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Abstract. In this paper, nonconforming mixed finite element method is proposed to
simulate the wave propagation in metamaterials. The error estimate of the semi-
discrete scheme is given by convergence order O(h?), which is less than 40 percent
of the computational costs comparing with the same effect by using Nédélec-Raviart
element. A Crank-Nicolson full discrete scheme is also presented with O(72 + h?)
by traditional discrete formula without using penalty method. Numerical examples
of 2D TE, TM cases and a famous re-focusing phenomena are shown to verify our
theories.
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1. Introduction

The investigations of wave propagation in Metamaterials have attracted researchers
from many areas such as construction of perfect lens, sub-wavelength imaging and
cloaking devices. Many numerical simulations have been done on some interesting ex-
otic properties such as negative refractive index and amplification of evanescent waves
in Metamaterials which structured electromagnetic composite materials [1,2].

Generally, numerical simulations in electromagnetic system employ edge finite el-
ement method [3-6,17]. The main advantage is that the spurious solutions can be
avoided simultaneously because of the property of curl conforming. In [9], the au-
thors considered three popular dispersives medium models (the isotropic cold plasma
medium, one-pole Debye medium and two-pole Lorentz medium) of time-dependent
Maxwell’s equations in a bounded three-dimensional domain by Nédélec’s element,
and obtained the optimal order error estimates. In [12], the authors derived the global
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superconvergence results for semi-discrete scheme. In [13-15], they developed a leap-
frog mixed finite element scheme for solving Maxwell’s equations. The more merit
discrete schemes in time direction can be found in [20,21]. In [16], the interior
penalty discontinuous Galerkin (DG) methods for the time-dependent Maxwell’s equa-
tions in cold plasma were set up. The above studies are only concentrated on the fam-
ily of Nédélec’s element. However, the Nédélec’s element broke down for large-scale
computations due to the fact that they could not represent purely TE fields [8]. The
others of finite element methods such as C°—conforming vector nodal finite element
methods [7] and nonconforming finite element method [23-25] were also explored by
penalty techniques.

The first constructive theoretical and numerical analysis for Maxwell’s equations by
nonconforming finite element methods can be found in S. C. Brenner’s works [23-25],
where the Crouzeix-Raviart type triangular nonconforming finite element approximat-
ing to two dimensional curl — curl system was studied. And numerical experiments
indicated that the traditional weak formula could not lead to a convergence scheme
even if the mesh is refined. Therefore, the discrete formula was modified by adding
penalty terms, which involved the tangent and normal jumps. The crucial difference
is that the piecewise broken H (curl) () H(div) semi-norm, unlike the piecewise broken
H' semi-norm for Poisson problem, is too weak to control the jumps. Hence the two
terms involving the jumps have to be included in the discrete formula so as to control
the consistency error.

Based on the above discussion, it is necessary to reestablish a framework of non-
conforming mixed finite element methods approximate the electromagnetic system by
traditional discrete scheme without penalty techniques. In [2], the authors summa-
rized a list of ten interesting topics to be explored which concluded the investigations
of nonconforming finite element methods. In [19,22], the authors provided a family of
rectangular nonconforming mixed finite element to approximate electromagnetic sys-
tem, whose theoretical and numerical analysis demonstrated the modeling problems
worked successfully. How do these nonconforming mixed finite elements perform in
applications?

In this paper, we consider wave propagation in metamaterials by nonconforming
mixed finite element method. Re-focusing property of metamaterials can be found
clearly. The main advantages conclude the three facts: the first one is the curl conform-
ing in the means of integration for the approximation space of H(curl,); the second
is the transformational relation between the differential operator and the interpolation
operator, which will be shown in the following section; the third is the lower compu-
tational cost than the corresponding Nédélec’s element, which can be reflected by the
degrees of freedoms. Another wonderful merit is the superconvergence of consistency
term, which leads to overcome the weakness of the discrete norm shown in [23-25].
In the meaning time, we provide the error estimates of the semi-discrete scheme and
Crank-Nicolson full discrete scheme for wave propagation model in metamaterials.

The rest of this paper is organized as follows. In Section 2, model of wave prop-
agation presented and a variational formula is provided based on Helmholtz decom-
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position. In Section 3, new nonconforming mixed finite element space is constructed
and some important properties are established. Especially, we use Lin-method to proof
the consistency error. Error estimate of the semi-discrete scheme is set up. In Section
4, Crank-Nicolson full discrete scheme for wave propagation model in metamaterials is
given and convergence order is obtained. In the last section, TE, TM case of wave prop-
agation model in metamaterials and the re-focusing property are shown numerically.

