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Abstract. In this paper, a bilinear Streamline-Diffusion finite element method on
Bakhvalov-Shishkin mesh for singularly perturbed convection — diffusion problem
is analyzed. The method is shown to be convergent uniformly in the perturbation
parameter ¢ provided only that ¢ < N~'. An O(N~2(In N)'/2) convergent rate in
a discrete streamline-diffusion norm is established under certain regularity assump-
tions. Finally, through numerical experiments, we verified the theoretical results.

AMS subject classifications: 65N15; 65N30

Key words: singularly perturbed problem, Streamline-Diffusion finite element method,
Bakhvalov-Shishkin mesh, error estimate.

1. Introduction

In this paper, we consider a Streamline-Diffusion finite element method (SDFEM)
for the singularly perturbed boundary value problem

Lu=—eAu+b -Vu+cu=f on Q=(0,1)

u=0 on J9, (.1

where 0 < € < 1 is a small positive parameter, b,c and f are sufficiently smooth
functions satisfying

b(.%',y) - (bl(.%’,y),bg(.%',y)) > (/31762) > (070)7 V((L',y) € Qv (1.2a)
C(‘T’y) > 0’ C(‘T’y) - %leb(‘T,y) > co > 0’ V(w,y) € Q’ (12b)
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Analysis of a SDFEM on Bakhvalov-Shishkin Mesh 45

where 1,3, and ¢y are some constants. These hypotheses ensure that (1.1) has a
unique solution in HZ(Q) (N H?() for all f € L?(9). Note that for sufficiently small e,
the other hypotheses imply that (1.2b) can always be ensured by the simple change of
variable v(z,y) = e~ ?®u(x,y) where o is chosen suitably. With the above assumptions,
the solution of (1.1) typically has boundary layers of width O(eln %) at the outflow
boundary x = 1 and y = 1.

For small values of ¢, standard Galerkin discretisation for (1.1) exhibits spurious
oscillations and fails to catch the rapid change of the solution in boundary layers, see
the numerical results in [15]. Many methods have been developed to overcome the
numerical difficulty caused by the boundary layers.

One of the most successful methods is the use of layer-adapted meshes. Provided
that some information on the structure of the layers was available, a piecewise uniform
Shishkin mesh(S-mesh) could be chosen a priori, see [1,3]. Linf3 [8, 9] introduced
Bakhvalov-Shishkin mesh(B-S-mesh) which is a modification of S-mesh by using a uni-
form coarse mesh and a graded fine mesh with Shishkin’s simple choice of the transi-
tion point. The optimal convergence order O(N~!) on a B-S-mesh had been proved,
while on S-mesh it was only convergent of O(N~!In N). Zhang [5] investigated the
superconvergence of order O(N ~2(In N)?) in a discrete e-weighted energy norm on a
S-mesh.

A powerful method for stabilising convection-diffusion problems is the streamline-
diffusion finite element method which was proposed by Hughes and Brooks [16]. This
method was known to provide good stability properties and high accuracy in boundary
layers. The convergence properties of the SDFEM had been widely studied[3,10-13].
In [13], the error between the SDFEM solution and the interpolation of the solution
of (1.1) on S-mesh was of order O(N—%/2In N) in the streamline-diffusion norm(SD
norm). In [10], a more careful analysis was performed by using interpolation error
identities of Lin, and this error was improved to O(N~2(In N)?). In order to achieve
estimates for the interpolation error in SD norm, Stynes and Tobiska [10] firstly intro-
duced the discrete streamline-diffusion norm, and estimated an error bound of order
O(N~2%(In N)?) on S-mesh.

Here we shall analyze a SDFEM on B-S-mesh, and it will give more accurate results
than on S-mesh. There are three main results in this paper. First, the interpolation
error in discrete SD norm is presented to be convergent of O(N~2). Second, the error
between the solution of the discrete problem and the interpolation of the solution of the
continuous problem is shown to be bounded in discrete SD norm by O(N~2(In N)/2),
uniformly in e. Third, we prove that the error between the solution of the discrete
problem and the solution of the continuous problem itself can be estimated in discrete
SD norm by O(N~2(In N)/2).

An outline of the paper is as follows. In Section 2 we describe the B-S-mesh and
the SDFEM. A decomposition of the solution « and some important preliminaries to
the analysis are presented in Section 3, and in Section 4 we analyze the convergence
properties of the method. In order to validate our theoretical results, numerical results
are presented in Section 5. We end in Section 6 with some concluding remarks.
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46 Y.-H. Yin, P. Zhu and B. Wang

Notation: Throughout the paper, C' will denote a generic positive constant that
independent of € and the mesh. Note that C' is not necessarily the same at each occur-
rence.

