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Abstract. We generalize the accelerated Hermitian and skew-Hermitian splitting

(AHSS) iteration methods for large sparse saddle-point problems. These methods
involve four iteration parameters whose special choices can recover the precondi-

tioned HSS and accelerated HSS iteration methods. Also a new efficient case is in-

troduced and we theoretically prove that this new method converges to the unique
solution of the saddle-point problem. Numerical experiments are used to further

examine the effectiveness and robustness of iterations.
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1. Introduction

We consider the iterative solution of large sparse saddle-point problems of the form

Ax =

[

B E

−E∗ 0

] [

y

z

]

=

[

f

g

]

= b, (1.1)

where B ∈ C
p×p is Hermitian positive definite, 0 ∈ C

q×q is zero, E ∈ C
p×q has full

column rank, p ≥ q, f ∈ C
p and g ∈ C

q . These assumptions guarantee the existence

and uniqueness of the solution of the system of linear equations (1.1). Therefore,

A ∈ C
n×n, with n = p + q, is a nonsingular, non-Hermitian, and positive semidefi-

nite matrix. Linear systems of the form (1.1) arise in a variety of scientific and en-

gineering applications, such as computational fluid dynamics, mixed finite element

approximations of elliptic partial differential equations, constrained optimizations and

constrained least-squares problems. For more detailed descriptions, see [1,2,7,8] and

the references therein. Recent years, there are many effective iterative methods have
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been proposed by researchers, including splitting methods [2–4, 6, 7, 17–19], Uzawa-

type schemes [9, 10, 13, 14, 20, 22, 24, 30, 31], and the preconditioned iterative meth-

ods [1, 7, 8, 11, 12, 21, 23, 25, 28]. Based on the Hermitian/skew-Hermitian (HS) split-

ting [15,17,29]

A = H + S,

where

H =
1

2
(A+A∗), S =

1

2
(A−A∗),

Bai et al. [5] proposed the Hermitian/skew-Hermitian splitting (HSS) iteration method.

Benzi and Golub [11] discussed the convergence and the preconditioning properties of

the Hermitian and skew-Hermitian splitting iteration method when it is used to solve

the saddle-point problem (1.1) . Bai et al. [7] transformed the saddle-point problem

(1.1) into an equivalent one, then applied the HSS method directly to the precondi-

tioned block linear system, and established a class of preconditioned Hermitian/skew-

Hermitian splitting (PHSS) iteration methods for the non-Hermitian positive semidefi-

nite system of linear equations (1.1). In [2], Bai and Golub presented a class of accel-

erated Hermitian and skew-Hermitian splitting iteration methods (AHSS) for solving

the large sparse saddle-point problem (1.1). These methods are two-parameter gener-

alizations of the PHSS iteration methods studied in [7], and they can recover the PHSS

methods as well as yield new ones by suitable choices of the two arbitrary parameters.

In this paper we generalize accelerated HSS iteration methods for solving the saddle-

point problem (1.1), and introduce an efficient case that is different from the PHSS and

AHSS methods.

The paper is organized as follows. In Section 2, we review the PHSS and AHSS

iteration methods and present generalized accelerated HSS iteration methods (GAHSS)

for solving the saddle-point problem (1.1). In Section 3, we analyze the convergence

properties of the new iteration method. In Section 4, numerical experiments are given

to demonstrate the feasibility and effectiveness of the new iteration method. Finally, in

Section 5, we draw some conclusions.

2. The GAHSS iteration

In this section, first we review the PHSS and AHSS iteration methods, see [2,7] for

more details, then present generalized accelerated HSS iteration methods (GAHSS) for

solving the saddle-point problem (1.1). Consider matrices

P =

[

B 0
0 C

]

∈ C
n×n, Ē = B− 1

2EC− 1

2 ∈ C
p×q, (2.1)

where C ∈ C
q×q is a Hermitian positive definite submatrix, and define

Ā = P− 1

2AP− 1

2 =

[

Ip Ē

−Ē∗ 0

]

,
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[

ȳ

z̄

]

= P
1

2

[

y

z

]

=

[

B
1

2 y

C
1

2 z

]

,

b̄ =

[

f̄

ḡ

]

= P− 1

2 b =

[

B− 1

2 f

C− 1

2 g

]

.

