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1 Introduction

Let (M,g) be an (n > 3)—dimensional Riemannian manifold. In this paper, we are inter-
ested in studying on (M, g) the asymptotic behaviour of a sequence of solutions u,, when
«— 0o, of the following singular elliptic equation:

th 2%_92
Au————u=f(x)u u, (Eq)
s g =IOl a
where 2*= -2}, and f are functions on M, p is a fixed point of M and p, (x) =disty(p,x)

is the distance function on M based at p (see Definition 2.2).

Certainly, if the singular term % is replaced by %Scalg, then equation E, be-

comes the prescribed scalar curvature equation which is very known in the literature.
When f is constant and the function p, is of power 0 <<y <2, Eq. (E,) can be seen as a case
of equations that arise in the study of conformal deformation to constant scalar curvature
of metrics which are smooth only in some ball B,(4) (see [5]).
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Equations of type (E,) have been the subject of interest especially on the Euclidean
space IR". Let D?(IR") be the Sobolev space defined as the completion of C°(IR"), the
space of smooth functions with compact support in IR", with respect to the norm

2 _ 2
||uHD1,2(IRn)—/IRn|Vu| dx.

A famous result has been obtained in [8] and it consists of the classification of positive
solutions u € D¥?(IR") of the equation

A n
Au—mu:uﬁ, (E)
X

where 0< A < %, into the family of functions

where C, is some constant and a=,/1— ﬁ.

In terms of decomposition of Palais-Smale sequences of the functional energy, this
family of solutions was employed in [6] to construct singular bubbles,

2-n X— .
BV =g,7 u)\(_%x) with [ya] —0,
En En

which, together with the classical bubbles caused by the existence of critical exponent

2—n X — X
Bgazyazsaz UO( le> Wlth |y0¢’ — 00,
& &

where 1 being the solution of the non perturbed equation Au=u 1, give a whole picture
of the decomposition of the Palaise-Smale sequences. This decomposition result has been
proved in [6] and was the key component for the obtention of interesting existence results
for Eq. (E) with a function K get involved in the nonlinear term. Similar decomposition
result has been obtained in [1] for Eq. (E) with small perturbation, the authors described
asymptotically the associated Palais-Smale sequences of bounded energy.

The compactness result obtained in this paper can be seen as an extension to Rieman-
nian context of those obtained in [6] and [1] in the Euclidean context, the difficulties when
working in the Riemannian setting reside mainly in the construction of bubbles.

Historically, a famous compactness result for elliptic value problems on domains of
IR" has been obtained by M. Struwe in [7]. Struwe’s result has been extended later by O.
Druet et al. in [2] to elliptic equations on Riemannian manifolds in the form

Agu+hgu= u? 1
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Many results have been obtained by the authors describing the asymptotic behaviour of
Palais-Smale sequences. The authors gave a detailed construction of bubbles by means of
a re-scaling process via the exponential map at some points, supposed to be the centers of
bubbles. The author in [3] followed the same procedure to prove a decomposition result
on compact Riemannian manifolds for a Sobolev-Poincaré equation.

In this paper, we follow closely the work in [2] to prove a decomposition theorem
for Eq. (Ex). More explicitly, after determining conditions under which solutions of (E,)
exist, we prove as in [6] and [1] that, under some conditions on the sequence h, and the
function f, a sequence of solutions of (E,) of arbitrarily bounded energy decomposes into
the sum of a solution of the the limiting equation

heo(p) 22
Aoti— u= ul® “u, (Eco)
= A
where h, is the uniform limit of h,, and two kinds of bubbles, namely the classical and
the singular ones due to the presence respectively of the critical exponent and the singular
term.

2 Notations and preliminaries

In this section, we introduce some notations and materials necessary in our study. Let
H?(M) be the Sobolev space consisting of the completion of (M) with respect to the
norm

2 2 2
Hu||H%(M):/M(|Vu| +u?)do,.
2n

M being compact, Hf (M) is then embedded in L,(M) compactly for g4 < 2* = -2 and
continuously for g =2*.

Let K(n,2) denote the best constant in Sobolev inequality that asserts that there exists
a constant B >0 such that for any u € H7 (M),

[l 17, gy SKE (0 2)[Vul [, g+ B3 ) (2.1)

Throughout the paper, we will denote by B(a,r) a ball of center a and radius r >0, the
point a will be specified either in M or in IR", and B(r) is a ball in IR" of center 0 and
radius r > 0.