2. Equations of wave propagation in meta-materials

The wave propagation in meta-materials can be employed the governing equations

[1,2]
B, — curlH = —J +f, (0,7 x Q, 2.1)
woH; + curlE = - K + g, (0, 7] x €, (2.2)
1 T
~Ji+—SJ=F, (0,7] x Q, 2.3)
Eowpe Eowpe
1 T,
K+ —"K=H, (0,T]xQ, (2.4)
Mowpm Mowpm

where ¢y denotes the permittivity of free space and j( denotes the permeability of free
space, wy.,wpm are the electric and magnetic plasma frequencies, respectively. I'c, ',
are the electric and magnetic damping frequencies. E(x,t), H(x, t) are the electric and
magnetic fields,respectively, and J(x,t), K(x, ) are the induced electric and magnetic
currents,respectively. f, g are added source terms. We also assume that the boundary
of Q is perfect conducting

nxE=0, on 09, (2.5)
where n is the unit outward norm to 9€). Furthermore, the initial conditions are
E(x,0) = Eo(x), H(x,0) = Hy(x), (2.6)
J(x,0) = Jo(x), K(x,0)=Kjp(x), 2.7)
where Ey(x), Ho(x,Jo(x), Ko(x) are some given functions.
The existence,uniqueness and stability of equations (2.2)-(2.7) can be found in [1].
Define the following notations:
H(curl) = {v = (v1,v2,v3) € [L2()]* : curl v € [L*(Q)]*},
Hy(curl) = {v € H(curl) :n x v=0,on 00},
H(div®) = {v = (v1,v2,v3) € [L*(Q)]® : divv = 0},
HY(Q) = {6 € L*()]0°6 € L(Q),V || < s).

Since Gauss laws must be successful, we have to employ the Helmholtz decomposi-
tion. A function @ € Hy(curl,2) can be written uniquely as

ia=u+ Vuw,
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where u € Hy(curl,Q) N H(div°,Q) and w € H(Q). With Ho(curl, Q) N H(div?, Q) —

[H%(Q)]%, s > 1, the variational problem of (2.2)-(2.7) is: find E € C''(0, T; Ho(curl, Q)N
H(div°,9Q)), J € C1(0,T; H(curl,Q) N H(div°,Q)) and H,K € C1(0,T;[L?(Q2)]?) such

that V® € Hoy(curl,) N H(div®,Q), ® € H(curl,Q) N H(div®,Q), ¥, ¥ € [L?(Q)]3

co(E, ®) — (H,curl®) = —(J, @) + (f, @), (2.8)
o(HLy, ®) + (curlE, ¥) = —(K, ¥) + (g, ¥), 2.9)
_ Fe =, _
eowge (Jta (I)) + EOWI%@ (Ja (I)) - (E’ (I))a (210)
_ T _ _
K;, ¥ ™ _(K,¥)=(H,WU). 2.11
:U'Owgm( ty )+ MOWIQ;m( 9 ) ( 9 ) ( )

3. New nonconforming finite element methods

Assume 2 = [0,1) and 7}, be the uniform partition. Considering the reference
element é = [—1,1]?, we can define V =V, x V, x V, beoné by

Let W = /Wz X Wy X /WZ, where

Wi = span{l,y, 2}, /Wy = span{l, 2,2}, WZ = span{l,z,y}.
~ o = n A oA
Define the interpolation operator P : [L?(€)]* — W (€) by: for ¢ = (¢s,vy,vz),
[ (Pi; — ay)adidydz = 0, Yq € Py,

where P is the 1th polynomial space.

After obtaining the basis function on the reference hexahedron é, we can derive the
basis function on a general element e by mapping F.. To make the degrees of freedom
invariant, we need the following special transformation

uo F, = B. !4, B.1)

where F, is the affine mapping. For technical reasons, we assume that B, is a transform
matrix.
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The unit outward normal vector n to e is obtained by the transformation

B, 'a
nofk, = (3.2)
[B'al’
1 —
curlu = mBecurlﬁ. (3.3)

Using the scaling argument, we denote the operator 75, and P, translating from 7 and
P, respectively.
Define the nonconforming finite element space

Vi={¢:¢le=Bepo eV}, Wy={v:|:=BwoF W},
1
V()h:{goevh,m/nxgsz,FC(@eﬂ@Q)}.
F

Semi-discrete variational weak form can be formulated: find E} € Vp;,,J € V},, H,K €
W}, such that

eo(Er, @) — (H", curl®”) = — (I, ®") 4 (£, ®"), Vvd" eV, (3.4
NO(H?,M) (curlE" ®h) = —(K", ") 4 (g, ®"), v®"cW,, (3.5)

I‘ _
(Jt,<I>h) —(J", ") = (E" @"), veh c v, (3.6)
oW Eowpe
1 _
(K?,\ph) = (K", o) = (H", "), veh e Wy, (3.7)
How HowWpm

By [19,22], we have the following important properties.
Lemma 3.1. The interpolation operators 7j, and P, can be uniquely determined.

Lemma 3.2. Let e; and ey be the two adjoin non-overlapping elements with a common
interface such that e; N ey = F. Assume that u € V), defined by

u=1uj, one;, U= Uy, ON €s. (3.8)

Then fF u; X nids = fF us X nads on F, where ny (resp. ng) is the unit normal vector
of F pointing towards outside of e; (resp. es).

