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Abstract. Gradient flows with strong anisotropic free energy are difficult to deal with
numerically with existing approaches. We propose a stabilized predictor-corrector ap-
proach to construct schemes which are second-order accurate, easy to implement, and
maintain the stability of first-order stabilized schemes. We apply the new approach to
three different type of gradient flows with strong anisotropic free energy: anisotropic
diffusion equation, anisotropic Cahn-Hilliard equation, and Cahn-Hilliard equation
with degenerate diffusion mobility. Numerical results are presented to show that the
stabilized predictor-corrector schemes are second-order accurate, unconditionally sta-
ble for the first two equations, and allow larger time step than the first-order stabilized
scheme for the last equation. We also prove rigorously that, for the isotropic Cahn-
Hilliard equation, the stabilized predictor-corrector scheme is of second-order.
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1 Introduction

Many dynamical physical processes can be described by gradient flows of the governing
free energy (see for example [1–6]). When dealing with strongly anisotropic systems, the
gradient flows are usually characterized by nonlinear couplings of spatial derivatives.
We mention some examples here, including concentration-dependent diffusion mobility
[7, 8] or elasticity [9], and anisotropic interfacial energy [10–12].

From the computational perspective, it is crucial to construct energy stable numeri-
cal schemes. There are several different techniques to construct energy stable schemes,
including convex splitting [13, 14], stabilization [15, 16], invariant energy quadratization
(IEQ) [9, 17–19] and the newly introduced scalar auxiliary variable (SAV) approach [20].
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However, for gradient flows with strong anisotropic free energy, it is difficult to construct
robust second-order schemes using these approaches as we explain below. The convex
splitting and stabilization approaches usually lead to only first-order schemes, although
second-order schemes are available for certain special cases without nonlinear derivative
terms. One can formally construct second-order energy stable schemes using IEQ or SAV
approach as long as one can split the free energy into two terms, one is a linear quadratic
term and the other is bounded from below. But we may not be able to do so with free
energies having strong nonlinear derivative terms. Furthermore, the stability of IEQ and
SAV is with respect to a modified energy which, in cases of strong nonlinear derivative
terms, may not a good approximation of the original energy, could lead to non-physical
oscillations [20].

In this work, we construct second-order stabilized predictor-corrector scheme for gra-
dient flows with strongly nonlinear couplings of spatial derivatives. More precisely, we
use the first-order stabilized scheme as the predictor, followed by a second-order correc-
tor step. The scheme enjoys the following advantages:

• Simplicity: it only requires solving linear equations with constant coefficients at
each time step.

• Stability: we shall show numerically that it is at least as stable as the first-order
stabilized scheme.

• Accuracy: we shall show, analytically for a simple case and numerically with ex-
tensive examples, that the scheme is second-order accurate.

We shall consider three different types of gradient flows with strong anisotropic free
energy, and construct stabilized predictor-corrector schemes for each case. First, we con-
sider in Section 2 an anisotropic diffusion equation, and introduce the stabilized predictor-
corrector approach. As a comparison, we also consider the second-order Crank-Nicolson
scheme with Adam-Bashforth extrapolation for nonlinear terms. We will show that the
stabilized predictor-corrector approach is much more robust than the Crank-Nicolson
scheme with Adam-Bashforth extrapolation. We then apply the stabilized predictor-
corrector approach to a strongly anisotropic Cahn-Hilliard equation in Section 3 and to
the Cahn-Hilliard equation with degenerate diffusion mobility in Section 4. In all cases,
our numerical results indicate that the stabilized predictor-corrector schemes are second-
order accurate while having good stability. Finally, we carry out a rigorous error analysis
in Section 5 to show the second-order convergence for the isotropic Cahn-Hilliard equa-
tion.