Then the saddle-point problem (1.1) can be transformed into the following equivalent

one:

Ā

[

ȳ

z̄

]

= b̄. (2.2)

As a matter of fact, (2.2) is a preconditioned form of (1.1), with the preconditioning

matrix P in (2.1). Also the matrix C ∈ C
q×q is a free-of-choice, and the best choice is

discussed in [7]. The Hermitian and skew-Hermitian parts of the matrix Ā ∈ C
n×n are,

respectively

H̄ =
1

2
(Ā+ Ā∗) =

[

Ip
0

]

, S̄ =
1

2
(Ā− Ā∗) =

[

0 Ē

−Ē∗ 0

]

.

By applying the HSS iteration technique to (2.2), we obtain the iteration scheme

[

αIp Ē

−Ē∗ αIq

] [

ȳ(k+1)

z̄(k+1)

]

=

[

α(α−1)
α+1 Ip −α−1

α+1Ē

Ē∗ αIq

]

[

ȳ(k)

z̄(k)

]

+

[

2α
α+1 f̄

2ḡ

]

.

In the original variable we have

[

αB E

−E∗ αC

] [

y(k+1)

z(k+1)

]

=

[

α(α−1)
α+1 B −α−1

α+1E

E∗ αC

]

[

y(k)

z(k)

]

+

[

2α
α+1f

2g

]

. (2.3)

The PHSS iteration method [3] is described in the following.

The PHSS iteration method: Given an initial guess x(0) = (y(0)
T

, z(0)
T

)T ∈ C
n. For

k = 0, 1, . . . until {x(k)} = {(y(k)T , z(k)T )T } ∈ C
n converges, compute the next iterate

x(k+1) = (y(k+1)T , z(k+1)T )T by solving the 2-by-2 block linear system (2.3), where α is

a given positive constant.

Also the PHSS iteration method can be rewritten as
[

y(k+1)

z(k+1)

]

= L(α)
[

y(k)

z(k)

]

+N (α)

[

f

g

]

, (2.4)

where

L(α) =
[

αB E

−E∗ αC

]−1
[

α(α−1)
α+1 B −α−1

α+1E

E∗ αC

]

, (2.5a)

N (α) =

[

αB E

−E∗ αC

]−1 [ 2α
α+1Ip

2Iq

]

. (2.5b)
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Here, L(α) is the iteration matrix of the PHSS iteration. In fact, (2.4) may also result

from the splitting

A = M(α)−N(α) (2.6)

of the coefficient matrix A, with

M(α) =

[

α+1
2 B α+1

2α E

−1
2E

∗ α
2C

]

, N(α) =

[

α−1
2 B −α−1

2α E
1
2E

∗ α
2C

]

.

In actual computations, at each iterate of the PHSS iteration we need to solve a linear

system with the coefficient matrix M(α). As this matrix is positive definite, one may

solve the aforementioned linear system inexactly by another iteration procedure, e.g.,

the HSS iteration.

For the AHSS iteration method, Bai and Golub considered in [2] the following HSS

iteration
{

(Λ + H̄)x̄(k+
1

2
) = (Λ− S̄)x̄(k) + b̄,

(Λ + S̄)x̄(k+1) = (Λ− H̄)x̄(k+
1

2
) + b̄,

(2.7)

where

Λ =

[

αIp 0
0 βIq

]

, with α and β positive constants.

By making use of the definitions of H̄ and S̄, after straightforward computations, we

can rewrite (2.7) in the original variable as

[

αB E

−E∗ βC

] [

y(k+1)

z(k+1)

]

=

[

α(α−1)
α+1 B −α−1

α+1E

E∗ βC

]

[

y(k)

z(k)

]

+

[

2α
α+1f

2g

]

, (2.8)

which results in the following AHSS iteration method for solving the saddle-point prob-

lem (1.1).