The standard notation for the Sobolev spaces W} (D) and norms will be used for
nonnegative integers k and 1 < p < co. An index will be attached to indicate an inner

product or a norm on a subdomain, for example, (-, )p, | - |xp,p and || - ||z p,p. When
D = Q, we drop the D from notation for simplicity. We will also simplify the notation
in the case p = 2 by setting | - [y, p = |- [k2,p and || - [[x,.p = || - |k.2,D-

2. The Bakhvalov-Shishkin mesh and the SDFEM

Let N be an even positive integer. We let \; and Ay denote two mesh transition
parameters that will be used to specify where the changes form coarse to fine; these
are defined by

1 2.5¢ 1 2.5¢
=min|=,— InN =min|=,—InN |. 2.1
A1 = min <2, 3 n > and Ao = min (2, 5, n ) 2.1)

In fact we make the very mild assumption that \; = % In N and Mg = % InN, as
otherwise N~! is exponentially small compared with . We shall also assume through-
out the paper that e < N~! as is generally the case in practice.

We divide the domain € as in Figure 1: Q = Q1 U Q15 U Qo1 U Q9y, where Q; =
[0, 1-— )\1] X [0, 1-— )\2], ng = [0, 1-— )\1] X [1 — )\2, 1], le = [1 — )\1, 1] X [0, 1-— )\2], QQQ =
[1 — )\1, 1] X [1 — )\2, 1]

22

1-4,

21

0 1-4 |

Figure 1: Division of Q (left) and a corresponding B-S-mesh (right).

The interval [0,1 — \;] is uniformly dissected into N/2 subintervals, while [1 —
A1, 1] is partitioned into the same number of mesh intervals by inverting the function
exp(—pB1(1—x)/(2.5¢)). We specify the z;, fori = N/2,--- , N, so that {e=#1(1-7:)/(2:5)1,
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Analysis of a SDFEM on Bakhvalov-Shishkin Mesh 47
is a linear function in i, i.e., we set

efﬁl(lfxi)/(Q.E)e) = Ai + B,

and choose the unknowns A and B so that 2/, = 1 — A; and xy = 1. An analogous

formula can be given for the mesh points y;, for j =0,--- , N.
The mesh points QY = {(z;, yj) € Q:i,5=0,1,---, N} are the rectangular lattices
defined by
(1-2xmN)F i=0,-,%,
X 1+%1n(%> i:%+1,-~-,N,
- (1—%ln]\7)% i=0,- %,
Yj 1_’_%11& (N2,2(NA72J)(N*1)) j= %4_17... ,N.

Our mesh is constructed by drawing lines parallel to the coordinate axes through
these mesh points. This divides 2 into a set 7 of mesh rectangles K whose sides
are parallel to the axes (see Figure 1). Given an element K = (z;_1,%;) X (yj—1,Y;),
its dimensions are written as hy ;(hs k) = T — i1, hy j(hy,x) = y; — yj—1, and its
barycenter is denoted by (zx, yx)-

We now describe the SDFEM on the rectangular mesh. The bilinear form Bgp(,-)
used in the SDFEM is defined by

Bsp(u,v) = Bgar(u,v) + Bsrap(u,v),
where

Bgar(u,v) = e(Vu, Vo) + (b Vu + cu,v),

Bsrap(u,v) = Z pr(—€Au+b-Vu+ cu,b- Vo).
KCQi1

The weak formulation of the model (1.1) is: Find u € H&(Q) such that

BSD(U’U):(fav)-'— Z pK(f’bvv)Ka \V/UEH&(Q)
KCQ1

Let VIV C H}(Q) be the continuous piecewise bilinear finite element space on the
B-S-mesh:
vy = {v €C(Q) 1 v]yg =0, v], € Qu(K) VK C TN}.

Then the SDFEM is defined as follows: Find uj;, € V¥ such that

Bsp(un,vp) = (f,on) + > pr(fib-Von)g, — Vo, e VN (2.2)
KCQn
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48 Y.-H. Yin, P. Zhu and B. Wang
The orthogonality property holds clearly
BSD(U — uh,vh) =0, V€ v,

For each K € Ty, set hg = min{h, i,hy x}. Let Cip, be a constant such that the
inverse inequality

[ Avp 0. < Cinoh i |Vunlloe, Yo, € VY, VK € Qpy
is valid. Similarly to [3], we set

B Clel K C Qll
PE=1 0 otherwise,

where the positive constant C is chosen (independent of ¢) such that

Co h%(

1
OSngimin( >, VK C Q.

maxg |c(z,y)[?’ C2, €
Then the argument of [3] shows that the inequality
1
Bsp(vn,vn) 2 5 lonllép, Yon e VN

holds, where SD norm || - ||sp is given by
1/2

2
[vllsp = 4 collolls +elwlf + > prcllb- Vo3
KCQi

It follows that (2.2) has a unique solution u;, € V.
We shall use the discrete SD norm || - ||sp,q defined by

llvllsp,a

1/2
:{coHng + Z e(areak)|Vu(zx, yr)|* + Z pK(areaK)\b-Vv(xK,yK)lz} .
KcQ KcQ

3. Solution decomposition and preliminary

Our subsequent analysis will rely on the precise knowledge of the behaviour of the
solution u of the convection-diffusion problem (1.1). The typical behaviour of u is
given in the following assumption.