2 Anisotropic diffusion equation

In order to motivate the stabilized predictor-corrector approach, we consider in this sec-
tion the following free energy functional,
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F[φ]=
1

2

∫

dxa(φ)|∇φ|2, (2.1)

where we assume that a is bounded and non-negative. Such free energy can be found
in many applications, e.g., as part of the free energy in the Cahn-Hilliard equation with
anisotropic interfacial energy considered in the next section.

We examine the L2 gradient flow

φt=∇·(a(φ)∇φ)−
1

2
|∇φ|2a′(φ). (2.2)

If a is constant, it reduces to the heat equation. We are interested in the case where
amax/amin is very large or even unbounded, which brings difficulty in solving the equa-
tion numerically.

One widely used strategy to construct stabilized schemes is to split the free energy
F=F1−F2 with

F1[φ]=
1

2

∫

dxλ|∇φ|2, F2[φ]=
1

2

∫

dx(λ−a)|∇φ|2, (2.3)

where λ> amax. Then, a first-order semi-implicit stabilized scheme is given by

φn+1−φn

∆t
=−

δF1

δφ
[φn+1]+

δF2

δφ
[φn]

=λ∆φn+1−∇·((λ−a(φn))∇φn)−
1

2
|∇φn|2a′(φn). (2.4)

The above scheme is proven to be very stable but has large splitting errors. To increase the
accuracy, we can consider the following second-order Crank-Nicolson Adam-Bashforth
scheme:

φn+1−φn

∆t
=−

δF1

δφ
[
1

2
(φn+1+φn)]+

δF2

δφ
[φ̄n+1/2]

=
λ

2
∆(φn+1+φn)−∇·((λ−a(φ̄n+1/2))∇φ̄n+1/2)−

1

2
|∇φ̄n+1/2|2a′(φ̄n+1/2),

(2.5)

with

φ̄n+1/2=(3φn−φn−1)/2. (2.6)

However, numerical experiments indicate that the above scheme is not very robust at
larger time steps, particularly when anisotropy is strong and the initial condition has
large derivatives. In order to construct a more robust and efficient second-order scheme,
we propose to use a predictor-corrector approach. More precisely, instead of using
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Fig. 1: Errors of predictor-corrector scheme and Adam-Bashforth scheme for (2.2) with the initial condition
(2.8). The dashed line is the reference of the second-order convergence.

φ̄n+1/2 = (3φn−φn−1)/2 in (2.5), we compute it by using the first-order scheme (2.4) at
tn+1/2, i.e., we determine φ̄n+1/2 from

φ̄n+1/2−φn

∆t/2
=λ∆φ̄n+1/2−∇·((λ−a(φn))∇φn)−

1

2
|∇φn|2a′(φn). (2.7)

We shall show, with ample numerical results, that the predictor-corrector scheme (2.5)
with (2.7) performs much better than the Crank-Nicolson Adam-Bashforth scheme (2.5)
with (2.6). An intuitive explanation is that the first-order predictor is able to suppress
high-frequency oscillations, while the Adam-Bashforth extrapolation can not.

We first examine the accuracy of the predictor-corrector scheme and the second-order
Crank-Nicolson Adam-Bashforth scheme. We set a(φ) = 1+0.8sinφ, Ω = [0,2π)2 with
periodic boundary conditions, and take the initial condition to be

φ(x,y,0)=2cos(2x+y)+cos(x−2y). (2.8)

The space is discretized by 27×27 using Fourier-spectral methods. The numerical errors
for both schemes at T = 0.16 are plotted in Fig. 1. We observe that both schemes are
second-order accurate but the errors of Adam-Bashforth scheme are slightly smaller. But
as we shall see below, this slight loss of accuracy will be more than compensated by its
excellent stability.

Next, we compare the stability of the predictor-corrector scheme and the Crank-
Nicolson Adam-Bashforth scheme. We choose a strongly disparate coefficient a(φ) =
1+0.99sinφ with the initial condition

φ(x,y,0)=
3

π
arctan

( (x−π)2+(y−π)2−(2π/2.56)2

0.05

)

.
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Fig. 2: Energy as a function of the time for a=1+0.99sinφ, where ∆t=10−3. Left: Adam-Bashforth. Right:
Predictor-corrector.
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Fig. 3: Energy as a function of the time for a=1+0.9999sinφ, where ∆t=0.1.