Proof. The proof can be carried out in exactly the same way by using the following
identity: for any function ¢ € [C§°(e; Uex U F)]3,

/ u - curlgdx
e1Ues UF

= / curluy - ¢pdx —l—/ curlug - ¢pdx + / (ug X ng +up X ny) - Gds.

el €2 F

By the property of degrees of freedom [.[u] x nds = 0, the proof is completed. O
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Lemma 3.3. For all ¢ € V},, div,¢ = 0.
Proof. By calculating, we have

. . 0p1  0¢a  O¢s3
Lemma 3.4. For the space pairs V}, and Wy, there holds
curthh Q Wh. (39)

And if ¢ is a function such that both the interpolants 7, ¢ and Py (curle), then curly(mp¢) =
Py (curlg).

Proof. Based on the definitions of the operator 7, and Py, for ¢ € H(curl,2) N
[H%(Q)]3, we have

/(curlﬂ'egi) — P.(curlg))dzdydz = /(curlwegb — (curle))dzdydz

e

:/ n X weopds — /curlgbd:cdydz :/ n x ¢ds — /curlqbdxdydz
de e de e

= /curl¢dmdydz — /curl¢dmdydz = 0.

€ €

Therefore, curlm,¢ = Pp(curlg). O

Lemma 3.5. Assume that E,H,J, K € [H?(Q)]3, the following interpolation error esti-
mate holds

IE - mE[o+ [H - BHo + |J — md o + K — Ko < Ch®. (3.10)

Lemma 3.6. Assume that H € [H?(Q)]? and ® < V", the following consistency error
estimate holds [22]

‘ 3 | Hnx ®ds| < CHIH @], (3.11)
ecgh %

And if H € [H3(Q)]3, the following superconvergence estimate of consistency error holds

( 3" | Hnx ®ds| < CL?[H|3/|@||o. (3.12)
eeJh de
Proof. Define six faces ¢;,i = 1,2,--- ,6 on every element e which unit outward

normal vector

n = (1,0,0), on g, n=(—1,0,0), on go,
n = (0,1,0), on gs, n = (0,—1,0), on g4,
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n=(0,0,1), on gs, n=(0,0,—1), on gs.
Then, we have
<H,nxao>

= Z/a Hy - (n2¢s — n3dz) — Ha - (nags — ngén) + Hs - (n1d2 — nadr)

= / (H3¢pa — Hagp3)ds + / (Hi¢3 — Hzpy)ds + / (Hap1 — Hio)ds.
g1—g2 g3—g4

g5—4ge6

Define

— 1
Gilg; = 7 | #dS, i<i<3, 1<j<6.
191 Jg,

By ¢ x n=0,0ndQ and [.[¢]ds =0,F C ene, e e € J,, we have

Z/gl_g2 (H3@—H2%>d5+/g

Then the consistency error estimate is:

<H,nx¢:g:</g

Hy(d1 — Br)ds + /

95—9e

(H@ _ H3E> ds + / (HQE _ H@) ds = 0.

3—g4 g5—9ge

H3(¢2—%)—H2(¢3—%)d5+/ Hi(¢3 — ¢3)

1—92 93—94

Hg(gbl — a) — H1(¢2 — %)dS) . (313)

For convenience, we consider the term fgsfgzl H3(¢1 — ¢1)dxdz. By computation:

h_z) (blzz

(01~ Blnos = (2 = 2000n: = (2 + 5 ) 222

we have

/ H3(¢1 — a)dxdz
93—94

= / Hj [(z — Ze)P12 — ((2 —z)? + h—2> qblzz} dwdz
93—3g4 3 2

2
- [, [(z ~ ) - <<z e %) %} dadyd

1 [~ [~ 1\ b1
== / Ha; [%lz - (32 + 5) ¢12] hohyhdZdgdz. (3.14)
y Je

Define the bilinear functional

o~ ~ ~ 1\ byon
B(Hs,¢1) = /H3a [3%2 - (22 + §> %} dzdydz.
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Table 1: Basic functions of P4 space.

Hy 1 & 0 3 2 i 22 2y 22 92
Hy; 0 0 1 0 0 2i) 0 & 0z
Hy &3 33 229 222 9’2 ¢%2 223 2% apk
Hs; 0 332 O @2 0 229 292 O 2 3
Hs #* g 34 @By 32 9z P2 87

Hy; 0 43° 0 @3 0 3z9° 39%°2 0

Hs 3¢ 2292 292 93® 2%¢% 2232 %32

Hs; 2% 3%z 2392 22% 23% O 2752

Denote

;Zgl = (15@\) 25 @\2 - /Z\Q)) 512 = (O)Oa 1) _2/'2\)5 ¢122 = (050)05 _2)

We have o SR
|B(Hs, ¢1)| < C||H3l2[[¢1]l0-

Obviously, B(P;, 51) = 0. Therefore,
|B(Hs, ¢1)| < C|Hzls|d1]lo-
When ﬁg = Yz, we have
B(Hs, 1) = / [(0,0, 2 938y (2‘3 n f)(0,0,0,—l)} dzdjds

8
/ (0,0,22,0) = 5(0.0.1,0) / Hagzprzdzdidz. (3.15)

w

Let
N - 1 [~ ~
G(H3,¢1) = B(Hz, ¢1) — 3 /Aﬂggz¢1zd$dydz-

Based on |G(Hs, ¢1)| < C||Hsl|s||é1l0, by G(P2, ¢1) = 0, we have
|G(Hs, ¢1)| < C|Hs|s]|1lo-

