0 on dQx(0,T), (2.2)

where n is the unit outward normal to dQ). The initial conditions for the system (2.1a) to
(2.1d) are assumed to be

H(x,0)=Ho(x), E(x,0)=Eo(x), K(x,0)=Ko(x), J(x,0)=Jo(x). (2.3)
By (2.1c) and (2.1d), we get
J(xtE)=e "o (x) +eows, te’r“(t’S)E(x,s)dsEe’rft]()(xﬂ—jE, (2.4a)
0
K(x,t;H) =e """ Ko (x) + pows,, Ote_r’"(t_s)H(x,s)dsEe‘rftKo(x)+lCH. (2.4b)

Thus, (2.1a) and (2.1b) can be written as

t
GO?)]tE_VxH+eow§e 0 e T (x,5)ds = —e Ty (x), (2.5a)
oH 2 [t s ~Tt
VO§+VXE+.“0(U;7M A e tm H(x,s)ds:—e m KO(x)' (25b)

In the following, (H*(Q))3 denotes the standard Sobolev space equipped with the norm
|| -|lx and seminorm |-|;. In particular, || -||o is the (L?(Q)))3>-norm. Moreover, for

(€ O _ T
Q_<0 VO)' u=(EH),
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with E(-,t),H(-,t) € (H*(Q))3, for YVt € (0,T), we define

1/2
lu(Hllko=(IECHIEa+THEDE)

7

and

1/2
1QY2u(-,t) k0= (€l [EC 1) 2o+ polH(-1)[20) "~

3 Numerical scheme

We assume that () is decomposed by a regular tetrahedra mesh 7, with maximum diame-
ter h. An element is denoted by K, a face by ¢, and the outward unit normal by ng. We also
denote by £7 the union of all interior faces of 7j, by £p the union of all boundary faces of
T, and by £=E7(JEp the union of all faces of 7. Moreover, let 0=ty <t; <---<ty=Tbea
subdivition of the interval I=[0, T| with elements denoted by I;=[t;,t;11],j=0,1,---,N—1,
where T=T/N and t;=]T.

Let PP (K) denote the space of polynomials with degree at most p. Then the DG finite
element space for the spatial discretization is given by

vi=v[o7,
where
77 ={oe (L3(Q)) ol € (P(K))°, KETh).

It is known that the choice of the numerical flux plays a significant role in the definition
of DG scheme. For this purpose, we need to introduce some notations first. Let e be an
interior face belonging to element K. Set

vint(K) (x) :(sl_i>r(1)n_v(x—|—5n1<), Vext(K) (X) :51_j>1'(1)1+v(x—|—(5n[<), Vxee.

The average and tangential jump of v on any interior face e C £7 are defined as

int(K) ext(K) .
{{V}}:%, [[V]]T:nl( vat(K)_nKXVext(K).

For any boundary face e C £p which is belong to element K, we define
vt (x) =v" K (x), Vxee.
To introduce the DG formulation, we rewrite (2.5a)-(2.5b) and (2.3) in the form

Qu;+V -f(u)+Pu=F in QOx(0,T], (3.1a)
u(x,0) =up(x) in Q, (3.1b)
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w=( g ) w=( g ) o= (9 ), =) b bW
fi(u):< —ee:iXxEH ) Pu=< ;Q_SI ) F:( _—ee_rfggo((x)g) >

Multiplying (3.1a) by a test function v=(vg,vn)T €V}, and then integrating by parts over
K, we obtain the following weak formulation,

/Qut vdx+/ vds—/f(u)-Vvdx+/Pu-vdx:/F-de. (3.2)
K K K

Based on it, the corresponding semi-discrete DG Scheme is to find u;, € VZ such that

/PCQ uy;- vhdx4—2:L/) uh nK VhdS

ecK

_ / f(uy)- Vvpdx+ / Puy, - vydx= / Fvydx, (3.3)
K K K

for all vy, € VZ and all elements K, where f(u/h)-\nK is the numerical flux on the face e C €.
Following the strategy in [3,10,25], we take

e[ T ((H) + 5 [l
up ) -ng=
niox (1{B}} - 5 [Hur)

on an interior face e=0K(&; and

) 1 )
— _ int | — nt
f(uh)-n:< nx(Hh —I—Zn><Eh ) )

03x1

on a boundary face e=0K(\Ep, where Z=/119/ €y denotes the impedance of the medium.
Obviously this numerical flux is consistent with f(u)-ny.
Moreover, set

uy,(x,0) = 750 (x), (3.4)

where 71, is the element-wise L? projection operator.
Summing up over K& 7j, in (3.2) and (3.3), we have

/ Qu;- vdx~|— / )-vds
KeT, KeTy:

-z ] fw)-vix+ ¥ / Pu-vix= [ Fvix (35)