We choose ∆t=10−3 with 29×29 spatial resolution to adequately resolve the arctan func-
tion. The energy evolutions of both schemes are plotted in Fig. 2. The Crank-Nicolson
Adam-Bashforth scheme quickly blows up, while the predictor-corrector scheme keeps
the energy dissipation. To further demonstrate the robustness of the predictor-corrector
scheme, we test the predictor-corrector scheme with an even more disparate coefficient
a(φ)=1+0.9999sinφ, and a much larger time step ∆t=0.1, The energy of the predictor-
corrector scheme is plotted in Fig. 3, which indicates that the method still works very
well.

From these examples, we can see that the predictor-corrector scheme achieves the
second order accuracy while maintaining good stability. This is particularly useful when
there is strong nonlinearity in derivatives and when the coefficients are nearly degener-
ate.

To further demonstrate the robustness of the predictor-corrector approach, we will
apply the predictor-corrector approach to two challenging phase-field type equations.
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3 Cahn-Hilliard equation with anisotropic interfacial energy

We consider in this section the anisotropic Cahn-Hilliard equation, a phase-field model
that describes binary mixture with anisotropic interfacial energy [10–12,21], with the free
energy in the following form

F[φ]=
∫

dx

(

1

ǫ2
f (φ)+

γ(n)

2
|∇φ|2+

β

2
ω2

)

, (3.1)

where n=∇φ/|∇φ| is the unit vector along ∇φ (the unit vector normal to the interface),
and f (φ)=(1−φ2)2/4. The interfacial free energy density γ(n) is given by

γ(n)=1+a

(

4∑
i

n4
i −3

)

, (3.2)

In the 2D case, it can also be written as γ(n)= 1+acos(4θ), where θ is the orientational
angle of n. The last term in the free energy is the regularization term for the case of strong
anisotropy (when a is large),

ω=
κ

ǫ2
f ′(φ)−∆φ. (3.3)

In the above, κ may take two values 0 or 1. When κ=0, it is the bi-Laplacian regulariza-
tion; when κ=1, it is the Willmore regularization. Then, the H−1 gradient flow with this
free energy is

φt=∆
δF

δφ
, (3.4)

where

δF

δφ
=

1

ǫ2
f ′(φ)+β(κ

f ′′(φ)

ǫ2
−∆)

(

κ
f ′(φ)

ǫ2
−∆φ

)

−∇·(γ(n)∇φ)−
1

2
∂i

(

|∇φ|(δij−ninj)∂nj
γ(n)

)

,

with the Einstein summation convention in the last term.

The about equation is notoriously difficult to solve since it involves sixth order deriva-
tives with strong nonlinear coupling. A first-order nonlinear scheme was proposed
in [11], while a linear stabilized first-order scheme was proposed in [12]. Due to the
strong nonlinear coupling, no second-order scheme is available. We propose below a
second-order predictor-corrector scheme based on the first order stabilized scheme.
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3.1 Numerical scheme

We split the free energy F=F1−F2 with

F1[φ]=
β

2
‖∆φ‖2+

κβS2+Mǫ2

2ǫ2
‖∇φ‖2+

κβS1+S0ǫ2

2ǫ4
‖φ‖2, (3.5)

F2[φ]=
1

ǫ2

[S0

2
‖φ‖2−( f (φ),1)

]

+
M−γ(n)

2
‖∇φ‖2

+
κβS1

2ǫ4
‖φ‖2+

κβS2

2ǫ2
‖∇φ‖2+

β

2
‖∆φ‖2−

β

2

∥

∥

∥
κ

f ′(φ)

ǫ2
−∆φ

∥

∥

∥

2
. (3.6)