Denote by , the injectivity radius of M. Let p € M be a fixed point, as in [5] we define
the function p, on M by

_f diste(p,x), diste(p,x) <oy,
pp(x)—{ d¢, disty(p,x) > bg. (2.2)

For 4>1, we denote by Lq(M,pf,) the space of functions u such that

/Mpf,|u]’7dvg<oo.
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This space is endowed with norm

Il = | oblulidog.

In [5], the following Hardy inequality has been proven on any compact manifold M,
for every ¢ >0 there exists a positive constant A(e) such that for any u € H7 (M),

42
—dv, <(K?*(n,2,—2)+¢ / Yul?do,+ Ale / u’do,, 2.3
Jptoes (2240 [ [Vadogate) [ o, 23)
with K(n,2,—2) being the best constant in the Euclidean Hardy inequality

2
/ Y dx<K(n,2,-2)? / Vul2dx,u e C2(RY).
]Rn|_x| Rn

If u is supported in a ball B(p,d), 0 <26 <Jg, then

MZ
—dov §K5(n,2,—2)/ ]Vu]zdv ,
/B(ws) o3 8 B(p.d) §

with Ks(n,2,—2) goes to K(n,2,—2) when § goes to 0.

Concerning the existence of solutions of Egs. (E,), the author in [5] proved through
the classical variational techniques an existence result with f a constant function. Fol-
lowing closely the strategy in [5], we obtain the existence of a weak solution u, of the
Eq. (Ex). This existence result is formulated in the following theorem and due to the very
familiarity of the techniques used, in order to avoid heaviness in the paper, we omit the
proof (for a good presentation of these techniques, see for example [4]). For u € H?(M),
set

fM(|Vu|2—p%u2)dvg

inf >
u€H?(M),u#0 (fo’uP*dvg) 2%

The following theorem ensures conditions under which a weak solution u, of (E,) exists.

Theorem 2.1. Let (M,g) be a compact n (n> 3)—dimensional Riemannian manifold and f, h,
(a €[0,00]) be continuous functions on M. Under the following conditions:

1. 0<ha(p)<m’

1= ha(p)K2(1,2,-2)
(supyef) "7 K2(n2)]

2. f(x)>0,VxeMand uy<

Eq. (E,) admits a nontrivial weak solution u, € H¥(M).
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3 Decomposition theorem
Let ], be the functional defined on H7 (M) by

1 .
2 2
Ja( 2/ |Vul>— = u? vg—Z*/MfM dvg.

Traditionally, we define a Palais-Smale sequence v, of |, at a level j as to be the sequence
that satisfies J,(vy) — B and D], (vs) 9 —0, Vo € HZ(M).
Define the following limiting functionals

1 1 *

Ioo(u)=2</ R ey W ue Hi (M),
2/ |Vu|*dx ——/ lul* dx, ueDY(IR"),
_ 2 oo(P)/ ”_2 _f(P)/ 2" 12/ 1pn

Gw(u)_szyw 2 e [ e ue DR,

For a €[0,00], let h, be a sequence of continuous functions on M such that

a- |y (x)] <C, for some constant C>0,Vx€ M and Va € [0,00],
(3){ b- There exists a function /i, such that sup,, |hy—heo| —0, as a— 00,

C'0<hg¢(p)<m for all o, OSIXSOO

Now, we state our main result
Theorem 3.1. Let (M,g) be a compact Riemannian manifold with dim(M) =n >3, h, be a
sequence of continuous functions on M satisfying (H), f be a positive continuous function on

M that satisfies with h, the conditions of Theorem 2.1. Let u, be a sequence of weak solutions of

(Ex) such that [y, flua|* dvg <C,Va>0. Then, there exist k € IN, sequences R}, >0, R} — 0,
n—r00
1€ IN sequences 1}, >0, 1) ’XjOOO, converging sequences xy — xj # p in M, a solution u, € H? (M)

of (Eco), solutions v; € DV2(IR") of (3.9) and nontrivial solutions v; € D¥*(IR") of (3.14) such
that up to a subsequence

k
uazuo@(lzw%"w(exppl(x» vi((Ry) exp, ! (x))

Lo 2-n i
+ ;(ré) o f(x0) T%(eXp;; (X))Vj((r&)‘leXp;{;1 (%)) +Wa,

with W,—0 in HI(M),

and
k !