KeT,
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and

Z Q uy,- vhdx+2 Z uh nK vhds
ot

KeT, KeT,ecK”¢
/ uh VVth+ E /Puh Vth— E /F~Vhdx. (3.6)
KeTy, KeTy, KeT,

Before formulating the fully discrete scheme, we need to approximate the integral terms.
Recalling the definition of JE, we have

t
JEL JE| | =eyw? kE x,5)e Telti=s) gg
b=ty pe

fr-1 fk T, (b—s)
—eowpe / / E(x,s) k*)ds
tr—1

e Tt gk 1E+eow E(x s)e Telh=)ds

fe-1

Frjk 1E—|— 6 w (Ek—|— I"ETEkfl)‘ (37)
Similarly,
t
ICkHéICH}t_tk:yow%m kH(x,s)e’r"’(tk’s)ds
B 0
-1 tg
=€0‘Uf}m</0 + )H(S)g—rm(tk—S)dS

fe-1

3
= TnTxCk= 1E-l—]/lowpm/ H(x,s)e () ds

-1

e TnTKCk= 1H+2y Wy (H e T THE ), (3.8)

As a result, JE,
expressed as

| bty and KCHy,| by will be approximated by J*E;, and K*H,,, which are

jkEh—e’r T gk 1Eh—i— eowpe(Eh —|—e’r'-’TE£*1) for 1<k<N, (3.9a)
Ky, =e T T TH, 4 = 5 yowpm(H +e TnTHETT) for 1<k<N, (3.9b)
with ]OEh :0, KOHh =0.
In a similar way, J*E and KFH will be approximated by J¥E and KXH, which are
expressed as

J¥E=¢ TT 7k-1p4 L egw (B e TeTgRT) for 1<k<N, (3.10a)

KrH, :e_r’"TIC'a‘_lH—l-Eyowpm(Hk+e_r"’THk_1) for 1<k<N, (3.10b)
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with JOE=0, KIH=0.

Actually the approximation in (3.9a) and (3.10a) are based on the compound trapezoid
formula, whose approximation error is of second order.

On the basis of the semi-discrete scheme (3.6), we introduce a Crank-Nicolson scheme

for temporal discretization to obtain the following fully discrete scheme: for any k €
{0,1,2,--,N—1}, find uf ! = (E- 1, HF )T such that

/Q(Stuk+1 vipdx+ ) Z/ k“ nK Vpds— ) / @) Vvydx

KeT, KeT,eekK KeTy,
+ - Z/ Pkﬂuh—l—Pkuh) Vth— Z/ Fk—f—FkJrl) Vhdx (3-11)
KGT KET
where
gkt — l(uk+uk+1) Souktl :l(ukﬂ_uk)
2 ’ The T ’
k —T.t
k J“Ey, k —e <, Jo(x)
= F, = .
P, ( ’Cth >’ < —e_r"’tkﬂhIC(](X)

4 [’ stability analysis and error analysis

4.1 The L? stability

In this section, we will carry out the stability analysis of the numerical scheme. First, we
define a bilinear form as

B(uh,vh): Z Z /(f(uh) IIK) VhdS— Z / uh Vvh(x f)d (41)
KeT,ecoK”¢ KeT,
To prove the stability of the scheme (3.11), we need the following lemmas.

Lemma 4.1 (see [13]). For any k> 1, we have

k
k i k
17 Eh||o§T€0w§eZ(;HEZH0/ 1< HhHo<TH0wmeHH lo-
=

Lemma 4.2 (The discrete Gronwall inequality). Let f(t) and g(t) be nonnegative functions
defined on ty =kt,k=0,1,---,N,Nt=T, and g(t) be non-decreasing. If

k—1

ft) <g(t)+CtY_ f(H)

j=0
where C is a positive constant, then

f(te) <g(te)e .
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Lemma 4.3 (see [25]). For any u,(-,t) € VZ, t€(0,T), we have

B uh,uh Z /7“[Eh Xt ]]T‘ —|—ZH[Hh Xt ]]T} ds+2 Z /f’anmi’ ds.

ecés e€ép
At this point, we give the stability of the DG scheme (3.11).

Theorem 4.1. For any n>1, we have

1 1
1Qbugl3 < COIQ IR+ 3ol3+IKol13),

where C is a genetic constant, which is only dependent on T, but independent of both the mesh
size h and time step T.

