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1 Introduction

In this work, we propose to study the existence of µ-pseudo almost periodic solutions

under the measure theory to the class of abstract nonautonomous differential equations

d

dt

[
u(t)+ f (t,B(t)u(t))

]
=A(t)u(t)+g(t,C(t)u(t)), t∈R, (1.1)

where A(t) for t∈R is a family of closed linear operators on D(A(t)) satisfying the well-

known Acquistapace-Terreni conditions, B(t), C(t) (t ∈ R) are families of (possibly un-

bounded) linear operators, and f :R×X 7→Xt
β, g:R×X 7→X are µ-pseudo almost periodic
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in t∈R uniformly in the second variable. Recall that the concept of µ-pseudo almost pe-

riodicity introduced by [5] is a natural generalization of the classical concept of weighted

pseudo almost periodicity in the sense of Diagana [12, 13]. In recent paper [11], results

on the existence and uniqueness of weighted pseudo almost periodic solutions for equa-

tion (1.1) are developed. Classical definition and properties of µ-pseudo almost periodic

function solutions introduced in [5] are used.

The organization of this works is as follows. In section 2, we introduce the basic

notations and recall the definitions and lemmas of µ-pseudo almost periodic functions

introduced in [5], and we introduce the basic notations of evolution family and exponen-

tial dichotomy. Some preliminary results on intermediate spaces are also stated there.

In Section 3, we study the existence and uniqueness of µ-pseudo almost periodic mild

solution of (1.1).

2 Preliminaries

2.1 µ-pseudo almost periodic functions

Let (X,||.||), (Y,||.||) be two Banach spaces, and BC(R,X) (respectively, BC(R×Y,X))
be the space of bounded continuous functions f : R−→X (respectively, f : R×Y−→X).

BC(R,X) equipped with the norm || f ||= sup
t∈R

|| f (t)|| is a Banach space. B(X,Y) denotes

the Banach spaces of all bounded linear operator from X into Y equipped with natural

topology. If Y=X, B(X,Y) is simply denoted by B(X).

Definition 2.1. ([6,7]) A continuous function f :R 7→X is said to be almost periodic if for every

ǫ>0 there exists a positive number l such that every interval of length l contains a number τ such

that

‖ f (t+τ)− f (t)‖<ǫ for t∈R.

The set of all almost periodic functions from R to X will be denoted by a continuous function

f : R×Y 7→ X is said to be almost periodic in t uniformly for y ∈ Y, if for every ǫ > 0, and

any compact subset K of Y, there exists a positive number l such that every interval of length l

contains a number τ such that

‖ f (t+τ,y)− f (t,y)‖<ǫ for (t,y)∈R×K.

We denote the set of such functions APU(R×Y;X).

Notice that (AP(R;X),‖.‖∞), is a Banach space with supremum norm given by

‖u‖∞ =sup
t∈R

‖u(t)‖.

Next, we give the new concept of the ergodic functions developed in [5], and generalizing

the ergodicity given before [12, 13].
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We denote by B the Lebesque σ-field of R and by M the set of all positive measures

µ on B satisfying µ(R)=+∞ and µ([a,b])<∞, for all a,b∈R (a≤b).

Definition 2.2. ([1, 5]) Let µ ∈M. A bounded continuous function f : R → X is said to be

µ-ergodic if

lim
r−→+∞

1

µ([−r,r])

∫

[−r,r]
‖ f (s)‖dµ(s)=0.

We denote the space of all such functions by E(R;X,µ).
A continuous function f :R→X is said to be µ-pseudo almost periodic if it is written in the form

f = g+h,

where g ∈ AP(R;X) and h ∈ E(R;X,µ). The collection of such functions will be denoted by

PAP(R;X,µ).

It is well known [5] that (E(R;X,µ),‖.‖∞) is a Banach space. In the sequel as in [5],

we need the following assumptions.

(M1) For all a,b and c∈R, such that 0≤ a<b≤ c, there exist τ0≥0 and α0≥0 such that

|τ |≥τ0=⇒µ((a+τ,b+τ))≥α0([τ,c+τ]).

(M2) For all τ∈R, there exist β>0 and a bounded interval I such that

µ({a+τ : a∈A})≤βµ(A) when A∈B satisfies A∩ I=∅.