The AHSS iteration method: Given an initial guess x(0) = (y(0)
T

, z(0)
T

)T ∈ C
n. For

k = 0, 1, . . . until {x(k)} = {(y(k)T , z(k)T )T } ∈ Cn converges, compute the next iterate

x(k+1) = (y(k+1)T , z(k+1)T )T by solving the 2-by-2 block linear system (2.8), where α

and β are given positive constants.

Note that when α = β > 0, the above AHSS iteration method naturally reduces

to the PHSS iteration method in [7]. Now we present the generalized accelerated

Hermitian and skew-Hermitian splitting (GAHSS) iteration methods.

Consider the following HSS iteration:

{

(Λ1 + H̄)x̄(k+
1

2
) = (Λ1 − S̄)x̄(k) + b̄,

(Λ2 + S̄)x̄(k+1) = (Λ2 − H̄)x̄(k+
1

2
) + b̄,

(2.9)

where

Λ1 =

[

αIp 0
0 βIq

]

, with α and β positive constants
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and

Λ2 =

[

γIp 0
0 δIq

]

, with γ and δ positive constants.

We can see when α = β = γ = δ the above GAHSS iteration method naturally reduces

to the PHSS iteration method and when α = γ and β = δ it reduces to the AHSS

iteration method. Similar AHSS iteration method, after straightforward computations,

we can rewrite (2.9) in the original variable as

[

γB E

−E∗ δC

] [

y(k+1)

z(k+1)

]

=

[

α(γ−1)
α+1 B − γ−1

α+1E
δ
β
E∗ δC

]

[

y(k)

z(k)

]

+

[

( γ−1
α+1 + 1)f

( δ
β
+ 1)g

]

. (2.10)

Therefore, we obtain the following GAHSS iteration method for solving the saddle-

point problem (1.1).

The GAHSS iteration method: Given an initial guess x(0) = (y(0)
T

, z(0)
T

)T ∈ C
n. For

k = 0, 1, . . . until {x(k)} = {(y(k)T , z(k)T )T } ∈ C
n converges, compute the next iterate

x(k+1) = (y(k+1)T , z(k+1)T )T by solving the 2-by-2 block linear system (2.10), where

α, β, γ and δ are given positive constants.

Unfortunately, the above GAHSS method does not converge to the exact solution

of the block system of linear equations (1.1) for any α, β, γ and δ. In this paper, we

consider an efficient case that is different from the PHSS and AHSS methods. We

suppose α = β = γ and δ = rα with r is a small positive constant, and show this

iteration by PHSS(r).

Evidently, the PHSS(r) iteration method can be equivalently rewritten as

[

y(k+1)

z(k+1)

]

= L(α)
[

y(k)

z(k)

]

+N (α)

[

f

g

]

, (2.11)

where

L(α) =
[

αB E

−E∗ rαC

]−1
[

α(α−1)
α+1 B −α−1

α+1E

rE∗ rαC

]

(2.12a)

N (α) =

[

αB E

−E∗ rαC

]−1 [ 2α
α+1Ip

(r + 1)Iq

]

. (2.12b)

In fact, (2.11) may also result from the splitting

A′ =

[

B E

−1+r
2 E∗ 0

]

= M(α) −N(α), (2.13)

of the matrix A′, with

M(α) =

[

α+1
2 B α+1

2α E

−1
2E

∗ rα
2 C

]

, N(α) =

[

α−1
2 B −α−1

2α E
r
2E

∗ rα
2 C

]

.
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In actual computations, at each iterate of the PHSS(r) iteration we need to solve a

linear system with the coefficient matrix

M ′(α) =

[

αB E

−E∗ rαC

]

, or equivalently, M(α). (2.14)

Remark: If we put b′ =

[

f
1+r
2 g

]

, then the original system Ax = b is equivalent to the

system A′x = b′, so we may consider M(α) as a preconditioner to the system Ax = b.

3. Convergence analysis

In this section, we study the convergence properties of the new iteration method.

By straightforward computations, we can obtain an explicit expression of the iteration

matrix L(α) in (2.12a).

Lemma 3.1. Consider the system of linear equations (1.1). Let B ∈ C
p×p be Hermitian

positive definite, E ∈ C
p×q be of full column rank, and α > 0 a given constant. Assume

that r is a small positive constant and C ∈ C
q×q is a Hermitian positive definite matrix.