In the above, we introduced four stabilizing constants S0,S1,S2,M. Intuitively, they shall
be chosen such that F1 and F2 are at least positive definite. Then, a first-order stabilized
scheme can be constructed by dealing with F1 implicitly and F2 explicitly, namely:

φn+1−φn

∆t
=∆µn+1, (3.7)

µn+1=β∆2φn+1+
1

ǫ2

(

S0(φ
n+1−φn)+ f ′(φn)

)

−M∆(φn+1−φn)−∇·(γ(nn)∇φn)−
1

2
∂i

(

|∇φn|(δij−nn
i nn

j )∂nj
γ(nn)

)

+κ
β

ǫ4

(

S1(φ
n+1−φn)+ f ′(φn) f ′′(φn)

)

−κ
β

ǫ2

(

S2∆(φn+1−φn)+∆ f ′(φn)+ f ′′(φn)∆φn
)

. (3.8)

The second-order predictor-corrector scheme is written as

φn+1−φn

∆t
=∆µn+1/2, (3.9)

µn+1/2=β∆2 1

2
(φn+1+φn)+

1

ǫ2

(

S0

(1

2
(φn+1+φn)−φ̄n+1/2

)

+ f ′(φ̄n+1/2)
)

−M∆
(1

2
(φn+1+φn)−φ̄n+1/2

)

−∇·
(

γ(nn+1/2)∇φ̄n+1/2
)

−
1

2
∂i

(

|∇φ̄n+1/2|(δij−nn+1/2
i nn+1/2

j )∂nj
γ(nn+1/2)

)

+κ
β

ǫ4

(

S1

(1

2
(φn+1+φn

)

−φ̄n+1/2)+ f ′(φ̄n+1/2) f ′′(φ̄n+1/2)
)

−κ
β

ǫ2

(

S2∆
(1

2
(φn+1+φn)−φ̄n+1/2

)

+∆ f ′(φ̄n+1/2)+ f ′′(φ̄n+1/2)∆φ̄n+1/2
)

,

(3.10)

with φ̄n+1/2 being obtained from φn using the first-order stabilized scheme (3.8) with the
time step ∆t/2.
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3.2 Numerical examples

We consider (3.4) with the periodic boundary conditions in the domain [0,L)×[0,L) with
L= 2. The space is discretized by the Fourier spectral method with 28×28 modes. The
stabilization parameters are chosen as M=S0=S1=S2=8. When showing the result, we
draw the contour φ=0 to represent the interface.

3.2.1 Accuracy and stability test

We choose ǫ=0.2, a=0.2, β=5×10−4, and a smooth initial condition

φ(0,x,y)=0.5sin(πx)sin(πy). (3.11)

We plot the numerical error at t= 10−5 with different time steps in Fig. 4. The reference
solution is the numerical solution with ∆t=5×10−10. For both bi-Laplacian and Willmore
regularization, we observe the second-order convergence.
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Fig. 4: Numerical errors by the scheme (3.10): The dashed lines are reference lines of second-order convergence.
Left: bi-Laplacian regularization. Right: Willmore regularization.

Next we examine the stability of (3.10) with large time step. We choose a small ǫ=0.02,
a large anisotropic parameter a=0.99, and β=5×10−4. The initial condition is chosen as

φ(0,x,y)=tanh
(

√

(x−0.4L)2+(y−0.51L)2−L/4

ǫ

)

+tanh
(

√

(x−5L/6)2+(y−0.49L)2−L/10

ǫ

)

−1. (3.12)

We use ∆t= 10−2. The free energy and interfacial profiles at steady states are shown in
Fig. 5. The energy dissipation is maintained and the steady states are correct. We plot in
Fig. 6 the vertical cross section along y= 1, which shows no high-frequency oscillation.
We have also tried with even larger time steps, the numerical solution is still energy
stable without high-frequency oscillation, indicating that the predictor-corrector scheme
has very good stability.
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Fig. 5: Steady state and evolution of free energy when a=0.99 and ∆t=10−2. Top: bi-Laplacian regularization.
Bottom: Willmore regularization.
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Fig. 6: The profile of φ on y=1 in Fig. 5 bottom.