It is proved in [5] that whenever µ∈M satisfies the assumption (M1), the decomposition

of a µ-pseudo almost periodic function in the form f = g+h, where g ∈ AP(R;X) and

h∈E(R;X,µ), is unique. Furthermore, the space (PAP(R;X,µ),‖.‖∞), is a Banach space.

Whenever µ∈M satisfies the assumption (M2), PAP(R;X,µ) is translation invariant, that

is f ∈PAP(R;X,µ) implies fτ = f (.+τ)∈PAP(R;X,µ) for all τ∈R.

Definition 2.3. ([5]) Let µ∈M. A continuous function f :R×Y→X is said to be µ-ergodic in

t uniformly with respect to y∈Y if the following conditions are true.

(i) For all y∈Y, f (.,y)∈E(R,X,µ).
(ii) f is uniformly continuous on each compact set K in Y with respect to the second variable y.

The collection of such functions will be denoted by EU(R×Y;X,µ).
A continuous function f :R×Y→X is said to be uniformly µ-pseudo almost periodic if is written

in the form

f = g+h,

where g∈APU(R×Y;X) and h∈EU(R×Y;X,µ). The collection of such functions denoted by

PAPU(R×Y;X,µ).

Theorem 2.1. ([5]) Let µ∈M, F∈PAPU(R×Y;X,µ) and h∈PAP(R;Y,µ). Assume that, for

all bounded subset B of Y, F is bounded on R×B. Then t 7−→F(t,h(t))∈PAP(R;X,µ).
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2.2 Evolution family and exponential dichotomy

Definition 2.4. ([8–10]) A family of bounded linear operators (U(t,s))t≥s, on a Banach space X

is called a strongly continuous evolution family if

(1) U(t,r)U(r,s)=U(t,s) and U(s,s)= I for all t≥ r≥ s and t,r,s∈R,

(2) The map (t,s)→U(t,s)x is continuous for all x∈X, t≥ s and t,s∈R.

(3) U(·,s)∈C1((s,∞),B(X)),
∂U

∂t
(t,s)=A(t)U(t,s) and

∥∥∥A(t)kU(t,s)
∥∥∥≤K(t−s)−k

for 0< t−s≤1, k=0,1.

(4) ∂+s U(t,s)x=−U(t,s)A(s)x for t> s and x∈D(A(s)) with A(s)x∈D(A(s)).
A(t) is as in (1.1).

Definition 2.5. An evolution family (U(t,s))t≥s on a Banach space X is called hyperbolic (or

has exponential dichotomy) if there exist projections P(t),t∈R, uniformly bounded and strongly

continuous in t, and constants M>0, δ>0 such that

(1) U(t,s)P(s)=P(t)U(t,s) for t≥ s and t,s∈R,

(2) The restriction UQ(t,s) : Q(s)X→Q(t)X of U(t,s) is invertible for t≥ s and t,s∈R (and we

set UQ(t,s)=U(s,t)−1).
(3)

‖U(t,s)P(s)‖≤Ne−δ(t−s) (2.1)

‖UQ(s,t)Q(t)‖≤Ne−δ(t−s) (2.2)

for t≥ s and t,s∈R.

Here and below we set Q := I−P.

To introduce the inter and extrapolation spaces for A(t), we need the following as-

sumptions.

(H0) The family of closed linear operators A(t) for t ∈ R on X with domain D(A(t))
(possibly not densely defined) satisfy the so-called Acquistapace-Terreni condition-

s, that is, there exist constants ω∈R, θ∈(π
2 ,π), K,L≥0 and µ,ν∈(0,1] with µ+ν>1

such that

Σθ∪{0}⊂ρ
(

A(t)−ω
)
∋λ,

∥∥∥R(λ,A(t)−ω)
∥∥∥≤ K

1+|λ|
(2.3)

and

∥∥∥
(

A(t)−ω
)

R
(

λ,A(t)−ω
)[

R
(

ω,A(t)
)
−R

(
ω,A(s)

)]∥∥∥≤ L
|t−s|µ

|λ|ν
(2.4)

for t,s∈R, λ∈Σθ :={λ∈C\{0} : |arg λ|≤ θ}.
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Note that in the particular case when A(t) has a constant domain D=D(A(t)), it is well-

known [2] that equation (2.4) can be replaced with the following: There exist constants L

and 0<γ≤1 such that

‖(A(t)−A(s))R(ω,A(r)))‖≤ L|t−s|γ , s,t,r∈R. (2.5)

2.3 Interpolation Spaces

This setting requires some estimates related to U(t,s). For that, we make extensive use of

the real interpolation spaces of order (α,∞) between X and D(A(t)), where α∈(0,1). We

refer the reader to [2–4] for proofs and further information on theses interpolation spaces.