Proof. Choosing v, = 2Tuk+1 in (3.11), we get

||Q§ul;l+1|‘2 HQzuhH2+2T8( k+1 k+1)+T(zpk+1uh+Pkuh’ k+1)
:T(F +Fk+l _k+1)Q-

According to the definition of Pkuy, and (3.9a), a straightforward calculation leads to

2
T
Q7w 2~ ||Q2uhH2+2TB( w L)+ reowr (B ERT)

4
72 72 _
+Z€0W§e€ Fev (K Ek) + = yow (HEFL Hk+1)+—y0w%me Do (HE, HY)
2 B 2 B
:—Zeow (14e Ty (BEH, Ek)——yowpm(1+e Ty (Hf L HE)

+T(FE+FL ab ) (147 TeT) (TVE), BN — 1 (140 T7) (KFH, BT, (4.2)

By using the Cauchy-Schwarz inequality and the Young’s inequality, we get

(E’;i“fEii)§51HE’,§“H%+7HE 15, (4.3a)
(H’,i“fH’méélllH’,;“H%+EllH’zllé, (4.3b)
and
e Tefi e Tehint k1, gk k1112 4 1Rk 12y 0 F 2
T(5 ) U0 Ei "+ B < woa (1B} I3+ 1 EF3) + 55 0ol (442)
e—Fmtk+e—F,ntk+1
T(y ) (Ko T B0 < s ([ G+ IHEIR) + 5 [Ko 3 (44b)
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According to Lemma 4.1,

k .
| T¥ERI§ < (eowpe)*(k+1) ZHEhHo<C T)t)_[E,l5,
i=0 j=

k ) k )
1B, IF < 72 (pocwp ) (k-+1) )0 |HL 15 < C(T) T ) |IHG 5.
i=0 i=

Then, by the Cauchy-Schwarz inequality and the Young’s inequality again, we have
_ T
v((1+e )T BT <71l (e )T Exllol|EE +Ef
C(T)T2 &

<ore(IB G +IEf )+ —5— LIEL G (45)
i=0
Similarly,
7 (((1+e7 ) KHH, B ) <ot (|IHE I3+ HE ) ZHH 13 @)

Substituting (4.3a), (4.4a), (4.5) and (4.6) into (4.2), we have
2
1 1 _ B T
|Q2uf 12— [|Q2uf |2 +-27B (@, & 1) + Zeow;eHEkH I2

2 2
T _ —
+7€0wpee TETHE HO+ ,qupmHHk_‘—lHO_’_ ‘uowém TWTHEz_‘—lH%

4

T2
<% eocsh (BB P+ 4 S u)+ 0 (21 P+ 2. IH17)
+278, (| B2+ B 1)+ > 5 1ol +2 8 (IHE P+ [ ) 4 5[ Ko

C(MT? & C(T )TZ -
E 2 H: 2.
+ SO Ym0 e
Summing up the inequality above from k=0 to k=n—1, using the fact that B(a} !, af ™) >

0, and assuming that 7 <1 for snnphaty, we obtain

1 1 €ow Vo
HQzuZHZ—IIQZuQH2 ”EZHE I5+—— 1 p ZHH 15

2n1 w2 n-1

2. 9
TE0W,,01 2pow?,01 €ow
S—% — a Z||Eﬁ||z+%2||ﬂlfl\|2 a ZHE ||% L H ZHH 15
k=1

n—1
+452TZHE ||2+ HJoHZ+453TZHH H2+ IIKo||2+25zHE 12+245 || Hj |12

C(T)t"n )T2n 't
+<2§Z|\Eku2 O T e
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Choosing 61 =1/2, 6, =€¢/4 and 63 = /4, we get
1, .1 1 o
EHQZHZHZ— 1Q2u)||> < C(T)[Joll*+C(T) 1Ko +C(T)T }_ [| Q2w >,
k=0

By Lemma 4.2, we conclude the proof. O

4.2 L2 error estimate

Now we turn to the error estimate of our approach. We first introduce the following
lemmas.

Lemma 4.4 (see [17]). Denote u*=u(-,kt). For any uc H>([0,T],(L2(Q))?), we have

HTﬁkH —/Iku(s)dst < ZS/Ik [|ug (s) ||*ds.

Moreover, we also need the element-wise L?-projection operator 7, : HP1(Q) — Vp,
which satisfies

/ (u—myu)vdx=0, YoePP(K), VKET;.
K
For this L? projection operator, we have the following approximation lemma.
Lemma 4.5. Let u € HP*1(K). Then
||u—7Thu||0K<Chp+l|u|p+1 K/ ||u—7ThM||OBK<Chp+l/2|M| +1,K-

Take R’fl =uf—m,uk, Gk ’;Z myuk. Denote e =uF k . Thus, e = Rk Gk By the
definition of the L? projection 7, we have the followmg orthogonal property,