Therefore,
B(Hs, &) = / Hig=dr2d2djdz + O(1)| Hals |91 o-

Similarly, when Hy = yz?
G(Hs,¢1) = <0 0,0, 45) = 4—5/€H3y~2vz\qblggd:cdydz.
Let

L(ﬁ&g/b\l) = (H3a¢1 /H3yz¢1zdxdydz+ 45 /H3y22¢lzzdxdydz
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Based on |L(Hs, ¢1)| < C||Hs||4|1l0, by L(P3,é1) = 0, we have
|L(Ps3, ¢1)| < C[Hsl4l|1o-

Therefore,

(H3a¢1 /H?)ynglzdxdydz_ 45 /H3y22¢lzzdxdydz+0( )|H3|4|¢1|0

From integrating by parts and the fact n x ¢ = 0 on 992, we have

> / H3(¢1 — ¢1)dzdz
e 93—g4
2 4
= Z |:% /H3y2¢1z - 4h /H3yzz¢1zz + 0( )|H3|4|¢1|0:|

h? 4hl 5
= - 5 H3yzz¢1 - E H3y2222¢1 + O(h )|H3|4|¢1|O

< CRh2|Hs)|o1)o- (3.16)

The same way can be done on the other five term in < H,n x ¢ >. Then the proof is
finished. O

Theorem 3.1. Let (E(t), H(t),J(t), K(t)) and (E"(t), H"(t),J"(t), K"(t)) be the solu-
tions of (2.8)-(2.11) and (3.4)-(3.7), respectively. Then there exists a constant C =
C(eo, 110, Ie, ', Wpe, wWpm ) independent of mesh size h, such that

co|E — E"[lo + po| H — H"]| K — K"

pm

t
<cn / (IBello + Bl + s + [Tl + 311 ) . (3.17)
0

Proof. Multiplying (2.2)-(2.4) by ®", ¥" &" " respectively and integrating in €2,
we have the error equations

co(Ey, ®") — (H,curl®") = —(J,@") =Y " | Hnx ®" + (f,®"), (3.18)

Oe
po(Hy, ") + (curlE, ¥") = —(K, ¥") + (g, ¥"), (3.19)
(Jt,<I> )+ F2 (J,®" = (E, "), (3.20)
oW, Eowpe
! (Kt Ty + Lm (K, ") = (H, ¥"). (3.21)
Low. ) Mowgm ) )
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Let ¢ = (mE — EM),0 = (P,H - H"), £ = (7,J — J") and 0 = (P,K — K"). We then
have

e0(&, &) — (0, curle)
ZGO((W}IE_E)t’g) _(PhH—H,CUTlg) _(J_WhJ+g’£)_Z o H'nxga

o (0, 0) + (curlé, 0)
= wo((P,H — H),,0) + (curl(m,E — E),0) — (K — P,K +0,0),

_ Fe _
%e (§t7§) + @(575)

= (m,E — E 3 J-—J),¢ c J—J.¢
(7h +575)+60wpe((7fh )i, &) + Eowge(ﬂh &),
(6,0) + L (6,0)

:U’OWQ o :U’()w;%m ’

(PK —K),,0) + F—”;(PhK -K,0).

= (H-P,H+0,0) +
HoWpm HoWpm

Adding the above four equations together, we have

ld 2 2 Loz2 L g
—— 0 — —|0
5 (eonSHo + pol|05 + 6Ow]%eH&Ho + uowgm” I

r r 13
+— N+ —2 012 = 3 Err. (3.22)
GOW%eH HO ,U/OW%mH HO s 7

We can estimate them by Lemmas 3.4-3.6 and Young’s inequality,

Erry = eo((mE — E), §) < ClGOH WhE —E)lloll¢llo

< Creoh® | Eel2|€]lo < HEtH2 +81[I€113, (3.23a)
|Erre| = (PLH — H, curlf) = 0, (3.23b)
E’I"?"3 = —(J - 7ThJ + g,f) = _( - 7ThJ +g 5) - (575)7 (323C)
C

@ mlg < HJ||2 8, (3.23d)

Erry = 3.23
"y Z ) (3.23¢)
E?“?“5 = 0((PhH - H) ) 0 (323f)
Errg = (curl(mpE — E), 0) = (PycurlE — curlE, 0) = (3.23g2)
Errp = —(K — P,K +6,0) = —(8,0), (3.23h)
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_ Ch4 .
Errs = (B-mE+£8) < — ||E||2 +04lI€l§ + (€,6), (3.231)
Errg = —((md — 3) *><&||J 13+ 651182 (3.23)
Trr9 = GOWI%C Th ty ~ 46%&) 55 tl2 5 0 .49]
T, CeI'2h* .
Brrip = —5-(md = 3.6) < 2553 + 86 I<15, (3.23K)
oW pe 4e O p€5
Erryy = (H—-P,H+0,0) = (0,0), (3.23])
1 _
Erryp = (K - K),,0) =0, (3.23m)
0 pm
. _
Erris = ———(P,K - K,0) = 0. (3.23n)
HoWpm,
Therefor,
1d 1 _ I _ T _
0 0% ° 2 1612
g (eou»suowou B+ — u»suowowg H Ho> + (o 1R+ 101
Cle CQ 03 04 C5h4
<=2 B + 913 + =5 WG + = IBIE + 2 95
0 pe
C F I _
462 5 I3 + (81 + 82 + 83)IIEIE + (31 + 35 + 8o IEIG (3.24)
0 pe