3.2.2 Roughing process of a smooth curve

Here, we examine evolution of a smooth interface to facets. We adopt the Willmore reg-
ularization and choose ǫ=0.02, a=0.8, β=4×10−4, and the initial condition

φ(x,y,0)= tanh(−(y−0.7L−0.2r1)/ǫ)+tanh((y−0.3L−0.2r1)/ǫ)−1, (3.13)



644 J. Shen and J. Xu / Commun. Comput. Phys., 24 (2018), pp. 635-654

Fig. 7: Evolution of smooth interface to facets. From left to right: t= k×10−4 with k = 0,0.5,1 (top) and
k=2,3,4 (bottom).

where

r1(x)=1.8cos(4πx/L)+1.5cos(12πx/L)+0.4cos(20πx/L)+0.1cos(28πx/L). (3.14)

we take the time step to be ∆t=10−6. The configuration is shown in Fig. 7. We observe
that an initially smooth interface quickly forms many small facets along the low-energy
orientations, followed by combinations of small facets into large ones. These simulations
are consistent with the results in [11, 12].

3.2.3 Wulff shape of a droplet

We choose, as the initial data, a circular droplet

φ(0,x,y)=tanh
(

√

(x−0.5L)2+(y−0.5L)2−L/4

ǫ

)

, (3.15)

and examine the Wulff shape equilibrium state. We focus on the Willmore regularization
and choose ǫ = 0.02. First we fix β = 4×10−4 and examine the effect of the anisotropic
parameter a (Fig. 8). As a increases, the facets become more flat and the corners become
sharper. Then we fix a = 0.8 and let β vary (Fig. 9). There is no visible difference with
respect to the facets, but the corner is wider and smoother as β increases.
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Fig. 8: The Wulff shape with different a. The right plot is the top corner of the left plot.
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Fig. 9: The Wulff shape with different β. The right plot is the top corner of the left plot.

3.2.4 Coarsening dynamics

We fix ǫ=0.02, β=5×10−4 and let the anisotropic parameter a vary. The initial condition
is chosen as (3.12), and the time step is ∆t=10−7. The interfacial profile and evolution of
free energy are plotted in Fig. 10 for a= 0.2 and Fig. 11 for a= 0.6 for both bi-Laplacian
and Willmore regularization. By looking at both the energy and the interfacial profile,
we find that the coarsening process is faster when a=0.2. Besides, with bi-Laplacian reg-
ularization the coarsening process is also faster than the Willmore regularization. This
is possibly because the bi-Laplacian introduce addition dissipation throughout the do-
main, but Willmore only within the interfacial layer. For the Willmore regularization
with a= 0.6, the two droplets first merge into one, then the shape evolves to the Wulff
shape. For the other three cases, the two droplets first evolve into a Wulff shape, then the
coarsening process takes place. To see this more clearly, we also plot φ at y= 0.9375 in
Fig. 12 for Willmore regularization.
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Fig. 10: Evolution of free energy and interface when a=0.2. Top: bi-Laplacian regularization. Bottom: Willmore
regularization.

4 Cahn-Hilliard equation with degenerate diffusion mobility

We consider the isotropic free energy

F[φ]=
∫

dx

(

1

ǫ2
f (φ)+

1

2
|∇φ|2

)

, (4.1)

where f (φ) = (1−φ2)2/4, with a variable diffusive mobility M(φ) = |1−φ2|. The H−1

gradient flow, with the variable mobility, is given by

φt=∇·

(

M(φ)∇
(

−∆φ+
1

ǫ2
f ′(φ)

)

)

. (4.2)

It is observed that the constant mobility leads to dissipation in the whole domain, while
this variable mobility restrains the dissipation inside the interface layer [7, 8].
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Fig. 11: Evolution of free energy and interface when a=0.6. Top: bi-Laplacian regularization. Bottom: Willmore
regularization.
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Fig. 12: Profiles of φ at y=0.9375 for the Willmore regularization. Left: a=0.2 (Fig. 10); Left: a=0.6 (Fig. 11).