(R.,6)=0 forall 0<i,j<N. (4.7)
Lemma 4.6. Let J*E be defined in (3.7). Then for any E€ H([0,T],(L*(Q))3),

it Ak+1 T 7kl kg gk+1
‘/ (TEBE)dt— (T B+ TR

T€0
- 20
Proof. By Lemma 4.4, we have

=g (B 15+ 16E]I5) +CT 60/ ][5t

t
‘/Hl (jEIG_IEJrl)dt_%(jk+lE+jkE,9_7é+l)‘
tr
t
<|[[ 7 gEa- (R TR | 15

T€ tr+1
<TRITEP+Cie [ (T Bl P
ty

T€0
<o (I 5 +116g13) +C eo/ ]|t
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So, we complete the proof. O

Lemma 4.7. Assume E€ L?([0,T],(L*(Q))3). Let J*E,, be defined by (3.9a) and JFE defined
by (3.10a). Then for any 1<k <N,

(TEy— 6 < (||9k+1!|o+||9EH +C(T TzeoH@] I5-

Proof. By the definition of (3.9a) and (3.10a), and the induction argument, a direct calcu-
lation leads to

T E,— TrE

2

TEYW
-, k—1 k—1 ¢ gk k -, k—1 k—1
=e LT (g* g, — 7} E)—i—Tp(Eh—E e TeT(EE1_EF )

2
TEQW
—p et (e—rer(jk—th_jak—zE)Jr : pe (El}cl—l_Ek—1+e—FET(EI;l—2_EI;l—2))>
2
TeEgW
%(Eh EkJre—l”g’r(Ek 1 Eﬁ_l))
2 k-1
TOOWhe N\~ _iTot (k=i _gk—j , ,—Tor(pk—i—1_ pk—j—1
= e (B, —E e T(E, T BT,

j=0

The combination of the Cauchy-Schwarz inequality, the Young’s inequality and (4.7)
yields

(jkEh —jkE gIEJrl)

( Teow

_]rJ(E _EF- ]_*_e—l"er(E/;l*j*l_Ek—j—l)),éﬁ—o—l)

2 k 1
TEOCL) . k—i k—i—1 —
—jleT ] —TI.T ] k+1
( ] ¢ (9E +€ € GE )/0]5 )

€0
7(\|9k+1llo+ll9gllo )+C(T TZeollf?’ I5-

Thus, the proof is completed. O

By Lemma 4.4, we can obtain
Lemma 4.8. Forany E€ H*([0,T],(L?(Q))3),

te+1 T 2 Cr0 rtn
| [ et B (s)ds— 2B e TN | <= [ (Bl I3+ B
k

k

Lemma 4.9. Let J¥E be defined by (3.7) and JXE defined by (3.10a). Then for any 1<k <N,
Ec H2([0,T),(L*(Q)))3), we have

- GO by
(TB=TE G < S5 (106 I3+ ||9'EH§)+C€0T5/O (I Beell+ 1E: I+ [ ENIF)ds
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Proof. According to the definition of (3.7) and (3.10a),
\ZlkE_ jkE
:e_r”(juk_lE—jk_lE) +€0w§e (I

t
2(E"+e_rfTEk_1)—/k e_r“(tk_s)E(x,s)ds).

te-1

By the induction argument, we obtain

k-1 ) ) e
JFE— T*E zeoa)f,e Y et (% (E* T e TemET 1) —/ ] e’rf(tk*f’s)E(x,s)ds) .
j=0

fe—j—1
By the Cauchy-Schwarz inequality, the Young’s inequality and Lemma 4.8, we get

(‘Z{kE . jkE,éI]?_l)
k—1 .

. . . t—
— (6060;276 Zeﬂl‘ﬂ <% (Ekf] _i_efl",gTEkfjfl) _/ ]

e*rf(tkfi*S)E(x,s)ds),G_EH)
j=0 fi—j-1

<e wz k_iH (E(Ek_j—ke_r"TEk_j_l)_ Bej g_re(tk‘f_s)E(x s)ds) H 'Hék+1”
]:

fe—j—1

€0 t
S%(WEHH(ZWLH91]§H(2>)+C€0T5/0 (I1Eutl|5+ 1B 15+ || E[|§)ds.

So, we complete the proof. O

Taking v=1vy, in (3.5), integrating (3.5) over I, = [t, t;1] with respect to t on both sides
of it and dividing by 7, then subtracting (3.11), we obtain the following error equations

1 1 [k 1 [t
—(Qek1 —Qek v, + / +1B(u,vh)dt—B(ﬁ']§+l,vh)+— +](73u,vh)dt
T T/ T Jt
1 1 [t 1
— (P a4+ Pruy,v,) == / . (F,vp)dt— - (B L1 F wy).
2 T Jt 2
Which can be rewritten as
1 1 [hn _
;(Qeﬁ-&-l_Qeﬁ,vh)—F;/t B(u,vh)dt—B(ﬁkH,vh)—}—B(e’:lﬂlvh)
k
1 [hen 1 k1 Kk 1 k41 k k41 k
+;/ (Pu,vh)dt—E(P u+P u,vh)+§(73 u+Pu—P " wy,— Py, vy)
tr
1 /ten 1
- /t (Fvi)dt—5 (F 4-Fv). (4.8)
k