Let A be a sectorial operator on X (assumption (H0) holds when A(t) is replaced with

A) and let α∈ (0,1). Define the new norm on D(A) (the real interpolation space) by

X
A
α ={x∈X, ‖x‖A

α :=sup
r>0

‖rα(A−ω)R(r,A−ω)x‖<∞},

and which consider the continuous interpolations spaces XA
α by the way, is a Banach

space when endowed with the norm ‖·‖A
α . For convenience we further write

X
A
0 :=X, ‖x‖A

0 :=‖x‖, X
A
1 :=D(A)

and ‖x‖A
1 :=‖(ω−A)x‖. Moreover, let X̂A :=D(A) of X. In particular, we will frequently

use the following continuous embedding.

D(A) →֒X
A
β →֒D((ω−A)α) →֒X

A
α →֒ X̂

A ⊂X, (2.6)

for all 0<α<β<1, where the fractional powers are defined in the usual way.

In general, D(A) is not dense in the spaces XA
α and X. However, we have the follow-

ing continuous injection

X
A
β →֒D(A)

‖·‖A
α

(2.7)

for 0<α<β<1.

Given the family of linear operators A(t) for t∈R, satisfying (H1), we set

X
t
α :=X

A(t)
α , X̂

t := X̂
A(t)

for 0 ≤ α ≤ 1 and t ∈ R, with the corresponding norms. Then the embedding in (2.7)

hold with constants independent of t∈R. These interpolation spaces are of class Jα [[4],

Definition 1.1.1] and hence there is a constant c(α) such that

‖y‖t
α ≤ c(α)‖y‖1−α‖A(t)y‖α , y∈D(A(t)). (2.8)

We have the following fundamental estimates for the evolution family U(t,s).
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Proposition 2.1. ([11]) For x∈X, 0≤α≤1 and t> s, the following assertions hold.

(i) There is a constant c(α), such that

‖U(t,s)P(s)x‖t
α ≤ c(α)e−

δ
2 (t−s)(t−s)−α‖x‖. (2.9)

(ii) There is a constant m(α), such that

‖UQ(s,t)Q(t)x‖s
α ≤m(α)e−δ(t−s)‖x‖. (2.10)

3 Main results

To study the existence and uniqueness of µ-pseudo almost periodic solutions of equation

(1.1) we need the following additional assumptions.

(H1) The evolution family (U(t,s))t≥s generated by A(t) has an exponential dichotomy

with constants N>0, δ>0, dichotomy projections P(t), t∈R.

(H2) R(ω,A(·))∈ AP(B(Xα)). Moreover, there exists a function H : [0,∞) 7→ [0,∞) with

H ∈ L1[0,∞) such that for every ε > 0 there exists l(ε) such that every interval of

length l(ε) contains a τ with the property

‖A(t+τ)U(t+τ,s+τ)−A(t)U(t,s)‖B(X,Xα)≤ εH(t−s)

for all t,s∈R with t> s.

(H3) There exists 0≤α<β<1 such that

X
t
α=Xα, X

t
β=Xβ

for all t∈R, with uniform equivalent norm

If 0≤α< β<1, then we let k(α) denote the bound of the embedding Xβ →֒Xα, that

is

‖u‖α ≤ k(α)‖u‖β

for each u∈Xβ

(H4) Let µ∈M and let 0<α<β<1. We suppose f :R×X 7→Xβ belongs to PAP(X,Xβ,µ)
and satisfy

i) For all bounded subset B of X, f is bounded on R×B.

ii) There exists K f >0 such that

‖ f (t,u)− f (t,v)‖β ≤K f ‖u−v‖,

for all u,v∈X and t∈R.
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(H5) Let µ∈M and let 0<α< β<1. We suppose g : R×X 7→X belongs to PAP(X,X,µ)
and satisfy

i) For all bounded subset B of X, g is bounded on R×B.

ii) There exists Kg>0 such that

‖g(t,u)−g(t,v)‖β ≤Kg‖u−v‖,

for all u,v∈X and t∈R.

(H6) We suppose that the linear operators B(t),C(t) : Xα 7→X for all t∈R, are bounded

and set

̟ :=max

(
sup
t∈R

‖B(t)‖B(Xα ,X), sup
t∈R

‖C(t)‖B(Xα ,X)

)
.