Assumption 3.1. Assume that

u=S+E;+ Ey+ Eja,
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Analysis of a SDFEM on Bakhvalov-Shishkin Mesh 49
where there exists a constant C' such that for all (x,y) € Q2 we have

oIS

90y (x’y)‘ <C (3.1)
for0 <i+j <3and
oI Ey . p(iea)
Oy sCOcie 2
oz OyJ (x,y)‘ <Ce'e ) (3.2)
3i+jE2 . Ba(l=y)
- - < e T .
oz OyJ ((L‘,y)‘ <Cee > (3.3)
I i - —
%Tfyf(x’y)' < O (3.4)

for0<i+75 <3.

Remark 3.1. In [4], a proof was given that under certain compatibility conditions on
the date f of problem (1.1), the bounds (3.2)-(3.4) and 0 < i+ j < 2 in (3.1) of
Assumption 3.1 hold true. The extension of this result to the case 0 < i+ j < 3in (3.1)
as needed in our case seems to be possible but tedious. The number of these sufficient
conditions will increase rapidly with increasing differentiation order.

Next we introduce some equalities and inequalities that will be used in the analysis.
inverse inequalities: for v € V'V,

ov\ 2 C
— ) dady < — 2dad 3.5
/K(ax> x y_hi,K Kv xdy, (3.5a)
2
/ <?) dzdy < QL vidzdy. (3.5b)
K \0Y hy,K K

Let v; be the piecewise bilinear interpolation of function v € W (Q), then [5]

vy 1 i (v ' @ '

%(M(,?/K) - 2hz,K /zil (8$(:E’y]1) + o (:Cayj)) dz, (3.6)
ovy 1 Yi [ Ov A ov ‘

G =g [0 (G gen)w (3.7)

and if v € W2 (), we have

a _
UL

1 (P20 (2% th 8 he i 8 h
_ / 0 1; _thyk 821) RS 0 vg <xK+51t,yKS1 y,K>
2ha, ik J_ny )2 2 Ox 2 0z%0y 8 0x0y 2

t2 831) thy K 831) hi K 831) h K
. ’ : t, . dt,
* ( 2 023 T 0x20y * 8 0z0y? (mK st yK sy )
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d(vy —v)
dy

1 /hy,K/2 h?c,K 930 _tha;,K 93 +ﬁ6_3’u . ho o
C 2hy i Sy 2 8 0x20y 2 Jxdy? 2 Oy3 K =835 YK + 53

+ hi,K 831) +thx7K 831) +ﬁ8_3v Tr 48 hz,K
8 0x20y 2 Oxoy? 2 Oy? Koy

(K, YK) (3.9

dt,

YK + 54t)

where 0 < s; < 1for: =1,2,3,4; see [5].

Lemma 3.1. ([6]) Let K € Ty and p € [1,+0c0]. Assume that v € W} (K ), We denote by
vy the bilinear function that interpolations to v. Then

9%v 0%v 0%v
v—v <C{h? H— + he ih H— 2 ‘ — ., (3.10)
|| IH() 0, K { K aZQ 0.p.K Kby, K axay 0.p.K ayQ 0.9 K
_ 2 2
Ha(v vr) <c hM‘ 5_12’ +hy, ‘ 0%y , (3.11)
ox 0p.K ox 0p.K 0zxdy 0p.K
_ 2 2,
Ha(v wll e hz,K‘ 0% hy Ha , (3.12)
dy 0p.K 0xdy 0.p.K Oy> 0p.K

Lemma 3.2. (Lin identities) ([7]) Let K be a mesh rectangle, and we denote the south,
east, north, west edges of K by l; i for i = 1,2,3,4, respectively. Let v € H3(K), and let
vy € Q1(K) be its bilinear interpolation. Then for each vy € Q1(K), we have

d(v —vr) Qun d3v vy 2 8%un
"oz oz d -3 1
/K gr ox W= | g (y)( 2~ 30 V) g, ) s, (3.13)
Jd(v —vr) Qun B 93w duy 2 020y
/K oy oy "W /K axQGyG(x)< 5y 30w gag, ) dudy, G4

(/ / ) dey, (3.15)
l2, Kk la, K

/ Mm;dxdy—/ R(v,uN)
K al‘

where
G = [<x—xK>2— (’%)1 F(y) = %[(y yi)? - (’“gK)Q],
Rlesw) = 6o~ ) 00 PPy O (o
a3 2 w0 B 4 e - e - w0 5 ). 316)

Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 09:21:28, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2017.y13026


https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2017.y13026
https://www.cambridge.org/core
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Lemma 3.3. ([8]) Let v1 =i — &, 4o = j — &, then the step sizes of the mesh Ty satisfy:
fori,m =1,--- ,N/2, and for j,v =1,--- ,N/2,

Be

hog S2NT' gy < 5o SONTY (3.17)
Bim

hys <NV by, < 2 < ON (3.18)
B2

Finally, we list some inequalities regarding the exponential boundary layer function
which will be used in the next section: for i = N/2 +1,--- /N and for j = N/2 +

1,---,N,
N/2
281 (1—=;)
S heseT e SONTH(e+ NTY, (3.19)
=1
N2 282 (1— y]) 1
Zhyje — < <CN7%(e+N7Y, (3.20)
x; _x s
/ e—deS%N‘le—%%ﬂ n; 3.21)
1
/y] ~2aln) g 20 oy PR (3.22)
dy < —N"'e" " 5 . .
Yji—1 52

4. Analysis and main results
Lemma 4.1. ([9]) If Assumption 3.1 holds, then we have the interpolation error estimates
lu — urlo,00 < CN T2 (4.1)
Lemma 4.2. ([10]) There exists a positive constant C such that
lvnllsp.a < Cllovllsp, Yon € V.

Lemma 4.3. Let E = F; + Es + E14 satisfy the regularity (3.2)-(3.4). Then there is a
constant C, such that

Z e(areaK)|V(E — Er)(zk,yk)|? < CN4.
KcQ

Proof. Based on the boundary layer behaviour of E;, we separate the discussion
into the case of Q93 [J Q992 and Q47 |JQ12.

(a) K C Q91 Q9. Applying the regularity results (3.2) to (3.8),(3.9), we derive

\V(E1 — Evg)(zk, YK

Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 09:21:28, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2017.y13026


https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2017.y13026
https://www.cambridge.org/core

52 Y.-H. Yin, P. Zhu and B. Wang

102y [ B2 h., ih h?
< Ce= Y (—%K (3 +e )+ 7$’K4 LS (e2+e )+ K (e +1)

B1(l—z;

)
<Ce < (M3 g€+ 2haihy ke >+ hl e ).

Adding all elements on 2 | 222 yields

Z e(areak)|V(Ey — Ev 1) (wrk, yx)|?
KCQ21 UQ22

2[31(1 281 (1—x;) _ _ _1\2
<C€Zhyj Z hyie” (hi,ie 3+2hm,ihy,j€ 2+hz,j€ 1)

i=N/2+1
N 281 (1—=;) 2ﬁ1(1 281 (1—x;)
<C > hleter o+ Z h3 e
i=N/2+1 i=N/2+1
LON i hy e e T
z,i€ €
i=N/2+1
N/2
CZ/: < ) <271(N—1)+N>5
Bim N?
N/2 5
29 (N —1)+ N
con 3 () e ()
mn=1 N
N/2 5
27 (N — 1)+ N
ot 3 () ()
y1=1 N
< CN™4, (4.2)

where we used Lemma 3.3 and the expression of x;.

(b) K C Q11 Q2. By the regularity (3.2), we have

281 (1—zk)

(areaK)|VEy (25, yr)|* < Chyrchy (e 2 +1)e” <

Summing up all elements on Q11 | J Q1 yields

Z e(areaK)|VE (zx, yr)|*

KcQi U2
N N/2
_1 2[31(1 xK)
+e€ Z hy.; Z hyie” e

N/2

_1 ’alhz K 231(1 zz)

< Ce Z hx 16 €

=1
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< ON“Pe ¥ (14N 1) <on, (4.3)

where we used (3.19) and the boundedness of e~*(1 + ) on R,. It remains only to
estimate |VE; ;(zxk,yk)|. Invoking the Cauchy-Schwarz inequality and (3.6), (3.7),

we have
OFE C i p1(1-x) Ce ! i 261 (1-x) 2
_1 A==z v _ 28—z
L7 (K, yr) < / e te c da < / e c  dx ,
Oz hﬂﬁaK Ti—1 vV hz,K Ti—1
OFEq 1 C Yi _Bi(1-z;) _ B1l—=_yq) _ B(1—zy)
=(2r,YK) < 77— e < +e ‘ dy<Ce ¢ .
Ay v K Jyj 1

Summing up, we obtain

Z e(areaK)|VE1 1(zx, yr)|?

Kc1 U2
ol NEZ 261 (1—x) ol iy 281 (1-w;)
_ _cAallzz) _ P10 ®G)
<Ct Yoy [ e OeY g Yo hase
j=1 i=1 v Fi-1 Jj=1 i=1
<CN~°, 4.4)

where we used (3.19). Combining (4.3) with (4.4), we get

Z e(areaK)\V(El — El,[)(xKny)‘Q S CN_S.
KCQ11 UQIQ

This, combined with (4.2), established the conclusion

> elareak)|V(Ey — By p)(zx, yx)|* < CN ™ (4.5)
KcQ

The argument for F, is similar.
The proof for E1s is separated into the case of 22, Q11 (J Q12 and ;. Using the
similar techniques, we have

> elareak)|V(Erz — Eyap)(wk,yx)|> < CN 72 (4.6)
KcQ
Thus, collecting (4.5) and (4.6), we get the statement of the Lemma. O

Now we have a look at the interpolation error.