Theorem 4.2. Let Ej}, Hj be the solution of (3.11) and E", H" be the solution of (2.5a) and
(2.5b) at time t =t,,. Under the following reqularity assumptions:

E,He H*([0,T],HP ! (curl,Q)),
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there exists a constant C independent of the mesh size h and the time step T, such that

€ol[E" —Ej[[5+ ol [H" — H} I3
rEn
SCT“(HJoHZvL||Ko||2)+CT4/O (IV X Bu[[5+ 'V x Hee[|5)dt

+C [ (1Qbul Qb3+ 1Q wal et -+ ch 1 [ e,
Proof. Taking v;, = ZTG_{(I'H in (4.8) and using the orthogonal property (4.7), we have
Q405 13— Q305 I3+ (P 1wy Phuy) — (P Mt P, 05
2 [ B(u 05t —2eB (a1, 85 +20B (e, 85

tr

trt1 _ _ bt -
w2 [ (Pu,e{i“)dt—T(Pk“uwﬂ‘u,eﬁ“)+(T(F’;+1+Fﬁ)—z ' th,@ﬁ“).

tr tx

Which is equivalent to

1 1 _
1Q265 73— Q264 I3+ (7" Byt T*E) — (T E+ T E), 8
4T ((lck+1Hh+leHh) - (ick+1H+ickH),éI’;“)

t

) / B, 85 dt— 20 B(aFH, k) 120 B (bt gk
te

t
2 [ (TE 8 dt— o E+ TRE, 8K

tk

t t
42 k“(/CH,ég“)dt—r(lck“HJrickH,ég“)+(T(F§+1+F’;)—2 k”th,é{j“), 4.9)

tr tr

where the definition of P¥*1u;,, Pu and P*1u is used.
By the definition of J ¥E, 7*E; and JFE defined in (3.7), (3.9a) and (3.10a) respective-
ly, we have

((jk+lEh+jkEh) _ (jk+1E+jkE),9_£+1)
:<(t7k+lEh+jkEh)_(\Z1k+1E+t7(,zkE)/9_§+1) + ((jak+1E+$kE)—(jk+1E+jkE),6_]§+l)

T _ — _ —
= (Geohe(BE +e T0k) 857 ) - (147 (T4, - TFB), B

2

TeEQW
( . pe (Ek+1+e—r@rEk)_€0w;2%
te

+(14e T (JFE— T E,65T). (4.10)

tet1

E(x,s)e_rﬂ(tk“_s)ds,ég“l)
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Similarly,
((’Ck+lH _|_ICth) _ (le+1H+ICkH),6_i(_I+1>

( n w (9k+1+€—FmT9k) 9i<{+1)+<(1+€—rmr)(,Cth_]CJ;H),(;ﬁH)
t
+( VOZ pm (Hk+1+€_r’”THk)—yow’%m k+1H(X’S)e_rm(tm_s)dslggrl)
tr
+(1+e T (KEH - KCFE,65). (4.11)
Plugging (4.10) and (4.11) into (4.9) leads to
1 gk+1)12 Loki2 . T 2 okt gkl T
HQZG HO_HQZQuHO'{'Zepre(GE 'GE ) Zeowpee (eEreE)
2
T _
+ “Ll wpm(9k+1 9k+1)+z.u0w]%ee rmT(G{C-IIG{(-I)
r(<1+e T B TG ) (1 T (- KiR) )
—7(14e ) (TFE— TYE, 65 — (1 4+ 7 (KEH - KCFH, 05 1)

2
TEyw bt ~
_T< . pe (Ek+1+e—r,,rEk)_€Ow%e + E(X,S)e—re(fk+1—5)dslelé+1)
tk
2
TUw trt1 _
—T( ! 5 PEH e T THY) — o3, : H(x,s)e’r’”(t’f“’s)ds,eﬁrl)
te
2

2
T _
0wy (1+e 1 T) (65", 05) - Vowfam(lJre ) (05 05)
t
+(2 [ B(u @ dt—2wB (a8
t

p— t p— -
+2rB(e Ly 2 [ (TE,05 ) dt — r( VB + JVE, 85

tr

t
+2 "“(/CH,égﬂ)dt—r(zckHHHckH,égH)+(T(F';+1+F§)—z k“th,éﬁﬂ)
ty te
9
2y 4 (4.12)
j=1

In the following, we just need to estimate all A;, for j=1,---,9, one by one. By Lemma
4.7,