Furthermore, t 7→B(t)u and t 7→C(t)u are almost periodic for each u∈Xα.

To study the existence and uniqueness of pseudo almost periodic solutions to equation

(1.1), we first introduce the notion of mild solution.

Definition 3.1. A function u :R 7→Xα is said to be a mild solution to equation (1.1) provided that

the function s→A(s)U(t,s)P(s) f (s,B(s)u(s)) is integrable on (s,t), s→A(s)U(t,s)Q(s) f (s,B(s)u(s))
is integrable on (t,s) and

u(t)=− f (t,B(t)u(t))+U(t,s)
(

u(s)+ f (s,B(s)u(s)))

−
∫ t

s
A(s)U(t,s)P(s) f (s,B(s)u(s))ds+

∫ s

t
A(s)UQ(t,s)Q(s) f (s,B(s)u(s))ds

+
∫ t

s
U(t,s)P(s)g(s,C(s)u(s))ds−

∫ s

t
UQ(t,s)Q(s)g(s,C(s)u(s))ds,

(3.1)

for t≥ s and for all t,s∈R.

In a first step, we proved the following result.

Theorem 3.1. Assume that assumptions (H0)-(H1) hold and let u be a mild solution of (1.1) on

R. Then, for all t∈R

u(t)=− f (t,B(t)u(t))−
∫ t

−∞

A(s)U(t,s)P(s) f (s,B(s)u(s))ds

+
∫

∞

t
A(s)UQ(t,s)Q(s) f (s,B(s)u(s))ds

+
∫ t

−∞

U(t,s)P(s)g(s,C(s)u(s))ds

−
∫

∞

t
UQ(t,s)Q(s)g(s,C(s)u(s))ds.
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Proof. Let u be the mild solution of (1.1) on R. For all t≥ s and all s∈R, we have

u(s)=− f (s,B(s)u(s))−
∫ s

−∞

A(σ)U(s,σ)P(σ) f (σ,B(σ)u(σ))dσ

+
∫

∞

s
A(σ)UQ(s,σ)Q(σ) f (σ,B(σ)u(σ))dσ

+
∫ s

−∞

U(s,σ)P(σ)g(σ,C(σ)u(σ))dσ

−
∫

∞

s
UQ(s,σ)Q(σ)g(σ,C(σ)u(σ))dσ.

Multiply both sides of the equality by U(t,s), we get

U(t,s)u(s)=−U(t,s) f (s,B(s)u(s))

−
∫ s

−∞

A(σ)U(t,σ)P(σ) f (σ,B(σ)u(σ))dσ+
∫

∞

s
A(σ)UQ(t,σ)Q(σ) f (σ,B(σ)u(σ))dσ

+
∫ s

−∞

U(t,σ)P(σ)g(σ,C(σ)u(σ))dσ−
∫

∞

s
UQ(t,σ)Q(σ)g(σ,C(σ)u(σ))dσ

=−U(t,s) f (s,B(s)u(s))

−
∫ t

−∞

A(σ)U(t,σ)P(σ) f (σ,B(σ)u(σ))dσ+
∫ t

s
A(σ)U(t,σ)P(σ) f (σ,B(σ)u(σ))dσ

+
∫

∞

t
A(σ)UQ(t,σ)Q(σ) f (σ,B(σ)u(σ))dσ+

∫ t

s
A(σ)UQ(t,σ)Q(σ) f (σ,B(σ)u(σ))dσ

+
∫ t

−∞

U(t,σ)P(σ)g(σ,C(σ)u(σ))dσ−
∫ t

s
U(t,σ)P(σ)g(σ,C(σ)u(σ))dσ

−
∫

∞

t
UQ(t,σ)Q(σ)g(σ,C(σ)u(σ))dσ−

∫ t

s
UQ(t,σ)Q(σ)g(σ,C(σ)u(σ))dσ

=−U(t,s) f (s,B(s)u(s))+u(t)+ f (t,B(t)u(t))

+
∫ t

s
A(s)U(t,s)P(s) f (s,B(s)u(s))ds−

∫ s

t
A(s)UQ(t,s)Q(s) f (s,B(s)u(s))ds

−
∫ t

s
U(t,s)P(s)g(s,C(s)u(s))ds+

∫ s

t
UQ(t,s)Q(s)g(s,C(s)u(s))ds,

Hence u is a mild solution of equation (1.1).