Then we partition L(α) in (2.12a) as

L(α) =
[

L11(α) L12(α)
L21(α) L22(α)

]

,

where


















L11(α) =
α−1
α+1Ip − ( α−1

α(α+1) +
r
α
)B−1ES(α)−1E∗,

L12(α) = −( r(α−1)
α+1 + r)B−1ES(α)−1C,

L21(α) = (α−1
α+1 + r)S(α)−1E∗,

L22(α) = −α−1
α+1Iq + ( rα(α−1)

α+1 + rα)S(α)−1C,

and

S(α) = rαC +
1

α
E∗B−1E

is the Schur complement of the matrix M ′(α) in (2.14).

Proof. Let

M(α) = P− 1

2M(α)P− 1

2 =

[

α+1
2 Ip

α+1
2α Ē

−1
2Ē

∗ rα
2 Iq

]

,

N(α) = P− 1

2N(α)P− 1

2 =

[

α−1
2 Ip −α−1

2α Ē
r
2Ē

∗ rα
2 Iq

]

,

where the matrices P and Ē are defined in (2.1). Then

M(α)−1 =

[ 2
α+1 (Ip − 1

α
ĒS̄(α)−1Ē∗) −2

α
ĒS̄(α)−1)

2
α+1 S̄(α)

−1Ē∗ 2S̄(α)−1

]

,

L(α) =
[

L11(α) L12(α)

L21(α) L22(α)

]

= M(α)−1N(α),
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with


















L11(α) =
α−1
α+1Ip − ( α−1

α(α+1) +
r
α
)ĒS̄(α)−1Ē∗,

L12(α) = −( r(α−1)
α+1 + r)ĒS̄(α)−1,

L21(α) = (α−1
α+1 + r)S̄(α)−1Ē∗,

L22(α) = −α−1
α+1Iq + ( rα(α−1)

α+1 + rα)S̄(α)−1,

where

S̄(α) = rαIq +
1

α
Ē∗Ē (3.1)

is the Schur complement of the matrix

M ′(α) =

[

αIp Ē

−Ē∗ rαIq

]

.

Then we have

L(α) = M(α)−1N(α) = P− 1

2M(α)−1N(α)P
1

2 = P− 1

2L(α)P 1

2 ; (3.2)

the result follows immediately. �

Based on Lemma 1.1, we can further obtain the eigenvalues of the iteration matrix

L(α) of the PHSS(r) method.

Lemma 3.2. Let the conditions in Lemma 3.1 be satisfied. If σ̄k (k = 1, 2, . . . , q) are

the positive singular values of the matrix Ē ∈ C
p×q in (2.1) then the eigenvalues of the

iteration matrix L(α) of the PHSS(r) iteration method are α−1
α+1 with multiplicity p − q,

and
−b±

√
∆

2(α + 1)(rα2 + σ̄2
k)
,

where

b = −2rα3 +
(

r(α+ 1) + α− 1
)

σ̄2
k,

∆ = b2 − 4(α2 − 1)
(

r2α4 + (r + r2)α2σ̄2
k + rσ̄4

k

)

.

Proof. From (3.2) we know that L(α) is similar to L(α). Therefore, we only need

to compute the eigenvalues of the matrix L(α). Let Ē = U
∗
Σ1V be the singular value

decomposition [16] of the matrix Ē ∈ C
p×q, where U ∈ C

p×p and V ∈ C
q×q are unitary

matrices, and

Σ1 =

[

Σ
0

]

, Σ = diag(σ1, σ2, . . . , σq) ∈ C
q×q.

Then after a few computation, we have

S(α) = V
∗
(rαIq +

1

α
Σ
2
)V ,
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and therefore,

L11(α) = U
∗

[

α−1
α+1Iq − ( α−1

α(α+1) +
r
α
)(rαIq +

1
α
Σ
2
)−1Σ

2
0

0 α−1
α+1Ip−q

]

U,

L12(α) = U
∗

[

−( r(α−1)
α+1 + r)Σ(rαIq +

1
α
Σ
2
)−1

0

]

V ,

L21(α) = V
∗
[

−(α−1
α+1 + r)Σ(rαIq +

1
α
Σ
2
)−1, 0

]

U,

L22(α) = V
∗
(

− α− 1

α+ 1
Iq +

(rα(α− 1)

α+ 1
+ rα

)

(rαIq +
1

α
Σ
2
)−1

)

V .