Integrating both side of (3.24) with respect to ¢, noticing the facts £(0) = 6(0) =
£(0) = 6(0) = 0, from the Gronwall’s inequality, we have

1 _
€ + uollf? + —— + 0 2>
(o\léllo 110110115 o, €113 uowﬁmu I

<cn /0 (113 + I + 1LY + 13603 + 1913 ) de. (3.25)

With the help of Lemma 3.5 and triangular inequality, we can finish the proof. O

4. Full-discrete error estimates

To define a fully discrete scheme,we divide the time interval (0,77 into uniform
subintervals by points 0 = ¢ty < t; < < ty = T, where t;, = kr,and 7 = T/N. we use
the central difference and average operators at time lever k + 1 :

—w wn+wn—1
57'w = W =
T 2

where w" = w(nt).
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The full discrete scheme is provided by:for k = 1,2,--- N, find Ef € V;,,J% €
Vh,Hh, K € W}, such that

(e00-EF, ®,) — (HY, curl®y,) + (I35, ®),) = (F 2, ), Ve €V,  (4.1)

(uoaTHg,\ph)+(curzEg,\ph)+(k,’;,\1:h):(g’f—%,\p), VU, € Wy,  (4.2)

60(-‘112;5 (5 Jk7¢h) €0 61%@ (jkvéh) = (El;;” (i)h)a V&h S Vh, (43)
R _
——(6: K5, 9) + —5—(Kj, v) = (H},9), Ve Wy, (44
€ow pm €0Wpm

subject to the initial approximation:
E)(x) = mEo(x), 3% (x) = m,J0(x), H) (x) = P,Ho(x), K} (x) = P,Ko(x).
In fact, we first solve (4.3) and (4.4) for J and K} by

2 —71I TOJ2

JkJrl 5 :FCJk‘ 5 F (Ek+1 Ek) (45)
2 —71I Tw?2

Kptt = K Pi—(H, T+ HY). (4.6)

2+ 70, h g + 71y,
Then substituting (4.5) and (4.6) into (4.1) and (4.2), respectively, we obtain

-
60(1 + CIEan Tr )> (EF, @) — 5(H’;ﬁl,cm«zcﬁh) 4.7)
k Z k _ 2T k k+l
60(1 2—|—TF )>(E 7(I)h) + 2(Hh,curl<1>h) 2—|—TF6 (J ,‘I)h)—i—’r(f 2"I)h),
T
1o (1 + o Tr )>(H§+1, Uy,) + §(curlEfLH, U, (4.8)
LT\ gt ) - T (eurlEE © T KE @ k3 g
— IR LA — — R 2
Ko (2 + Trm) ( ho h) 9 (CUT ho h) 21 TF ( ho h) + T( h)

where f, g are the added source terms.
Lemma 4.1. At each time step, the system (4.7) and (4.8) is uniquely solvable.
Proof. The system (4.7) and (4.8) can be rewritten by the algebra form

(o) (&)-(3)

where matrix B = 5 (¥, curl®y,),

7_2w2 7_2w2

m) (®4,®1), C=po (1 + %)(‘I’h, Un),

A:€0(1+ 22+ 7T
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and @, € Von, ¥y, € Wy,

It is easy to check that the coefficient matrix determinant equals det(A)det(D +
B’A~!B), which is obviously non-zero. Hence, the coefficient matrix is non-singular,
which concludes the proof. O

Theorem 4.1. Let (E¥, H* J* K*) and (Ef, HY, J¥ KF) be the solution of (3.4)-(3.7)
and (4.1)-(4.4) at time t = t*, respectively. Assume that , Then there exists

max (HE" — E}[lo + [H* —H} o + 13" — I3[0 + K™ — ZLHO) <O+ 1),
1<n<N

Proof. Multiplying (2.2)-(2.4) by &), € Vo, 1U), € Wy, 16, € Vi, 19y, € W)
repectively and integrating in time over I* = [z;_1, x;] and in space (2, then using the
Green’s formula,

(curlH, ®p,) = (H, curl®y)— < Hyn x ®;, >,

where < H,n x &, >= Y [, Hn x ®,ds, we have
ecJh

1 1
60(57Ek’<I>h) — (— Hdt,curlq)h) + <; /k Jdt, ‘I’h)
I

T JIk
1
= — <= | Hdt,nx ® >, (4.9)
T JIk
i 1 1
po(0-H ) + | — | curlEdt, ¥, | + (- [ Kdt, ¥, ) =0, (4.10)
T JIk T JIk
1 . r, 1 . 1 ;
(535,50 + = (5 [ ) = <— | B m), (4.11)
6()(.Upe eowpe T JIk T JIk
1 . r, (1 N 1 ~
5 (6, KF p,) + 5 (— Kdt,wh> = (—/ Hdt,wh>. (4.12)
HoWpm, HoWpm \T JIk T JIk