4.1 Numerical schemes

We start from the first-order stabilized scheme used in [8]:

φ̄n+1−φn

∆t
=−λ∆2φ̄n+1+∇·

(

(λ−M(φn))∇∆φn
)

+∇·
(

M(φn)∇
1

ǫ2
f ′(φn)

)

, (4.3)
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where λ is a suitable stabilizing parameter.

The second-order predictor-corrector scheme is then given by

φn+1−φn

∆t
=−

λ

2
∆2(φn+1+φn)

+∇·
(

(λ−M(φ̄n+1/2))∇∆φ̄n+1/2
)

+∇·
(

M(φ̄n+1/2)∇
1

ǫ2
f ′(φ̄n+1/2)

)

, (4.4)

where φ̄n+1/2 is computed by (4.3) with the time step ∆t/2.

Note that one should use a weak formulation in the implementation of both schemes
(4.3) and (4.4) to avoid taking derivatives of M(φ̄n+1/2). We point out that the semi-
implicit scheme is energy stable only when the time step is not large. Thus we cannot
expect the energy stability of the predictor-corrector scheme for large time step.

4.2 Numerical examples

We choose ǫ=0.02 and consider the domain [0,2)×[0,2) with periodic boundary condi-
tions. The space is discretized by 27×27 Fourier modes. The stabilization parameter is
chosen as λ=2.

4.2.1 Accuracy and stability test

To check the accuracy, we choose a smooth initial condition

φ(0,x,y)=0.5sin(πx)sin(πy). (4.5)

We plot the numerical error at t= 4×10−5 in Fig. 13. The reference solution is given by
∆t=10−9.
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∆t

E
rr

or

Fig. 13: Numerical error of the equation (4.2) at t= 4×10−5. The dashed line is a reference of second-order
convergence.
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Fig. 14: Evolution of free energy with ∆t=4×10−6. Red: semi-implicit; blue: predictor-corrector.

As for the stability, we find that with ∆t = 10−5, both schemes blow up. With
∆t = 4×10−6, the stabilized scheme exhibits oscillations in energy, while the predictor-
corrector scheme keeps energy dissipation (see Fig. 14), indicating that the predictor-
corrector scheme, not only is more accurate at second-order, but is also more stable.

4.2.2 Coarsening dynamics

We take the initial condition

φ(0,x,y)=tanh
(

√

(x−0.4L)2+(y−0.55L)2−L/4

ǫ

)

+tanh
(

√

(x−5L/6)2+(y−0.45L)2−L/10

ǫ

)

−1,

with L=2 being the length of the domain. We choose ∆t=4×10−7. The contour φ=0 are
plotted in Fig. 15 left. We also compare the energy evolutions with M=|1−φ2| and M=1,
plotted in Fig. 15 right. It is found that the coarsening is much slower with M= |1−φ2|,
which is consistent with the results in [7, 8].

5 Error estimate of the isotropic Cahn-Hilliard equation

While it is clear that the predictor-corrector scheme used in this paper is second-order if
applied to ordinary differential equations, it is not so clear under what conditions it will
provide second-order accuracy for partial differential equations. We shall consider the
isotropic Cahn-Hilliard equation

φt=∆(−∆φ+ f (φ)), (5.1)
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Fig. 15: Left: evolution of interface with the mobility M(φ)= |1−φ2|. Right: Free energy evolution with M=1

(red) and M= |1−φ2| (blue).

and perform an error analysis for the predictor-corrector scheme

φ̄n+1/2−φn

∆t/2
=∆

(

−∆φ̄n+1/2+ f (φn)+S(φ̄n+1/2−φn)
)

, (5.2)

φn+1−φn

∆t
=∆

[

−
1

2
∆(φn+1+φn)+ f (φ̄n+1/2)+S

(1

2
(φn+1+φn)−φ̄n+1/2

)

]

, (5.3)

where S is a stabilizing constant.