Aj=—1(1+e 7)) (J"E, — TFE, 9"“) —1(14e ") (KFH, — KFH, 65

(65 15+ 168113) +C(T) 22€0H91H0+ = (165 115+ 1165115)

J
10 =
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2ZVoH@HH%

(HQZG"“HOH\QZ(?"II +C(T ZZHQZGJHO

j=
Due to Lemma 4.9, we have

Ay =—1(14e ") (JFE— TE,65) —7(1+e D7) (KFH — KCFHL B5)
T€0

<o (I 5 +116g13)+C eo/ (et 16+ 1B |15+ I[ENS)ds

T 0
” (HGk“IIoHI@HHoHCT Plo/ (I [ [5+ [1H |5+ [1HL15 ) ds

1 1 1 1 1
=E(HQ29ﬁ“HO+|\Q29ﬁllo)+CT/0 (1Q2usl[§+ Q2w ||+ 1Qul[§)ds

Using Lemma 4.8, the Cauchy-Schwarz inequality and the Young’s inequality, we have

7381
As=—1 (EF 4o TeTER) —gpe?

(’L'e()a)pe
pe J,

E(x,s)e Teltin _S)ds,éﬁﬂ)

TED /1 pk+112 k112 6 st 2 2 2
<o (€™ l[o+1I8Ello) +C7eo (e ll5+ [ Ee[[o+ IE[[5)ds

tx

Similarly,
THow? t _
A4:_T< 7’102 - (Hkﬂ"’eirmTHk)_VOWr%m tk+1H(xfs>eirm(tk“is)ds’gﬁrl)
k
T 0
< 1’6 (Ileg 115+ 116313) +C 7 Mo/ (I |5+ | L[5 + |15 ) s
By using the Cauchy-Schwarz inequality and the Young’s inequality, we obtain
A __LZ 1 let 9k+1 ek _Lz 2 1 It 9k+1 ek
5= 4€ow e(T4e ") (0", 0E) #owpm( +e ) (0 0n)
2 2¢
eow? T €W llo VO
< T gt T gt T g o T

Due to the fact that the numerical ﬂux is consistent, we have B(u,v;) = (V-f(u),v;,). By
using Lemma 4.4, we get

Ag =2 ( 9k+1)dt ZTB( =k+1 9k+1)
L

: 1
T2 !
§7</ (HVXEttH%—I—HVXHttH%)dS> 165+ 16K [l

<Crt [ (17 *Eullf 17 < Hul s+ 15 (10365 I3+ Q264 1D)
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Similar to the strategy of the estimate of B(R,) in [25] and the orthogonal property (4.7),
a direct calculation yields

A7 =TB(&, 1,05

<t ) [IHARDE PR+ (IR T P+ [Rg %) ds

eclr e

1T 2 /e(|Rl;I+l,int|+‘anlé+l,int|)ds

ecép

SCTh2p+1 Hl—lkJrl H%—[PJrl Q

a8} 0 rten
<crr ([T ulds+ 5 [ s ).
b t

By Lemma 4.6,
t p— -
As=2 N TE 8 dt— 1 (TFE+ JVE, 8
k

t
2 [ (kR85 Y dt— T (I TH 4 K, 05

tr

T€Q TUQ trt1
< T 10K I3+ 10K 13)+ L 10k I3+l +Cx* | ol Be 3+ ol )t
k

T 1 1 st 1
= glIQbe 3+ QbR +crt [ QbwFar.
k
Then we turn to estimate Ag. Actually
tr _
Ao = (F5H +Ff) -2 /t "Fdn o)
k

tr1
:(/ + e*rftdt]o—g(e*r”t"—ke*r"t"“)]o,(?]fzﬂ—|—9§>

tk
t
+ (/tkk+1 e Tt diKy — %(e’r”’tk—f—e’rmtk“)KO,GIIﬁIH —|—9ﬁ>
TEo THo
<CT (1Joll3 +11KolI3)+ S5 (185 13+ 16§ 113) -+ =5 (1o 13+ ek 1)
T 1 1
=C([Jol3+ 1Ko 13) + 75 (1QE6E™ I3+ Q265 7)-

Substituting all those estimates of A;, j=1,---,9, into (4.12), and assuming 7 <1, we have

2 2
1 1 T T _ k
Q205 13— QU013+ 5 eow 057 13+ couee ™ 1013

T 2 (1 pk+172 T 2 —TwTiak |2
+Z‘u0wpm||0H ||0+Z.u0wpee HGHHO
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k ; tr+1 1
) LI C [ (0l Qi+ @ s
wert [ Qs+ S (1265 G+ Q45 )+ Cr (o -+ K )