Throughout the rest of the paper we denote by Γ1,Γ2,Γ3 and Γ4, the nonlinear integral

operators defined by

(Γ1u)(t)=
∫ t

−∞

A(s)U(t,s)P(s) f (s,B(s)u(s))ds,

(Γ2u)(t)=
∫

∞

t
A(s)UQ(t,s)Q(s) f (s,B(s)u(s))ds,
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(Γ3u)(t)=
∫ t

−∞

U(t,s)P(s)g(s,C(s)u(s))ds

and

(Γ4u)(t) :=
∫

∞

t
UQ(t,s)Q(s)g(s,C(s)u(s))ds.

We next ned the following preliminary technical results.

Lemma 3.1. Let µ ∈M satisfying (M1)-(M2) and u ∈ PAP(R,Xα,µ), if the linear operators

C(.) satisfy (H6) then C(.)u(.)∈PAP(R,X,µ).

Proof. Let u∈ PAP(R,Xα,µ) then u= u1+u2 where u1 ∈ AP(R,Xα) and u2 ∈E(R,Xα,µ).
We have, C(t)u(t) =C(t)u1(t)+C(t)u2(t) for all t ∈R. Since u1 ∈ AP(R,Xα), for every

ǫ>0 there exists lǫ such that every interval of length lǫ contains a τ such that
∥∥∥u1(t+τ)−u1(t)

∥∥∥
α
<

ǫ(
supt∈R

‖u1(t)‖α+̟
) , t∈R.

Similarly, since C(t)∈AP(B(Xα,X)), we have
∥∥∥C(t+τ)−C(t)

∥∥∥
B(Xα,X)

<
ǫ(

supt∈R
‖u1(t)‖α+̟

) , t∈R.

Now

‖C(t+τ)u1(t+τ)−C(t)u1(t)‖

≤‖
[

C(t+τ)−C(t)
]
u1(t+τ)‖+‖C(t)

[
u1(t+τ)−u1(t)

]
‖

≤‖C(t+τ)−C(t)‖B(Xα,X)‖u1(t+τ)‖α+̟‖u1(t+τ)−u1(t)‖α

≤ǫ,

and hence t 7→C(t)u1(t) belongs to AP(R,X).
To complete the proof, it suffices to prove that t 7→C(t)u2(t) belongs to E(R,X,µ). Indeed,

we have
1

µ([−r,r])

∫ r

−r

∥∥∥C(t)u2(t)
∥∥∥dµ(t)≤

̟

µ([−r,r])

∫ r

−r
‖u2(t)‖αdµ(t)

and hence

lim
r→∞

1

µ([−r,r])

∫ r

−r

∥∥∥C(t)u2(t)
∥∥∥dµ(t)=0.

Lemma 3.2. ([11]) Assume that assumptions (H0)-(H1)and (H3 hold and let 0≤ θ<α< β<1

with 2α> θ+1. Then, there exist two constants m(α,β),n(α,θ)>0 such that

‖A(s)UQ(t,s)Q(s)x‖α ≤m(α,β)eδ(s−t)‖x‖β for t≤ s, (3.2)

and

‖A(s)U(t,s)P(s)x‖α ≤n(α,θ)(t−s)−αe−
δ
4 (t−s)‖x‖β, for t> s. (3.3)
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Lemma 3.3. Let assumptions (H0)-(H4) and (H6) hold, then the integral operators Γ1 and Γ2

defined above map PAP(Xα,µ) into itself.

Proof. Let u ∈ PAP(Xα,µ). From Lemma 3.1 it follows that the function t 7→ B(t)u(t)
belongs to PAP(X). Using assumption (H4) and Theorem 2.1 it follows that ψ(·) =
f (·,Bu(·)) is in PAP(Xβ,µ) whenever u∈PAP(Xα,µ). In particular,

‖ψ‖∞,β =sup
t∈R

‖ f (t,Bu(t))‖β <∞.

Since ψ(·)= f (·,Bu(·)) is in PAP(Xβ,µ) then ψ=φ1+φ2, where φ1 ∈ AP(R,Xβ) and φ2 ∈
E(R,Xβ,µ), that is, Γ1ψ=Ξ(φ1)+Ξ(φ2) where

Ξφ1(t) :=
∫ t

−∞

A(s)U(t,s)P(s)φ1(s)ds

and

Ξφ2(t) :=
∫ t

−∞

A(s)U(t,s)P(s)φ2(s)ds.