Define

Q =

[

U 0

0 V

]

∈ C
n×n, Jq =

(

rαIq +
1

α
Σ
2
)−1

.

Then Q is a unitary matrix and we have

QL(α)Q∗

=









α−1
α+1Iq − ( α−1

α(α+1) +
r

α
)JqΣ

2
0 −( r(α−1)

α+1 + r)ΣJq
0 α−1

α+1Ip−q 0

(α−1
α+1 + r)ΣJq 0 −α−1

α+1Iq +
(

rα(α−1)
α+1 + rα

)

Jq









.

Therefore, the eigenvalues of the matrix L(α) are just α−1
α+1 with multiplicity p− q, and

those of the matrix
[

α−1
α+1Iq − ( α−1

α(α+1) +
r
α
)JqΣ

2 −( r(α−1)
α+1 + r)ΣJq

(α−1
α+1 + r)ΣJq −α−1

α+1Iq +
(rα(α−1)

α+1 + rα
)

Jq

]

which are the same as the matrices 1
(α+1)(rα2+σ2

k
)
Lk(α), k = 1, . . . , q, where

Lk(α) =

[

rα2(α− 1)− r(α+ 1)σ2
k −2rα2σk

(

(1 + r)α2 + (r − 1)α
)

σk rα2(α+ 1)− (α− 1)σ2
k

]

.

The two eigenvalues of the matrix Lk(α) are the two roots of the quadratic equations

λ2 +
(

− 2rα3 +
(

r(α+ 1) + α− 1
)

σ2
k

)

λ+ (α2 − 1)
(

r2α4 + (r + r2)α2σ2
k + rσ4

k

)

= 0,

or in other words,

λ =
−b±

√
∆

2
.

Since the eigenvalues of the matrix L(α) are α−1
α+1 with multiplicity p− q, and

1

(α+ 1)(rα2 + σ2
k)
λ.
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This completes our proof. �

Remark: The singular values of the matrix Ē ∈ C
p×q are the square roots of the

eigenvalues of either the matrix C−1E∗B−1E, or equivalently, the matrix E∗B−1EC−1.

Theorem 3.1. Consider the system of linear equations (1.1). Let B ∈ C
p×p be Hermitian

positive definite, E ∈ C
p×q be of full column rank, α > 0 a given constant and r > 0 a

very small constant. Assume that C ∈ C
q×q is a Hermitian positive definite matrix and

σ̄k, b and ∆ are the same as Lemma 3.2. Then

ρ(L(α)) < 1, ∀α > 0,

i.e., the PHSS(r) iteration converges to the exact solution of the system of linear equations

(1.1).

Proof. Obviously, we have

|α− 1|
α+ 1

< 1, ∀α > 0.

Because

lim
r→0

∣

∣

∣

∣

−b±
√
∆

2(α + 1)(rα2 + σ̄2
k)

∣

∣

∣

∣

=
|α− 1|
α+ 1

,

by making use of Lemma 3.2 we easily see that ρ(L(α)) < 1 holds for all α > 0. �

Remark: In actual examples, it is sufficient to consider r = 0.1, 0.01 or at most 0.001.

See Section 4, for more details.

The optimal iteration parameter and the corresponding asymptotic convergence

factor of the PHSS and PHSS(r) iteration methods are described in the following theo-

rems.

Theorem 3.2. ([7]). Consider the system of linear equations (1.1). Let B ∈ C
p×p be

Hermitian positive definite, E ∈ C
p×q be of full column rank, and α > 0 a given constant.