Denoting ¢ = mEF — Ef 0f = P,H* — Hf {f = m,JF — I 0F = P,KF — K} in
(4.1)-(4.4) and choosing ®% = (¢¥ + ¢F1), Wk = (6F + 071), oF = (¢F + ¢ 1), 0k =
(6% + 6%~1) in (4.9)-(4.12), we can get the discrete error equations

60(5T£i€7 EZ) - (Ekv C’U,T'ZEZ)

_ _ 1 _
= (6, (mEF — EF), &) — (PhH’“ - = Hdt,curZ§Z>

T JIk

1 - 1 _
—<—/ Jdt — Jﬁ,gﬁ‘j)— <= [ Hdt,nx& >, (4.13)
Ik T JIk

T

—k =k —k —k
10(6-03, 0y) + (curléy, 0,) = po(6- (P HF —H*),8;)
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1 _ 1 .
+<CUTZ(7rhE’“ - / Edt),eﬁ) - <— Kdt — Kﬁ,eﬁ), (4.14)
T JJIk T JIk
1 =k 1 =k
T ) ) 57‘ s Jk - Jk )
o, —(6:&) §h) -~ (§h fh) o, 5 (0 (7 ),€n)
Fe — 1 =~ 1 1. =k
+—= (th’“——/ Jdt,gh) + <—/ Edt—E’;,gh>, (4.15)
E0Wpe T Jrk T JIk
1 - =k T =k =k 1 =k
— (5,6F.0 —™ (f,,0 — (5, (PKF —K"),0
Mowgm( ho> h)+MOW12;m( o) = 10w (67 (P ),01)
4 PK — = Kdt,eh +(= [/ Hat-H;,0,). (4.16)
How Ik T JIk

Adding (4.13)—(4.16), multiplying the time step 7 and employing the inequality
a(a —b) > 1(a® — b?) , we obtain

o k k— Ho k k— 1 k Fk—
2 (llen* 13— 1ek=13) + 52 (10513 = 105 13) + 5= (ERI3 — gk —"13)

0 pe
1 _ . —=k+l T —k+1
g gh—1 2) e 2 m__1p 2
gy (1PR1E = 1518) + S 1 + 1 1
_ 1 _
= 7¢o (6, (TR EF — Ek),fl;i) - T(Hk = Hdt, curlﬁi)

1 - 1 _ _
—T(—/ Jdt — J’i,gﬁ) —r <= | Hdt,nx& > +7puo(5-(P,H* — H"),8})
T JIk T JIk

= 1 — 1 —k —
+7 <CUTZ(7ThEk - = / Edt), «92) - T(— Kdt — KZ, «92)
T JIk T JIk
—k T, 1 —k
T (6 d* — 34),6,) + 2 (Wth - ;/k Jdt,fh)
1

€0Wae €W,

1 =k —k
+T<—/ Edt — E’,j,gh) + — (6, (P H" —H"),0,)
T JIk /.L w,

pm

13
F — 1 =k 1 1. =k
+—m (Kk - Kdt,0h> +T(— Hdt—H§,0h> =37

,uowpm T JIk T JIk im1

In order to estimate 7,1 < i < 13, we will need the following two inequalities
1
16, w* 3 < ;/ |we (2)]|3dt, Yw € CH0,T; H(Q)), 4.17)
Ik
1
-

ot — 2 [ wa? < T/ lwe(®)|2dt, Yw e CL0,T: HY(Q)),  (4.18)
Ik

[ wto
Ik
3
[z ——/ w(t)dt||§§%/ [we () |2dt, Yw € C*(0,T; L*()). (4.19)
Ik Ik
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With the help of Lemmas 3.4-3.6 , Yong’s inequality and (4.17)-(4.19), we have

—k _ CE h4
i = rea(dr(mBE — B).8) < dorea (1615 + 16513) + S [ 1B,

1 — 1
To=—71 <Pth - — Hdt, curl§k> = -7 <r0t(Hk - = Hdt),fk)
- T

Ik Ik

< ros((IEX |2 + 1€b / ot Hu () 2dt,

1 o 1 _ _ _ =k _
75,:_T<—/ Jdt—J’Z,fSﬁ) :—T<—/ Jd—Jk—i—Jk—?Tth‘i‘fhafZ)
T JIk T JIk

=k _p,
< @B+ IR + 1S IB) + 1 [ Jutoldi-+ Oriag

1 =k k2 k—12 Ch4
Ta=-T<— . Hdt,n x &, >< d10([I€ 1o + 116, 110) + 55—~ IIHHg,

Ts = 7o (6, (P, H* — HY),8,) = 0,
1 - B _E L L 0
To = T<Curl(7ThEk 7 / Edt)ﬁ) B T(C“”(”hEk ~E'4E - _/ Edtw:)
T JIk T JIk

_ o 1 _
= T(PhCUTlEk - curlEk, 912) + T(CUTlEk - /Ik Edt), 92)

< rou (0513 + 105713 + / leurlEe (£) 3,
1 —k —k 1
7772—7_ — Kdt—Kh,Qh = —T7| — Kdt— +K —PhK +0h’0h
T JIk Tk
—T<eh,eh>+fau(\|9h||o+||e’f ')+ / K1) Bt
.
T = o 5r (a3, sh><7513(ushuo+us o [ 1oz
T, = 1 =k T, 1 =
To = — (hJ ——/ Jdt,§h>:T—< P A Ty ——/ Jdt,gh)
Eow T k Eowpe Ik
< — Ju(t)||gdt h|J
< o VIEKIE + 1657115) + o [4514 130t + Cnt 3.