Firstly, we show that Ξφ1∈BC(R,Xβ). Indeed, using estimate (3.3), we obtain

‖Ξφ1(t)‖β ≤
∫ t

−∞

‖A(s)U(t,s)P(s)φ1(s)‖ds

≤n(α,θ)
∫ t

−∞

(t−s)−αe−
δ
4 (t−s)‖φ1‖βds

≤n(α,θ)(
δ

4
)1−α

Γ(1−α)‖φ1‖β

Then Ξφ1 ∈ BC(R,Xβ). Next, we prove that Ξ(φ1)∈ AP(R,Xα). Since φ1 ∈ AP(R,Xβ),
then for every ǫ>0 there exists l(ǫ)>0 such that every interval of length l(ǫ) contains a

τ with the property

‖φ1(t+τ)−φ1(t)‖β <ǫν for each t∈R

where ν=
4α−1δ1−α

n(α,θ)Γ(1−α)
. Hence,

Ξφ1(t+τ)−Ξφ1(t)

=
∫ t+τ

−∞

A(s)U(t+τ,s)P(s)φ1(s)ds−
∫ t

−∞

A(s)U(t,s)P(s)φ1(s)ds

=
∫ t

−∞

A(s+τ)U(t+τ,s+τ)P(s+τ)
(

φ1(s+τ)−φ1(s)
)

ds

+
∫ t

−∞

(
A(s+τ)U(t+τ,s+τ)P(s+τ)−A(s)U(t,s)P(s)

)
φ1(s)ds.
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Using equation (3.3) it follows that

‖
∫ t

−∞

A(s+τ)U(t+τ,s+τ)P(s+τ)
(

φ1(s+τ)−φ1(s)
)

ds‖α ≤ǫ.

Similarly, using assumption (H2), it follows that

‖
∫ t

−∞

(A(s+τ)U(t+τ,s+τ)P(s+τ)

−A(s)U(t,s)P(s))φ1(s)ds‖α ≤ǫN‖H‖L1‖φ1‖∞

where ‖H‖L1 =
∫

∞

0
H(s)ds<∞. Therefore,

‖Ξ(φ1)(t+τ)−Ξ(φ1)(t)‖α ≤
(

1+N‖H‖L1‖φ1‖∞

)
ǫ

for each t∈R, and hence Ξ(φ1)∈AP(R,Xα).
Now, we show that Ξ(φ2)∈BC(R,Xβ). Using estimate (3.3) and replacing Ξ(φ1) by Ξ(φ2)
in the previous case we get the result. To complete the proof, we will prove that Ξ(φ2)∈
E(R,Xβ,µ). Now, let r>0. Again from equation (3.3), we have

1

µ([−r,r])

∫ r

−r
‖(Ξφ2)(t)‖αdµ(t)

≤
1

µ([−r,r])

∫ r

−r

∫ +∞

0
‖A(t−s)U(t,t−s)P(t−s)φ2(t−s)‖αdsdµ(t)

≤
n(α,θ)

µ([−r,r])

∫ r

−r

∫ +∞

0
s−αe−

δ
4 s‖φ2(t−s)‖βdsdµ(t)

≤n(α,θ).
∫ +∞

0
s−αe−

δ
4 s

(
1

µ([−r,r])

∫ r

−r
‖φ2(t−s)‖βdµ(t)

)
ds.

Now

lim
r→∞

1

µ([−r,r])

∫ r

−r
‖φ2(t−s)‖βdµ(t)=0,

Since µ satisfy (M2) then t 7→φ2(t−s)∈E(R,Xβ,µ) for every s∈R. To complete the proof,

we use the well known Lebesgue’s dominated convergence theorem.

The proof for Γ2u(·) is similar to that of Γ1u(·) except that one makes use of equation

(3.2) instead of equation (3.3).

Lemma 3.4. Let µ∈M satisfying (M1) and (M2). Assume further that (H0)-(H3), (H5) and

(H6) hold, then the integral operators Γ3 and Γ4 defined above map PAP(R,Xα,µ) into itself.
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Proof. Let u∈PAP(R,Xα,µ). From Lemma 3.1 we get C(·)u(·)∈PAP(R,X,µ). Let h(t)=
g(t,Cu(t)). Using assumption (H5 and Theorem 2.1 it follows that h∈PAP(R,X,µ). Now

write h = ψ1+ψ2 where ψ1 ∈ AP(R,X) and ψ2 ∈ E(R,X,µ), that is, Γ3h = Ξ(ψ1)+Ξ(ψ2)
where

Ξψ1(t) :=
∫ t

−∞

U(t,s)P(s)ψ1(s)ds

and

Ξψ2(t) :=
∫ t

−∞

U(t,s)P(s)ψ2(s)ds.