Theorem 4.1. If Assumption 3.1 holds, then we have the interpolation error estimates

Hu — 'U,]HSD7d < CN_2.
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Proof. By Lemma 4.1, we obtain
lu —urllo < CN™2. 4.7)

Next, we now analyze Y. e(areaK)|V(u —us)(rk,yK)|?.
KcQ
a(S - Sr)
Ox
W

-8

(K, YK)

938

0z3

038
Oxdy?

038
0x20y

4

hy k
8

ha khy K ‘

0,00

2 2
<C (h””’K 4 MoKy hy’K> <CN™2

0,00 0,00

8 4 8

8(587;&)(%%)

2
hz,K

-8

o's
oy3

928
0x0y?

928
0x20y

hy k
8

he khy ik
4

0,00

2 2
<C (h”’K + . rchy. ¢ + hy’K> < ON~2

0,00 0,00

8 4 8
where we used Lemma 3.3 and (3.1),(3.8),(3.9). So

> elareak)|V(S — S1)(zx, yx)[? < CN 5. (4.8)
KcQ

Moving on to the layer part FE of u, it is given in Lemma 4.3. Finally, we analyze
> prlareaK)|b- V(u — u)(zk,yx)|?. It is shown in [10, Lemma 5.2] that

KCQ
Z px (areaK)|b- V(u — ur)(zr,yx)> < CN7°. (4.9
KCQn
Combining (4.7)-(4.9) and Lemma 4.3, Theorem 4.1 is proved. O

Remark 4.1. It is difficult to bound the term

Y rx b Viu—un)llx

KCQ

independent of e. In order to avoid this dilemma, we estimate the interpolation error
in discrete SD norm instead of SD norm.

Next, we discuss the error bound for u;—uy. In order to obtain the bound, We firstly
give Lemma 4.4, Lemma 4.5 and Lemma 4.6 by invoking the sharp superconvergence
results of Lin [7].
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Lemma 4.4. Let S satisfy the regularity (3.1). Then there exists a constant C, such that
‘(b-V(S—S[),’UN)’ SCN_2HUNHSD7 VUNGVN.

Proof. We define a piecewise constant approximation b of b by

- 1
bl = / bdxdy, VK € Ty.
K

areaK

Then we decompose
(b-V(S —Sp),vn) = ((b—b)-V(S = S1),vn) + (b- V(S — Sp),un)

The first term can be bounded using standard interpolation error estimate and the
property of b:

|((b—b)-V(S = S1),vn)|
< ONT2 by oo ISl2llonllo < CN"2|lon||sp- (4.10)

For the second term, we write
‘(b- V(S —S1),vNn)

< ‘ > l_)l/KMdexdy‘ +'

= [ 95 =51)
S S 0} . (411
o by /K % ondzdy|.  (4.11)

KcQ

Through the inverse inequalities (3.5) and the expression of R(S,vy), we are able to

get
' Z b1/ R(S,UN)dxdy'
kco YK
<CN? Z 1S]3,klvnllo.x < CN"2|lon]|sp- (4.12)
KcQ
Set

bi(z,y) =b;; for zi1 <z <z and yj_1 <y <y;.
Since vy (0,y) = vn(1,y) = 0, we have

_ 9%8 _ 9%8
h2 / bl—dey—/ b —=vndy
S ([ B Sman- [ B

KcQ

< CN~2 ZZ/ bi;j [(@UN> (i, y) — (@?W) (%—hy)] dy

i=1 j=1"Y¥i-1
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) N N-1 Yj 825
con2 3 Y / (0= bis1) Gy ) )y
j=1 i=1 7Y
N -1
S 32 ‘UN Zi, Y ‘dy
j=1 i=1 Y ¥i-1
N N-1 v
<CNPY \// / low (2, y)]* dzdy
7j=1 =1 Zi Yji—1
<CN?|lon|lsp - (4.13)

Substituting (4.12) and (4.13) into (3.15), we finish the estimate for the first term on
the right-hand side of (4.11). The estimate of the second term on the right-hand side
of (4.11) is similar. Hence, the proof of Lemma 4.4 is completed. O

Lemma 4.5. Let £ = Fy + E5 + E19 satisfy the regularity (3.2)-(3.4). Then there is a
constant C, such that

e(V(E — E;), Voy)| < CN?|lun||sp, Yoy € V.
Proof. Using the expression of G(z) and F(y), the identity (3.13) is estimated

€ ‘/ 78(E — 1) aav—Nd:cdy‘

83E oun 2 vy
/‘83663/ ’( oz | T3 '(y vK) 5, ayD dzdy
PE ouy
< COeh? . || 2= &N .
< Ochy i 0x0y? || k ‘ Oz (414

where we used the inverse inequality (3.5) and the Cauchy-Schwarz inequality in the
last step. In the y-direction, we have

(E — Ey)
1] 22
Jy

83E aUN 2 6201\7
N4 2 (- dad
/ ‘ 9220y ‘ |< By +3‘($ xK)axayD zdy
O’E Oy
< 2 .1
~ C€h1.7K ‘6([;2ay OvK' ay (4 5)

Now, we estimate Fj.