1 =k 3k 1 &
7-10:7_ - Edt—Eh,fh =7 — Edt — E +E _7ThE +§h7§h
T JIk T JIk

—k =k ~ ~ 1
(€8 + o (113 + 165 R) + = ([ IBuColRar + CrtmR)
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=k
Ti = ———(6,(P,HF — HY),0,) = 0,

w2,
I 1 =k
Tio = — <K - (— Kdt,0h>
How T JIk
< F o6 (10515 + 1057 1113) / 1K (1)]|Gdt
= Howpm 6 h1l0 O tt 0

1 . =k 1 . . i =k
Tis :T<— Hdt—HZ,eh) :T<— Hdt—H’“+H’“—PhH’“+ei,eh>
Ik Ik
(@8 80) + 70 (10815 + 108 1) + 15— [ IEta(ola

Substituting the estimates of 7;,1 < i < 13, and sumrr}ing up the results from k£ = 1
to n, and using the facts N7 < T, and &) = &) = 0,609 = 09 = 0, we have

€0 HO || ok O, 1 =
5“5}7“3 + 7“911“3 + —2‘\5;3”(2) + WWZH%

2€0wpe pm
n—1
< Cr 3 (IR I3 + 10K N3 + IRIZ + 16713) + C(r* + hY), (4.20)
k=1

which, along with the discrete Gronwall inequality, the triangle inequality, the estimates
Lemma 3.5, completes the proof. d

5. Numerical experiments

5.1. 2D TE model

In this section, we will give some examples to verify our theoretical analysis. To
check the convergence rate, we construct the following exact solutions for the 2-D
transverse electrical (TE) model, that means E = (E,, E,,0),H = (0,0, H.),J = (J, Jy,
0),K = (0,0,K.). Assume that I'. = I';;, = 1,wpe = wWpm = we = 1 on the domain
Q = [0,1)%. Now let

E = (E,, E,) = (sinmy,sin7x)e 1<,
H, = %(cos mx — cosy)e Lt (wit —T,).
The corresponding electric and magnetic currents are
J = (J, J,) = (sinmy, sin ma)w?te <!

1 1
K, = ;(cos mx — cosTy)e L elw? (2 wit? — Fet).
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The corresponding source term f = 0 and

1 1
g= ;(cos TIL — COS Wy)eret( — MWt 4+ T2 +w? + ﬂz—w§t2> .

Define
errE = 12}%)(]\7 |IE" — E}|o, errCurlE = 12}%)(]\7 ||curlE"™ — curl, E} o,
errH = max [|[H" — H}|o, errdJ = lI§Ha§XN||Jn —J3lo,

1<n<N
errK = max [[K" — K}|o.
1<n<N

Results in Tables 2-6 are obtained on the uniform rectangular mesh after 1 time step
with 7 = 10~8. From the Tables 2-6, we can see that the numerical results are coincide

Table 2: Error Results of E.

N x N errE order
4 x4 0.016501553954799 -
8 x 8 0.004080285965617 2.01585971806161

16 x 16 0.001017010619176 2.00433552333004
32 x 32 0.000254057311403 2.00110885473070
64 x 64 0.000063502054700 2.00027880519698
128 x 128 0.000015874745592 2.00006980160546
256 x 256 0.000003968638362 2.00001746213015

Table 3: Error Results of curlE.

N x N errCurlE order
4 x4 0.00718076678516 -
8 x 8 0.00180709923725 1.99026312733970

16 x 16 0.00045252194078 1.99741632378998
32 x 32 0.00011317722648 1.99920411503889
64 x 64 0.00002829722867 1.99965103080372
128 x 128 0.00000707448981 1.99976275748336
256 x 256 0.00000176863387 1.99979068818369

Table 4: Error Results of H.

N x N errH order
4 x4 0.007253299782990 -
8§ x 8 0.001825352764898 1.99046217355706

16 x 16 0.000457092869478 1.99761608539852
32 x 32 0.000114320430791 1.99940405544443
64 x 64 0.000028583059258 1.99985101590531
128 x 128 0.000007145949300 1.99996275375874
256 x 256  0.000001786498857 1.99999068725242

Downloaded from https://www.cambridge.org/core. South University of Science and Technology of China, on 15 Aug 2017 at 09:21:45, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.4208/nmtma.2017.m1426


https://www.cambridge.org/core/terms
https://doi.org/10.4208/nmtma.2017.m1426
https://www.cambridge.org/core

162 C.-H. Yao and L.-X. Wang

Table 5: Error Results of J.