Denote en =φn−φ(tn) and ēn+1/2= φ̄n+1/2−φ(tn+1/2).

Theorem 5.1. Assuming that f satisfies the Lipchitz condition | f (x)− f (y)|<L|x−y|. For any

∆t<
(

1+4(L2+S2)
)−1

, there exists a constant C depending on L and S such that

‖en‖2≤Cexp
(

(

1−(1+4(L2+S2))∆t
)−1

tn
)

∆t4
∫ tn

0
dt(‖φt‖

2
H4 +‖φtt‖

2
H2 +‖φttt‖

2). (5.4)

Proof. We first give an estimate of ēn+1/2. By comparing (5.2) with the equation at tn, we
deduce that

ēn+1/2−en

∆t/2
=∆

[

−∆ēn+1/2+ f (φn)− f
(

φ(tn)
)

+S(ēn+1/2−en)

]

+ T̄n, (5.5)

where the truncation error T̄n = T̄n
1 + T̄n

2 with

T̄n
1 =

φ(tn+1/2)−φ(tn)

∆t/2
−φt(t

n)=−
1

∆t/2

∫ tn+1/2

tn
dt(t−tn)φtt,

T̄n
2 =−∆2

(

φ(tn+1/2)−φ(tn)
)

+S∆
(

φ(tn+1/2)−φ(tn)
)

=(−∆2+S∆)
∫ tn+1/2

tn
dtφt.
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It is easy to see that we have

‖T̄n
1 ‖

2≤C∆t
∫ tn+1/2

tn
dt‖φtt‖

2, ‖T̄n
2 ‖

2≤C∆t
∫ tn+1/2

tn
dt‖φt‖

2
H4 .

Taking the inner product of (5.5) with ēn+1/2, we obtain

1

∆t
(‖ēn+1/2‖2−‖en‖2+‖ēn+1/2−en‖2)+‖∆ēn+1/2‖2+S‖∇ēn+1/2‖2

=

(

∆ēn+1/2, f (φn)− f
(

φ(tn)
)

−Sen

)

+(ēn+1/2,T̄n)

≤‖∆ēn+1/2‖2+
1

4

∥

∥ f (φn)− f
(

φ(tn)
)

−Sen
∥

∥

2
+

1

4∆t
‖ēn+1/2‖2+∆t‖T̄n

1 + T̄n
2 ‖

2

≤‖∆ēn+1/2‖2+
1

2

∥

∥ f (φn)− f
(

φ(tn)
)
∥

∥

2
+

S

2

∥

∥en
∥

∥

2
+

1

4∆t
‖ēn+1/2‖2+2∆t(‖T̄n

1 ‖
2+‖T̄n

2 ‖
2)

≤‖∆ēn+1/2‖2+
L2+S2

2
‖en‖2+

1

4∆t
‖ēn+1/2‖2+2∆t(‖T̄n

1 ‖
2+‖T̄n

2 ‖
2).

Together with ∆t≤1/(L2+S2), we arrive at

‖ēn+1/2‖2≤
(4

3
+

2(L2+S2)

3
∆t

)

‖en‖2+C∆t3
∫ tn+1/2

tn
dt(‖φtt‖

2+‖φt‖
2
H4)

≤2‖en‖2+C∆t3
∫ tn+1/2

tn
dt(‖φtt‖

2+‖φt‖
2
H4). (5.6)

Now we can estimate en+1. Comparing (5.3) with the equation at tn+1/2, we deduce

en+1−en

∆t
=∆

[

−
1

2
∆(en+1+en)+

(

f (φ̄n+1/2)− f (φ(tn+1/2))
)