+c~f4/t (IV X Ex |24V ><Hﬁ||%)ds+Ch2”+l/t | 2dt
k k

2 2 2 2 2 2
T€0Wpe |\ i €ow pe .uowpm k T HoWpm
4 00 g3 T g2 RO g RO gt 2

Summing up the above inequality from k=0 to k=n—1, we obtain

€ow Plo

163115 — |\93H% z E 16K 115+ H0m 2 165113

ol n 1 1 1
T)TZ|!Q291’§||5+C(T)T5/ ([|Q2u||§+]/Q2u||F+ [|Q2uxl[§)ds

k=0 0

b1 6Tl 1
ot [ Qb+ S 1 Q45 +C() T (Il + Ko

k=0

tn ty 3

O e TR R C

2 p—1
€ow Plo Vow n
peZHGEHO pEZHQE”O meHGHHO TWZIIGEII%'
k=0

T €ow>

Considering the fact that 6% =0 and the assumption T <1,
2 Qb3
T)T:;V_L,l) |Q26¢13+C(T)* (Ioll3+ \|K0|!5)+CT4/Ot"(HV X Enl[5+ IV x Her[[5)dt
e [ (1Q IR+ Qw3+ Qbwa R)ds+ i+ [l
By Lemma 4.2,
Q2043 <CT)E (Io-+ IKoll)+C(T)T* [ (19 x Bulli+ ¥ x Hl )

ty tn
+C(T)e [ (1Q 3+ Qb w3+ |Qwa Byt [ fulfa.
On the other hand,

1
IQ2RyI5 < CH?*2uf5.
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By the triangular inequality, we have

1 tn
1Q2exl[5 SCT4(HJO|\2+HKOHZ)JFCT4/O (IIV X Byt |5+ [V x Hye|[5)ds

ty

ty 1 1 1
rort [T (IQbalF+ [ Qbw -+ Qb e+ Chr [ .

This completes the proof of Theorem 4.2. O

5 Numerical results

In this section, some numerical examples are given to justify our theoretical prediction.
According to the theoretical analysis above, we know that our numerical scheme is stable
without any restriction on the time step size 7. Actually we obtain accurate numerical
solutions when 7 is equal to h. In our numerical example, we use rectangular element in
2D and hexahedral element in 3D for simplicity. Moreover, in this section, the L2-errors
are computed in the following way:

1
lu—wifo=( ¥ [ Ju—w,Pax)".

KeT,

5.1 2D numerical example

The similar error estimate for 2-D Maxwell’s equations in metamaterials can be obtained
in the same way as we have done for 3-D case, by introducing the scalar and vector curl

operators
_0E, 0F _(0E QENT
curlE= o By' V><E_<ay, E)x) .

For simplicity, it is omitted in this paper. We consider the following 2-D model problem

dE, (0H, oH, B
%at_(&x_ay)+j&_Rb
Ho 3 +E+K1—R2,

9H, OE,
ARTENFTRE

where
¢
JEz :eowie ; e TU=S)E (x,5)ds,

t
KH= eowf,m e TSI H(x,5)ds.
0
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Table 1: The convergence rate of L2 error for p=1,h=1 (2-D case).

time | timestep | h | [[E—Eyllo | order | [[H—Hy|o | order
N=2 11 2.7137e-3 3.3446e-3
T—0.25 N=4 % 6.4283e-4 | 2.0777 | 8.6502e-4 | 1.9510
N=8 # 1.5597e-4 | 2.0431 | 2.1939e-4 | 1.9792
N=16 gz | 3.8391e-5 | 2.0224 | 5.5198e-5 | 1.9908
N=4 1 13.0951e-3 5.8521e-3
T—05 N=8 % 7.3467e-4 | 2.0748 | 1.5065e-3 | 1.9577
N=16 # 1.8048e-4 | 2.0252 | 3.8290e-4 | 1.9761
N=32 gz | 44821e-5 | 2.0096 | 9.6589%e-5 | 1.9870
N=8 11 4.3464e-3 5.9869e-3
T—1 N=16 % 1.0915e-3 | 1.9935 | 1.8201e-3 | 1.7177
N=32 3% 2.7322e-4 | 1.9982 | 5.1017e-4 | 1.8350
N =64 6%1 6.8408e-5 | 1.9978 | 1.3535e-4 | 1.9143

Table 2: The convergence rate of L? error for p=2, h* =1 (2-D case).