(a) K C Q91JQ92. Recall the regularity (3.2), apply (4.14) to E;, summing over
K, we have

e

KCQa1 Q22
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1/2
Y @
< Cel2N2 Z Z</7 / _20,0- )dxdy> ‘6{;}_]\;
i=N/2+1j=1 \"¥ v
< cell2y-2 |9 < CN7?||on|sp. (4.16)
0

where we used Lemma 3 and the Cauchy-Schwarz inequality. Applying (4.15) to Fj,
and summing over K, we have

6(E Elj)av]\[
p> ‘/K dy oy ddy‘

KCQ21 UQ22
1 N N Y5 2B1 (1— z) 1/2 aQ}N
ot S ([0 [T )
i=N/2+1 j=1
1/2
N
cort 3 () ) o
Mer Bim Y o
0
< N2 | ZX N < ON“3|luw]lsp. (4.17)
0

Here we used (3.21) and the Cauchy-Schwarz inequality. Putting together the above
two estimates yields

< CN%lun||sp- (4.18)

e/ V(Ey — E1,1)Vundady
Q21 U Q22

() K C Q11 JOQ2. From (3.2), by integration, we obtain

< Ce 'N7O.

H OE; ||
0,211 UQui2

On the other hand, apply the inverse inequality (3.5) to Ey ,

OFq 1 ?
H < CNQHEL]H(Q),QH Ui

ox
2 N/2 Qﬁl(l 951) 4
<CON?Y hgie” Zhyj<czv
=1 7j=1

0,211 U Q2

where we used (3.19). Summing up all K C Q41 |J Q12, applying the triangle inequality
and the Cauchy-Schwarz inequality, we have

8(E1 — ELI) aUN
€ Z '/K o g dxdy'

KcQii U2

Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 09:21:28, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2017.y13026


https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2017.y13026
https://www.cambridge.org/core

58 Y.-H. Yin, P. Zhu and B. Wang

8E1 8E1 I 81)]\[
<Cel ||— ’ -—
Oz 0,211 U Q2 O 0,211 UQi2 O 0,211 U Q12
0
< 0(60.5N72.5 + 6N72) UN
Oz 0,211 U Q12
< CN*%uy|lsp- (4.19)
Furthmore, by (3.12) in Lemma 3.1 with p = 2, we get
H d(E, —Evp)|?
8y 0,211 U Q2
2B, || 92E, ||
¢ 2 (h?”’K H Dy i ' oy’
Kc1 UQi2 0,K 0,K
N/2

Zi 281 (1—x)
< Ce?N~? Z/ e ¢ dz< Ce 'N7T.
i=1 Y Ti-1

Thus, by the Cauchy-Schwarz inequality, we obtain

0(E1 — E1 1) Ov
. Z /K (Eq 11) Ndxdy‘

KcQ1UJQi2 ay ay
< Ce LEla— Br.1) oun
Y 0,211 U Q2 dy 0,211 U Q2
< C05N—35 dun
B ay 0,011 U Q2
< ON"*?|luy|lsp. (4.20)

Collecting (4.19), (4.20) and (4.18) yields

[ v - El,adexdy' < ON“?flusp.
Q

Using similar arguments, we can show that

6/ V(Eg — Eg,j)Vdexdy‘ < CNfQHUNHSD,
Q

6/ V(Elg — E1271)Vdexdy‘ S CN_2'5H'UNHSD-
Q
The proof is complete. 0

Lemma 4.6. Let £ = Fy + Es + E15 satisfy the regularity (3.2)-(3.4). Then there is a
constant C, such that

\(E — Ep),b-Vuy)| < CN~2|ox|sp, Yoy € VY, (4.21)
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Proof. We estimate F4 which is discussed into the case of 1 | J Q12 and Q91 | Q22.