Assume that C ∈ C
q×q is a Hermitian positive definite matrix. If σk(k = 1, 2, . . . , q) are

the positive singular values of the matrix B− 1

2EC− 1

2 ∈ C
p×q, and σmin = min{σk} and

σmax = max{σk} , then, for the PHSS iteration method of the system of linear equations

(1.1), the optimal value of the iteration parameter α is given by

α∗ = argmin
α

ρ(L(α)) = √
σminσmax,

and correspondingly,

ρ(L(α∗)) =
σmax − σmin

σmax + σmin
.

For convenience, we use the same notations as in Theorem 3.2.
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Theorem 3.3. Consider the system of linear equations (1.1). Let B ∈ C
p×p be Hermi-

tian positive definite, E ∈ C
p×q be of full column rank, and α > 0 a given constant.

Assume that C ∈ C
q×q is a Hermitian positive definite matrix. If σk(k = 1, 2, . . . , q)

are the positive singular values of the matrix B− 1

2EC− 1

2 ∈ C
p×q, and σmin = min{σk}

and σmax = max{σk} , then, for the PHSS(r) iteration method of the system of linear

equations (1.1), the optimal value of the iteration parameter α is given by

α∗ = argmin
α

ρ(L(α)) = 1,

and correspondingly,

ρ(L(α∗)) = max

{

r|1− σ2
min|

r + σ2
min

,
r|1− σ2

max|
r + σ2

max

}

.

Proof. Based on lemma 3.2, the eigenvalues λi (i = 1, . . . , n) of the iteration matrix

L(α) of the PHSS(r) method are α−1
α+1 with multiplicity p− q, and

−b±
√
∆

2(α + 1)(rα2 + σ2
k)
, (3.3)

where

b = −2rα3 +
(

r(α+ 1) + α− 1
)

σ2
k,

∆ = b2 − 4(α2 − 1)
(

r2α4 + (r + r2)α2σ2
k + rσ4

k

)

.

Since r is a small positive constant, if r → 0 then

∣

∣

∣

∣

−b±
√
∆

2(α+ 1)(rα2 + σ2
k)

∣

∣

∣

∣

→ |α− 1|
α+ 1

.

Therefore, when α → 1 it then follows that
|α−1|
α+1 → 0. Then by substituting α∗ in (3.3),

we obtain
−b±

√
∆

2(α+ 1)(rα2 + σ2
k)

=
r(1− σ2

k)

r + σ2
k

.

Finally, we have

max
σmin≤x≤σmax

r|1− x2|
r + x2

= max

{

r|1− σ2
min|

r + σ2
min

,
r|1− σ2

max|
r + σ2

max

}

,

which can be seen from Fig. 1. �

Remark: Recall that in PHSS(r) iteration method r is a small positive constant and

similar to PHSS iteration method α is a positive constant. In Theorem 3.3, under

taking limit with respect to r and α, we compute the optimal parameter. Therefore, α∗

is actually not the exact optimal one.
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4. Numerical experiments

In this section, we use one example to exhibit the superiority of PHSS(r) method

to PHSS and AHSS when they are used as solvers as well as preconditioners to GM-

RES and GMRES(ℓ) see [26, 27], for the saddle-point problem (1.1), from aspects of

spectral radius ρ(.) of iteration matrix, number of total iteration steps (denoted by IT)

and elapsed CPU time in seconds (denoted by CPU). Here, the integer ℓ in GMRES(ℓ)

denotes that the algorithm is restarted after every ℓ iterations. To this end, we need to

choose the matrix C in both PHSS , AHSS and PHSS(r). There are two natural choices

of the matrix C: the first is E∗B−1E, and the second is E∗B̂−1E, where B̂ is a good ap-

proximation to the matrix block B, see [2, 7] for more details. In actual computations,

we choose the right-hand side vector b so that the exact solution of the saddle-point

problem (1.1) is (1, 1, . . . , 1)T ∈ R
n×n . Besides, all runs are started from an initial

vector x(0) = 0 , terminated if the current iterations satisfy

RES =
‖b−Ax(k)‖2

‖b‖2
≤ 10−8

or if the maximum prescribed number of iterations kmax is exceeded, and performed in

MATLAB with machine precision 10−16.