time | timestep | h | |[E—Ey|o | order | [[H—Hyllp | order
N=16 11 1.3049¢-4 1.7736e-4
T—025 N=64 % 1.6118e-5 | 3.0171 | 2.2552e-5 | 2.9753
N =256 % 2.0070e-6 | 3.0055 | 2.8569e-6 | 2.9807
N=1024 617} 2.5049e-7 | 3.0022 | 3.5988e-7 | 2.9889
N=32 1] 2.0149e-4 2.8271e-4
T—05 N=128 1{% 2.5119e-5 | 3.0039 | 3.5531e-5 | 2.9921
N=512 % 3.1303e-6 | 3.0044 | 4.4753e-6 | 2.9890
N =2048 6174 3.9052e-7 | 3.0028 | 5.6214e-7 | 2.9929
N=o64 1| 2.4864e-4 3.3709e-4
T—1 N =256 1{% 3.0643e-5 | 3.0204 | 4.3033e-5 | 2.9696
N=1024 é 3.8046e-6 | 3.0097 | 5.4331e-6 | 2.9855
N =4096 6174 4.7407e-7 | 3.0045 | 6.8244e-7 | 2.9930

In our numerical test, we take Q= [0,1] x [0,1], €0 = pig = wpe = wp =Te =T =1 and Ry,
Ry, R3 such that the exact solution for the 2D version is

E. sin(7tx)sin(7ry)te !
Hy |=| sin(mx)cos(my)te™!
H, —cos(7tx)sin(rty)te!

We choose the time step size T equal to the spatial mesh size i when p=1 and 7 equal
to h?> when p=2. The L2-errors and their corresponding convergence order are shown in
Table 1 for p=1 and Table 2 for p=2, respectively. It is observed that the convergence rate
of both E;, and Hy, in L2-norm is O (h? +1), which is better than our theoretical prediction.
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5.2 3D numerical example

We consider the following problem in 3D,

oE oH
€0§—VXH+L7E:R1, yog—}—VXE—I—KH:Rz,
where
t t
JE=eqw), i e T UE(x,s)ds, KH=pow?, ; e Tn(t=S)H (x,5)ds.

In our numerical test, we take Q=10,1]3, eg=po= Wpe=wpm =T, =Ty=1and Ry, Ry
such that the exact solution is

(y—y*)(z—2°) y—z
E=te (040 | (x—x2)(z—22) |, H=te t+xtv+a [ z_ 4
(x—2*)(y—1*) x—y

We again choose the time step size T equal to the spatial mesh size h when p=1 and
T equal to h? when p=2. The L?-errors and their corresponding convergence order are
shown in Table 3 for p =1 and Table 4 for p =2, respectively. It is observed that the
convergence rate of both Ej, and Hj, in L>-norm is O(hP*1), which is also better than our
theoretical prediction.

Table 3: The convergence rate of L? error for p=1, h=1 (3-D case).

time | timestep | h | |[E—Ey|o | order | |[H—Hyllp | order
N=1 | I [2.1862e-3 1.5219%-3
T=0.25 N=2 + | 5.7030e-4 | 1.9386 | 4.1673e-4 | 1.8687
N=4 F% 1.4476e-4 | 1.9781 | 1.1042e-4 | 1.9161
N=2 % 2.2365e-3 2.8268e-3
T=05 N=4 + | 5.6052e-4 | 1.9964 | 7.7209e-4 | 1.8723
N=38 % 1.4050e-4 | 1.9962 | 2.0236e-4 | 1.9318
N=4 % 2.6758e-3 2.4738e-3
T=1 N=8 & | 7.1551e-4 | 1.9029 | 6.4479e-4 | 1.9398
N=16 1{;6 1.8190e-4 | 1.9758 | 1.8337e-4 | 1.8141

6 Conclusions

In this paper, we developed an implicit discontinuous Galerkin method for time-
dependent Maxwell’s equations when metamaterials are involved. The spatial discretiza-
tion is based on DG approach using an upwinding flux. The temporal discretization is an
Crank-Nicolson scheme in which the compound trapezoid formula is used for the inte-
gral term. Both the unconditionally stability and the convergence rate of O(t2+hF+1/2)
were proved. The practical application of this model will be investigated in our future
work.
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Table 4: The convergence rate of L? error for p=2, h* =1 (3-D case).

time | timestep | h | ||[E—Ey|lo | order | |H—Hyl|p | order
N=1 | | 47354e4 6.6092e-4
T=025| N=4 |1 |7.0842e-5 27408 | 7.4001e-5 | 3.1588
N=16 | i | 8.8542e-6 | 3.0001 | 9.1985e-6 | 2.9807
N=2 | 1| 1.0554e-3 9.1744e-4
T=05 | N=8 % 1.1958e-4 | 3.1417 | 1.1388e-4 | 3.0101
N=32 | i | 1.4480e-5 | 3.0458 | 1.4534e-5 | 2.9700
N=4 | | 108233 1.2340e-3
T=1 N=16 | i | 1.4790e-4 | 2.8714 | 1.4696e-4 | 3.0698
N =64 % 1.8546e-5 | 2.9954 | 1.8528e-5 | 2.9876
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