(a) K C Q91 JQ99. Using (3.10) in Lemma 3.1 with p = 2, we get

1By — Evgllg (4.22)
OF, || O, OF, ||
S (= R - e L=
KCQ21 U Q22 0,K Yllo,x Y= o,k
By the bound (3.2), the first term is estimated
Z hx7K axQ
KCQ21 Q22 0,K
N N 4 )
He Ti 261 (1-x)
<C hy i / DS —
Zl » ;Z (5171> w1
j= i=N/2+1
1 N 4 861(1 z;) _
< CeN Z e < CeN™* (4.23)
i=N/2+1
where we used (3.21) and Lemma 3.3.
For the second term in (4.22), we obtain by using Lemma 3.3
92, |2
R =
KCQ21 UQ22 0zdy 0,K
N N 2 )
He Ti 261 (1-x)
<C h3 . ( > / DT —
Zl Y- ;Z Bim _—
j= i=N/2+1
—3 N =) 861(1 z;) _
< CeN Z v e < CeN* 4.24)
i=N/2+1

By integration and Lemma 3.3, we calculate

82E 2 N 2»31 (1—=)

4 1

S w28 covw, > [f et
KCQ21 U Q22 0,K Jj=1 i=N/241" %

4 1 251(1 z) 4
<CN e dz < CeN™
1-\

which, combined (4.23) and (4.24), proves

|((E1r — Evr), b Von )y, (J |
< ClEr = Evllo,0s Uaas VN 000 Uss < CN?|lon|sp, (4.25)
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where we used the Cauchy-Schwarz inequality and the continuity of b.
(b) K C Q11 Q2. By the bound (3.2), we obtain by integrating

1=h1 9 (-e)
2 A 6
B0, yo, <€ [ e ar < 0N
. 281 (1—x;) .
We notice that on an element K, |E; ;| < |Eq| < Ce™ =, By using (3.19), we
have
2 Y L _2p1(-zy) 6
1B 00 G S CD i D hage™ ¢ <CNS.
j=1 i=1

Therefore, by the inverse inequality (3.5), we have

’((El - El,f)v b- VUN)QM UQm‘
< C|Er = Evilloan UanlVonlloan Uan < CN2lox|sp-

This, together with the estimate (4.25), proves
[(B1 = E11),b- Voy)| < CN?|lox||sp-

The estimates for Fy and E;, are similar. Hence, (4.21) is obtained. O
We will estimate the term Bgar,.

Lemma 4.7. Let u be the solution of the continuous problems (1.1) and let u; be the
bilinear interpolation of u on the B-S-mesh. If Assumption 3.1 holds, then there is a
constant C, such that

|Bgar(u—ur,vn)| < CN2|jon]|sp, Yoy € VY.
Proof. We rewrite the bilinear form for w € H}(Q):

Bear(w,v) = e(Vw, Vv) + (b- Vw,v) + (cw,v)
= ¢(Vw, Vv) — (w,b - Vv) + ((c¢ — divb)w, v).

We shall use whichever of these expressions is more convenient.
|Baar(u —ur,vn)| < [Bear(E — Er,on)| + |Bgar(S — Sr,vn)|.

Now we estimate E-term. In the light of Lemma 4.5 and Lemma 4.6, for any vy € VV
we have

e(V(E — Er), Von)| < CN7?|luy||sp,
((E — Er),b- Voy)| < CN72|lux||sp,
(¢ = divb)(E — Er),vn)| < C||E = Eillollowllo < CN~?|lon]|sp,
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where we used the Cauchy-Schwarz inequality and (4.7). Hence,
’BGAL(E—E[,UN)‘ < CNfQHUNHSD. (4.26)

Next, we analyze S-term. Applying (4.14) and (4.15) to S, we get

3
/ S 51 (%Nd dy| < cen-? 0°S ouvn
0x0y? ||y k || Oz
(S SI) OvN S ovy
_ <
€ /K 3y 3y —dady| < CeN2 5220y ok 3y

These, together with the Cauchy-Schwarz inequality, prove

o

The second term of Bgar(S — S, vn) is handled in Lemma 4.4 that

le(V(S — Sr1), Vun)|

3
< CeN~? Z (‘ 0’5
KcQ

0x0y? ||,

< CN %y ||sp-

93S
9220y o,K> [Von ok

|(b- V(S — S1),0n)] < CN"lun|lsp.
Furthermore, standard approximation theory gives us
|(e(S = S1),om)| < OIS = Sillollowllo < CN?[low|sp-
Hence, we obtain
Baaw(S = Sr,on) < CN~*|lon|lsp
by collecting the above three bounds. Recalling (4.26), Lemma 10 is proved. O
It is now straightforward to prove the second main result.