Example 4.1. (Bai, Golub and Pan [7]) Consider the saddle-point problem (1.1), in

which

B =

[

I ⊗Υ+Υ⊗ I 0
0 I ⊗Υ+Υ⊗ I

]

∈ R
2m2×2m2

, E =

[

I ⊗Ψ
Ψ⊗ I

]

∈ R
2m2×m2

Table 1: Parameter(s) versus spectral radius for Example 4.1.

Method m 8 16 24 32

PHSS α∗ 1.4151 1.8718 2.2447 2.5657

ρ(L(α∗)) 0.4146 0.5510 0.6194 0.6626

AHSS α∗ 1.2278 1.5026 1.7390 1.9482

β∗ 1.6309 2.3317 2.8974 3.3789

ρ(L(α∗, β∗)) 0.3198 0.4481 0.5194 0.5671

PHSS(r1) α∗ 1 1 1 1

ρ(L(α∗, r1)) 0.0856 0.0955 0.0978 0.0987

PHSS(r1) αexp 1.01 1.01 1.01 1.01

ρ(L(αexp, r1)) 0.0835 0.0949 0.0975 0.0986

PHSS(r2) α∗ 1 1 1 1

ρ(L(α∗, r2)) 0.0087 0.0096 0.0098 0.0099

PHSS(r2) αexp 1.001 1.001 1.001 1.001

ρ(L(αexp, r2)) 0.0085 0.0095 0.0098 0.0099
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Figure 1: The graph of y = r|1−x
2|

r+x2
, r = 0.1.
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Figure 2: α versus ρ(L(α)) when µ = 1,m = 16 and r = 0.1.

and

Υ =
µ

h2
.tridiag(−1, 2,−1) ∈ R

m×m, Ψ =
1

h2
.tridiag(−1, 1, 0) ∈ R

m×m,

with ⊗ the Kronecker product symbol, Re= h
2µ , h= 1

m+1 and µ > 0 the viscosity constant.

For this example, we take kmax = 5m , and B̂ = 2µ
h2 I+I⊗Υ the block-diagonal matrix of

B. We remark that the number of variables of the corresponding saddle-point problem

(1.1) is n = p+ q = 3m2.

In Table 1, we list α∗ and (α∗, β∗), as well as the corresponding ρ(L(α∗)), ρ(L(α∗, β∗))
and ρ(L(α∗, r)) for the PHSS, the AHSS and the PHSS(r) iterations, respectively, for

various parameters r(r1 = 0.1, r2 = 0.01) and problem sizes m. We also compute
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Figure 3: α versus ρ(L(α)) when µ = 1,m = 16 and r = 0.01.
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Figure 4: α versus ρ(L(α)) when µ = 1,m = 24 and r = 0.1.

experimental optimal parameter α (denoted by αexp) and ρ(L(αexp, r)) for PHSS(r)

iteration. Figs. 2–5, depict the curves of the spectral radii versus the parameter α of

PHSS and PHSS(r) when m = 16, 24 and µ = 1 with r = 0.1, 0.01. We see that PHSS(r)

possesses faster convergence speed than PHSS.

In Figs. 6–9, we plot the eigenvalue distributions of the original matrix A, the

PHSS(α∗)-preconditioned matrix M(α∗)−1A , the AHSS(α∗, β∗)-preconditioned matrix

M(α∗, β∗)−1A, and the PHSS(r)-preconditioned matrix M(α∗, r1)
−1A respectively, for

Example 4.1, when m = 32 and µ = 1 as well as m = 32 and µ = 1
80 . Clearly, the

matrices A are very ill-conditioned because their spectrums have large ranges along

both the real and the imaginary axis and some of the eigenvalues lye close to the ori-

gin. However, both M(α∗)−1A , M(α∗, β∗)−1A and M(α∗, r)−1A are well-conditioned
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Figure 5: α versus ρ(L(α)) when µ = 1, m = 24 and r = 0.01.
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Figure 6: Spectrum of the original matrix A for Example 4.1: m=32, µ = 1 (left); and m=32, µ = 1

80

(right).