Firstly, we show that Ξψ1∈BC(R,Xβ). Indeed, using estimate (2.9), we obtain

‖Ξψ1(t)‖β ≤
∫ t

−∞

‖U(t,s)P(s)ψ1(s)‖ds

≤ c(α)
∫ t

−∞

(t−s)−αe−
δ
2 (t−s)‖ψ1‖βds

≤ c(α)(
δ

2
)1−α

Γ(1−α)‖ψ1‖β.

Then Ξψ1 ∈ BC(R,Xβ). Next, we prove that Ξ(ψ1)∈ AP(R,Xα). Since ψ1 ∈ AP(R,Xβ),
then for every ǫ>0 there exists l(ǫ)>0 such that every interval of length l(ǫ) contains a

τ with the property

‖ψ1(t+τ)−ψ1(t)‖β <ǫη for each t∈R,

where η=
1

2αδ1−αc(α)Γ(1−α)
. Hence,

Ξψ1(t+τ)−Ξψ1(t)

=
∫ t+τ

−∞

U(t+τ,s)P(s)ψ1(s)ds−
∫ t

−∞

U(t,s)P(s)ψ1(s)ds

=
∫ t

−∞

U(t+τ,s+τ)P(s+τ)
(

ψ1(s+τ)−ψ1(s)
)

ds

+
∫ t

−∞

(
U(t+τ,s+τ)P(s+τ)−U(t,s)P(s)

)
ψ1(s)ds.

Using equation (2.9) it follows that

‖
∫ t

−∞

U(t+τ,s+τ)P(s+τ)
(

φ1(s+τ)−φ1(s)
)

ds‖α ≤
ǫ

2
.

Similarly, using assumption (H2). Let ǫ > 0, from [10] we know that r → Γ(t+r,s+r)∈
AP(B(X)) for t,s∈R, where we may take the same almost periods for t,s with ‖t−s‖≤
h>0. Hence, there exists l(ǫ)>0 such that every interval of length l(ǫ) contains a number

τ>0 with the properties that, for t∈R, σ>0 :

‖U(t+τ,s+τ)P(s+τ)−U(t,s)P(s)‖≤
ǫ

2‖ψ1‖β
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and

‖UQ(t+τ,s+τ)P(s+τ)−UQ(t,s)P(s)‖≤
ǫ

2‖ψ1‖β
.

Therefore,

‖Ξ(ψ1)(t+τ)−Ξ(ψ1)(t)‖α ≤ǫ,

for each t∈R, and hence Ξ(ψ1)∈AP(R,Xα). Next, using similar techniques as previously,

we get Ξ(ψ2)∈BC(R,Xβ). In fact, using estimate (2.10) and replacing Ξ(ψ1) by Ξ(ψ2) we

get the result. Now, to complete the proof, we will prove that Ξ(ψ2)∈E(R,Xβ,µ). Let

r>0. Again from equation (2.10), we have

1

µ([−r,r])

∫ r

−r
‖(Ξψ2)(t)‖αdµ(t)

≤
1

µ([−r,r])

∫ r

−r

∫ +∞

0
‖U(t,t−s)P(t−s)ψ2(t−s)‖αdsdµ(t)

≤
c(α)

µ([−r,r])

∫ r

−r

∫ +∞

0
s−αe−

δ
2 s‖ψ2(t−s)‖βdsdµ(t)

≤ c(α).
∫ +∞

0
s−αe−

δ
2 s

(
1

µ([−r,r])

∫ r

−r
‖ψ2(t−s)‖βdµ(t)

)
ds.

Now observe that

lim
r→∞

1

µ([−r,r])

∫ r

−r
‖ψ2(t−s)‖βdµ(t)=0.

Since µ satisfy (M2) then t 7→ψ2(t−s)∈E(R,Xβ,µ) for every s∈R. Finally the proof is

acheived using the as well the Lebesgue’s dominated convergence theorem.

The proof for Γ4u(·) is similar to that of Γ3u(·) except that one makes use of equation

(2.9) instead of equation (2.10).