Theorem 4.2. Let uy, be the solution of the discrete problem (2.2) and let uy be the bilinear
interpolation of u on the B-S-mesh. If Assumption 3.1 holds, then there is a constant C,
such that

lur — unllgp < CN~*(In N)I/Q-

Proof. From the inequality
1 2
3 lur —unllsp < Bsp(ur — un, ur — up)
< Bgar(ur —u,ur — up) + Bsrap(ur — u, ur — up).
Setting v = uj — uy, the second part is shown in [10, Lemma 4.4] that

|Bsrap(ur —u,on)| < CN~2(In N)?|joy||sp-
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Table 1: Error in the discrete SD norm and maximum norm.

e =1.0e — 05 e =1.0e — 06 e =1.0e — 07
N ||U - Uh||SD,d HU - Uh||0,oo ||U - Uh||SD,d HU - Uh||0,oo ||U - Uh||SD,d HU - Uh||0,oo
4  6.7574e-02 7.7052e-02 6.7574e-02 7.7055e-02 6.7575e-02 7.7056e-02
8 2.4086e-02 2.6539e-02 2.4087e-02 2.6539e-02 2.4087e-02 2.6539e-02
16 7.0152e-03 7.7200e-03 7.0154e-03 7.7196e-03 7.0154e-03 7.7196e-03
32 1.8805e-03 2.1284e-03 1.8805e-03 2.1281e-03 1.8805e-03 2.1281e-03
64 4.8593e-04 5.6323e-04 4.8594e-04 5.6307e-04 4.8594e-04 5.6306e-04
128 1.2344e-04 1.4536e-04 1.2344e-04 1.4530e-04 1.2344e-04 1.4529e-04
256 3.1103e-05 3.7039e-05 3.1104e-05 3.7014e-05 3.1104e-05 3.7012e-05
512 7.8059e-06 9.3709e-06 7.8061le-06 9.3616e-06 7.8059e-06 9.3604e-06
Invoking Lemma 4.7, we get
lonl5p < ClBsp(ur —u,on)| < ON"*(In N)?|lun||sp.
This proves the statement of the theorem. O

The combination of Theorem 4.1, Theorem 4.2 and Lemma 4.2 leads to our main
result directly, i.e.,

Theorem 4.3. Let u be the solution of the continuous problems (1.1) and let uy, be the
solution of the discrete problem (2.2). If Assumption 3.1 holds, then

u — upl|sp.a < ON~2(In N)/2.

5. Numerical results

We study the performance of the method when applied to the test problem

—eAu+uz +uy+u=f in Q=(0,1)%
u=0 on 0,

where the right-hand side f is chosen such that

u(z,y) = zy (1 — e_(l_m)/5> <1 — e_(l_y)/e> .

This function exhibits typical boundary layer behaviour. For our tests we take ¢ =
107°,---,107"and N = 22,--- , 2% The computation was performed by Matlab 7 and
a five-points Gauss-Legendre formula was used to estimate the error. Table 1 lists the
error in the discrete SD norm and maximum norm. When ¢ = 107, the errors in
the discrete SD norm are plotted on log-log chart in Figure 2. Another two reference
curves with different decay rates have been plotted in Figure 2. From this Figure, the
rate of convergence can be observed directly. From Table 1 and Figure 2, they are clear
illustrations of the convergence results of Theorem 4.3. Table 2 displays the errors for
the S-mesh and B-S-mesh. It is obvious that the method on B-S-mesh outperforms the
S-mesh for all N.
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Table 2: Error on the B-S-mesh and S-mesh.

63

e =1.0e — 05 e = 1.0e — 06 e =1.0e — 07
N B—-S5—mesh S—mesh B—5S5—mesh S—mesh B—S—mesh S— mesh
4 6.7574e-02 1.2637e-01 6.7574e-02 1.2637e-01 6.7575e-02 1.2637e-01
8 2.4086e-02 7.9554e-02 2.4087e-02 7.9554e-02 2.4087e-02 7.9554e-02
16 7.0152e-03 3.8041e-02 7.0154e-03 3.8041e-02 7.0154e-03 3.8041e-02
32 1.8805e-03 1.5407e-02 1.8805e-03 1.5407e-02 1.8805e-03 1.5407e-02
64 4.8593e-04 5.6306e-03 4.8594e-04 5.6306e-03 4.8594e-04 5.6306e-03
128 1.2344e-04 1.9267e-03 1.2344e-04 1.9267e-03 1.2344e-04 1.9267e-03
256 3.1103e-05 6.3037e-04 3.1104e-05 6.3036e-04 3.1104e-05 6.3036e-04
512 7.8059e-06 1.9958e-04 7.8061e-06 1.9958e-04 7.8059e-06 1.9958e-04
10°
—*— O(N"2n*2N)
. o)
10 ¢ O(N"An®N) |1
107k
10°F
107
10°F
10-6 0 1 ‘2 3
10 10 10 10

Figure 2: Error: the discrete SD norm, e = 10",
6. Conclusion

In this paper, the Streamline-Diffusion finite element method is applied to a singu-
larly perturbed convection-diffusion problem posed on the unit square, using a Bakhvalov-
Shishkin mesh with piecewise bilinear trial function. The method is shown to be con-
vergent, uniformly in the perturbation parameter ¢, of convergent rate O(N~2(In N)'/2)
in a discrete Streamline-Diffusion norm. It is obvious that the method on Bakhvalov-
Shishkin mesh yields more accurate results than on Shishkin’s mesh.
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