N x N errJ order
4 x4 0.163650926529572e-9 -
8 x 8 0.040759745626441e-9 2.00540481733043

16 x 16 0.010169119751205e-9 2.00295024442725
32 x 32 0.002540620600819e-9  2.00094194930721
64 x 64 0.000635046864314e-9 2.00024598216059
128 x 128 0.000158758891189%¢-9 2.00002567048550
256 x 256 0.000039691821638e-9 1.99992371055101

Table 6: Error Results of K.

N x N errK order
4 x4 0.725329996432064e-10 -
8 x 8 0.182535281052979e-10 1.99046217355830

16 x 16 0.04570928809034%9¢-10 1.99761608540270
32 x 32 0.011432043364721e-10 1.99940405546137
64 x 64 0.002858305997026e-10 1.99985101599950
128 x 128 0.000714594947626e-10 1.99996275412408
256 x 256  0.00017864988995%e-10 1.99999068844379

with our theoretical analysis. Compared our nonconforming mixed finite element with
Raviart-Thomas- Nédélec finite element spaces Q12 X Q21 — (11, we can see that the
computational cost of our element is 40 percent less than that.

5.2. 2D TM model

We construct the following exact solutions for the 2-D transverse magnetic (TM)
model, that means E = (0,0,E.),H = (H,, H,,0),J = (0,0,J,),K = (K, K,,0).
Assume that Te = 'y, = 7, wpe = Wy = we = 7 on the domain O = [0, 1]2.

H = (H,, H,) = (sin7x cos my, — cos mx sinmy)e ™,

E, = sinmasin mye ™.

The corresponding electric and magnetic currents are

J, = m’tsinrxsinTye ™
K = (K., K,) = n°t(sin 7z cos my, — cos mxsin Ty )e” ™.

The corresponding source term

f = (=37 + °t) sin rx sin Tye ™

g = (gu, gy) = Tt(sin 7 cos Ty, — cos mx sin wy)e .

The Tables 8-9 list the convergence of E,H, J,K after 1 time step with 7 = 1075,
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Table 7: Error Results of £ and H in TM case.

NxN errE order errH order
4 x4 0.0304 - 0.0420 -

8% 8 0.0076 2.0000 0.0107 1.9728
16 x 16 0.0019 2.0000 0.0027 1.9866
32 x32 4.7517e-004 1.9995 6.7174e-004 2.0070

Table 8: Error Results of J and K in TM case.

N xN errd order errK order
4 x4 2.9688e-009 - 4.1418e-009 -

8% 8 7.4925e-010 1.9864 1.0547e-009 1.9734
16 x 16 1.8755e-010 1.9982 2.6489e-010 1.9934
32 x 32 4.6896e-011 1.9997 6.6298e-011 1.9984

5.3. Wave propagation in a metamaterials lab

Now we want to repeat the experiment introduced in [10,11]. In this example, a
metamaterials lab is chosen to be the triangular with three vertex [0.024, 0.002]m, [0.039,
0.062]m, [0.054,0.062]m ,which is located inside a vacuum with dimension [0, 0.07]m x
[0,0.064]m. The vacuum is surrounded by a PML with thickness dd = 12h, where h de-
notes the mesh size.The 2-D transverse magnetic PML model can be obtained from [18]

Ho% Z—aa—f—fﬁ + po(oz — oy) Hi, (5.1)
0% - g—f — Ky — pio(0y — 0 Ho, (5.2)
B0 O -
% = €90,0,E, 5.4)
% = —0. K1 + po(oy —oy)o.Hi, (5.5)
% = 0K — (04 — )0, Ho. (5.6)

The incident source wave is imposed as F field and is excited at x = 0.004m and
y € [0.025m,0.035m]. The source wave varies in space as exp(—(z —0.03)?/(50h)?) and
in time as
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Ez at time step = 2200

Ez at time step = 800

00t D02 003 004 005 006 007 0 o0 002 003 004 005 006 007

Ez attime step = 4600

Ez attime step = 3200

0o 002 003 004 005 006 007

001 002 003 004 005 006 007 0 00 002 003 004 005 006 007

Figure 1: The re-focusing property of metamaterials for £, at 800 1200 2200 3200 4600 time steps.

(0, for t <0,
g1(t) sin(wot), for 0 <t <mT),
f(t) =< sin(wot), for mT, <t < (m + k)T,
g2(t) sin(wot), for (m+ k)T, <t < (2m+ k)T),
0, for ¢t > (2m + k)T,

\

where T), = 1/ fo,m = 2,k = 100 and
g1(t) = 102} — 1527 + 623, 21 = t/mT),
g2(t) =1 — (1023 — 1525 + 623), x2 = (t — (m + k)T,)/mT,.

The damping function o, and o, are choose

Tz (Z20)4 i > 0.07,
02(2,y) = 4 Tmaa(ZD4, if 2 < 0.0,
0, elsewhere,
where 0,4, = — log(err)x5%0.07xc, /(2dd) with err = 1077. Function o, has the same

for but varies with respect to the y variable. We can find the re-focusing phenomena.
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