+
S

2
(en+1+en−2ēn+1/2)

]

+Tn
1 +∆Tn

2 . (5.7)

The local truncation errors become

Tn
1 =

φ(tn+1)−φ(tn)

∆t
−φt(t

n+1/2)=
1

∆t

∫ tn+1

tn
dt

1

2
(t−tn+1/2)2φttt,

Tn
2 =−

1

2
∆
(

φ(tn+1)+φ(tn)−2φ(tn+1/2)
)

+
S

2

(

φ(tn+1)+φ(tn)−2φ(tn+1/2)
)

=(−∆+S)
∫ tn+1

tn
dt(t−tn+1/2)φtt.

Now the estimates for them are given by

‖Tn
1 ‖

2≤C∆t3
∫ tn+1/2

tn
dt‖φttt‖

2, ‖Tn
2 ‖

2≤C∆t3
∫ tn+1/2

tn
dt‖φtt‖

2
H2 .
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Taking the inner product of (5.7) with en+1+en, we deduce that

1

∆t
(‖en+1‖2−‖en‖2)+

1

2
‖∆(en+1+en)‖2+

S

2
‖∇(en+1+en)‖2

=

(

∆(en+1+en), f (φ̄n+1/2)− f
(

φ(tn+1/2)
)

−Sēn+1/2+Tn
2

)

+
(

(en+1+en),Tn
1

)

≤
1

2
‖∆(en+1+en)‖2+

1

2
‖ f (φ̄n+1/2)− f

(

φ(tn+1/2)
)

−Sēn+1/2+Tn
2 ‖

2

+
1

2
‖en+en+1‖2+

1

2
‖Tn

1 ‖
2

≤
1

2
‖∆(en+1+en)‖2+‖ f (φ̄n+1/2)− f

(

φ(tn+1/2)
)

−Sēn+1/2‖2+‖Tn
2 ‖

2

+(‖en‖2+‖en+1‖2)+
1

2
‖Tn

1 ‖
2

≤
1

2
‖∆(en+1+en)‖2+2(L2+S2)‖ēn+1/2‖2+(‖en‖2+‖en+1‖2)+

1

2
‖Tn

1 ‖
2+‖Tn

2 ‖
2

≤
1

2
‖∆(en+1+en)‖2+

(

1+4(L2+S2)
)

(‖en+1‖2+‖en‖2)

+C∆t3
∫ tn+1/2

tn
dt(‖φttt‖

2+‖φtt‖
2
H2+‖φt‖

2
H4).

In the last inequality, we used (5.6). Then we use the discrete Gronwall’s inequality (see
[22], pp. 15) to obtain (5.4).

Remark 5.1. It is a common practice to assume the Lipchitz condition on f (φ) in Theorem
5.1 [16, 23, 24]. Although it is not directly satisfied by the commonly used form f (φ) =
(φ2−1)φ, it has been shown in [25] one can safely truncate f (φ) for large φ) to satisfy the
Lipchitz condition without affecting the solution.

Remark 5.2. The results in Theorem 5.1 indicate that, for smooth solutions, the L2 norm
of the numerical solution φn will remain to be bounded, under the assumptions of Theo-
rem 5.1. However, we are unable to prove the stability directly without the smoothness
assumption.

6 Conclusion

We proposed in this paper the stabilized predictor-corrector approach for gradient flows
with strong anisotropic systems. The approach leads to schemes which enjoy the follow-
ing advantages: (i) they are easy to implement as one only needs to solve linear systems
with constant coefficients; (ii) they maintain the energy stability of the first-order stabi-
lized scheme; and (iii) they are second order accurate. We numerically validated this
approach with three different types of gradient flows with strong anisotropic free energy.
And we carried out a rigorous error analysis for the isotropic Cahn-Hilliard equation to
show that the stabilized predictor-corrector approach is second-order accurate.
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