because their spectra have considerably smaller ranges along both the real and the

imaginary axis and are also clustered and far away from the origin. These observa-

tions imply that when PHSS(α∗, r), PHSS(α∗) and AHSS(α∗, β∗)are employed to pre-

conditioned GMRES(ℓ) and GMRES, the numerical behaviors of the resulting methods

can be improved considerably. In addition, the PHSS(α∗, r)-preconditioned will per-

form much better than the AHSS(α∗, β∗)-preconditioned GMRES(ℓ) (or GMRES) and

PHSS(α∗)-preconditioned GMRES(ℓ) (or GMRES). These facts are further confirmed

by the numerical results listed in Tables 2 and 3.
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Figure 7: Spectrum of the preconditioned matrix M(α∗)−1A by PHSS for Example 4.1: m=32, µ = 1
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Figure 8: Spectrum of the preconditioned matrix M(α∗, β∗)−1A by AHSS for Example 4.1: m=32, µ = 1
(left); and m=32, µ = 1

80
(right).

5. Conclusion

For large sparse saddle-point problems, we have presented a class of very effective

splitting iteration schemes, called the PHSS(r) iteration methods. Theoretically, we

have proved the convergence for this method. We have confirmed numerically that

PHSS(r) always performs much better than PHSS and AHSS both as solver and as

a preconditioner. Therefore, the PHSS(r) is a very powerful and attractive iterative

method for solving large sparse saddle-point problems.
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Table 2: IT and CPU for Example 4.1 (µ = 1).

Method m 8 16 24 32 48

PHSS( α∗) IT 21 31 38 45 56

CPU 0.071 0.634 2.309 6.633 45.929

AHSS(α∗, β∗) IT 19 26 32 36 44
CPU 0.062 0.508 2.024 5.400 36.513

PHSS(α∗, r2) IT 4 4 4 4 4

CPU 0.024 0.088 0.283 0.763 4.131
GMRES IT 40 80 120 160 240

CPU — — — — —
RES 3.7×10−04 3.9×10−04 4.4×10−04 5.2×10−03 2.7×10−03

PHSS-GMRES IT 22 31 39 45 55

CPU 0.488 3.533 13.382 43.492 136.743
AHSS-GMRES IT 19 26 32 36 44

CPU 0.483 1.731 5.874 15.266 107.437

PHSS(r2)-GMRES IT 4 4 4 4 3
CPU 0.112 0.274 0.788 2.005 8.317

PHSS-GMRES(10) IT 22 31 39 45 55
CPU 0.514 3.436 19.010 62.987 145.610

AHSS-GMRES(10) IT 19 26 32 36 44

CPU 0.266 1.384 5.517 15.626 107.180
PHSS(r2)-GMRES(10) IT 4 4 4 4 3

CPU 0.112 0.272 0.793 2.002 8.267
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Table 3: IT and CPU for Example 4.1 (µ = 1/80).

Method m 8 16 24 32 48

PHSS( α∗) IT 21 33 40 46 56

CPU 0.069 0.892 3.080 6.958 46.096

AHSS(α∗, β∗) IT 20 27 32 36 44
CPU 0.0751 0.518 1.962 5.621 36.482

PHSS(α∗, r2) IT 4 4 4 4 4
CPU 0.027 0.097 0.296 0.906 4.144

GMRES IT 40 80 120 160 240

CPU — — — — —
RES 1.9×10−02 1.6×10−02 2.2×10−02 5.6×10−02 3.2×10−02

PHSS-GMRES IT 23 33 40 46 56

CPU 0.296 1.747 15.230 19.690 136.643
AHSS-GMRES IT 20 27 32 36 44

CPU 0.272 1.452 5.547 15.473 107.388
PHSS(r2)-GMRES IT 4 4 4 4 4

CPU 0.113 0.276 0.796 2.020 10.867
PHSS-GMRES(10) IT 23 33 40 46 56

CPU 0.360 1.860 7.508 19.579 135.810

AHSS-GMRES(10) IT 20 27 32 36 44

CPU 0.277 1.403 5.523 15.294 107.267
PHSS(r2)-GMRES(10) IT 4 4 4 4 4

CPU 0.111 0.273 0.792 1.996 10.640
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