Now, we are able to state our second main result.

Theorem 3.2. Let µ∈M satisfying (M1) and (M2). Assume further that assumptions (H0)-

(H6) hold and that κ < 1. Then, the equation (1.1) has a unique µ-pseudo almost periodic mild

solution, where

κ=Kg̟
[
δ−1m(α)+c(α)21−αδα−1

Γ(1−α)
]

+K f ̟
[
1+δ−1m(α,β)+41−αδα−1n(α,θ)Γ(1−α)

]
.



14 R. Baazaoui / J. Partial Diff. Eq., 31 (2018), pp. 1-16

Proof. Consider the nonlinear operator M defined on PAP(Xα,µ) by

Mu(t)= − f (t,B(t)u(t))−
∫ t

−∞

A(s)U(t,s)P(s) f (s,B(s)u(s))ds

+
∫

∞

t
A(s)UQ(t,s)Q(s) f (s,B(s)u(s))ds

+
∫ t

−∞

U(t,s)P(s)g(s,C(s)u(s))ds

−
∫

∞

t
UQ(t,s)Q(s)g(s,C(s)u(s))ds

for all t ∈ R. Next, in view of Lemma 3.4 and Lemma 3.3, it follows that M maps

PAP(R,Xα,µ) into itself. To complete the proof one has to show that M is a contractive

on PAP(R,Xα,µ). Let u,v∈PAP(R,Xα,µ). Firstly, we have

‖Γ1(v)(t)−Γ1(u)(t)‖α

≤ n(α,θ)K f

∫ t

−∞

(t−s)−αe−
δ
4 (t−s)‖B(s)v(s)−B(s)u(s)‖ds

≤ n(α,θ)K f ̟
∫ t

−∞

(t−s)−αe−
δ
4 (t−s)‖v(s)−u(s)‖αds

≤ n(α,θ)K f ̟‖v−u‖∞,α

∫ t

−∞

(t−s)−αe−
δ
2 (t−s)ds

= 41−α δα−1n(α,θ)Γ(1−α)K f ̟‖v−u‖∞,α.

Next, we have

‖Γ2(v)(t)−Γ2(u)(t)‖α

≤ m(α,β)
∫

∞

t
‖ f (s,B(s)v(s))− f (s,B(s)u(s))‖β ds

≤ m(α,β)K f ̟
∫ +∞

t
eδ(t−s)‖B(s)v(s)−B(s)u(s)‖ds

≤ m(α,β)K f ̟
∫ +∞

t
eδ(t−s)‖v(s)−u(s)‖αds

≤ m(α,β)K f ̟‖v−u‖∞,α

∫ +∞

t
eδ(t−s)ds

= δ−1m(α,β)K f ̟‖v−u‖∞,α.
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Now, we have

‖Γ3(v)(t)−Γ3(u)(t)‖α ≤
∫ t

−∞

‖U(t,s)P(s)[g(s,C(s)v(s))−g(s,C(s)u(s))]‖αds

≤ Kc(α)
∫ t

−∞

(t−s)−αe−
δ
2 (t−s)‖C(s)v(s)−C(s)u(s)‖ds

≤ ̟Kgc(α)
∫ t

−∞

(t−s)−αe−
δ
2 (t−s)‖v(s)−u(s)‖αds

≤ Kg̟c(α)21−α δα−1
Γ(1−α)‖v−u‖∞,α,

Finally, we have

‖Γ4(v)(t)−Γ4(u)(t)‖α ≤
∫

∞

t
m(α)eδ(t−s)‖g(s,C(s)v(s))−g(s,C(s)u(s))‖ds

≤
∫

∞

t
m(α)Kgeδ(t−s)‖C(s)v(s)−C(s)u(s)‖ds

≤ ̟m(α)Kg

∫
∞

t
eδ(t−s)‖v(s)−u(s)‖αds

≤ Kgm(α)̟‖v−u‖∞,α

∫ +∞

t
eδ(t−s)ds

≤ Kgδ−1̟m(α)‖v−u‖∞,α.

Combining previous approximations it follows that

‖Mv−Mu‖∞,α ≤κ‖v−u‖∞,α.

Then M is a contraction map on PAP(R,Xα,µ). Therefore, M has unique fixed point in

PAP(R,Xα,µ), that is, there exist unique u∈PAP(R,Xα,µ) such that Mu=u. Therefore,

(1.1), has a unique µ-pseudo almost periodic mild solution.
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