Ja () = Joo (110) + 3 Goo(00) + ) f(x8) 2" G (1) +0(1).
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In order to prove this theorem, we prove some useful lemmas. In all what follows, h,
is supposed to satisfy conditions ().

Lemma 3.1. Let u, be a Palais-Smale sequence for ], at level B that converges to a function u

weakly in H} (M) and LZ(M,p%), strongly in Ly(M), 1<q <2* and almost everywhere in M.
Then, the sequence v, = u, —u is sequence of Palais-Smale for [, and

Ja (Vo) = B—=Joo (1) +-0(1).

Proof. First, in view of the fact that u, is a Palais-Smale sequence for J,, u, is bounded in
H?(M). In fact, D]y (ug)ug=o0(| ||| g2 ) implies that

Jolu) =3 [ Fl g =-+o(1) +o(llull i o))

Since f >0, this implies in turn that u, is bounded in Ly- (M) and then in L,(M). Further-
more, we have

ha
/M|Vua]2dvg:n]a(ua)—k/guidvg%—o(llw|H%(M)).

By continuity of i, on p, we have that for all € >0 there exists >0 such that

2
Vi |2 Uy -2 2
/M’ Ual"dvg <np+(e ha(p))/B(p,&)p%dUg ’ M\B(P,é)hau“dvg el any) +o (1),

then, by applying Hardy inequality (2.3) that for every £ >0 small there exists a constant
A(e) such that

] IVt Pdog <np-(e-+ha (1) (e K2 (n,2,-2)) [ [V Pl
+A(©) [ u2dog ol ) +o(L),

since 0<h, (p)< m, we can find >0 small such that 1— (e+h, (p)) (e+K?(n,2,—2) ) >

0, which implies that [}, |V, |*dvg is bounded. Thus, i, bounded in Hf (M).
Now, for two functions ¢,¢ € H¥(M), Holder and Hardy inequalities give

hy —heo
/] 7 09y < Il an 191 v uplia ], 61)
writing

ha ha_hoo hOO
—ppd :/ ———¢od / — ¢pdv,,
/Mp%(l)(P %= Ju 03 Ppavg T M3 Ppavs
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we get by the assumption made on the sequence /, that
/ ﬂ(,b(pdv —/ hﬁgb(pdv +o(1) (3.2)
Mz T M p? g ' '

Then, since the sequence u, is bounded in H?(M), by taking ¢ = u,, we get from (3.1)
together with the weak convergence of u, to u in L2(M,p~2) that

h h
(4 N d / o0 d 1 , 33
/]\/Ip%u Ppavg M p% upave 0( ) (3.3)

thus, applying the last identity to ¢ =u, we get by the weak convergence in H7 (M) that

Ja(0n) = Ju (tta) = Joo (1) + P (110 ) +-0(1),
with

uit) =5 [ (el =[P =[oo 2 )doy,
which by the Brezis-Lieb convergence Lemma equals to 0(1), hence we obtain
Ja(va) =B —Joo(u) +0(1).
Moreover, for ¢ € Hf (M), by taking ¢ =u in (3.2), we can write
DJu(0a) 9= DJa(tta) 9 = D]Joo (1) 9+ P(ve) p+0(1),
with
D(v,)p= /Mf <|va+u|2*’2(va 1) — |04 20, — ]u|2*’2u> pdu,.

Knowing that there exists a positive constant C independent of « such that

108+ "2 (0a+10) = [0a|* 200 —[ul* 2u] S C(Joal* 2 |u| + |u|* ~[on]),

we get, after applying Holder inequality, that there exists a positive constant C such that

|<I>(v“)(p|§C<H]va 22|, . (M)+H’”|2*72’vﬂc|“L . (M)> @1, (),

2% -1 2% -1

are smaller than

which gives that ®(v,) p=0(1),V¢ € H¥ (M), since both 2*%’;—12) and 72—
2* and the inclusion of H?(M) in Ly(M) is compact for g <2*.

On the other hand, since the sequence u2 ~2u, is bounded in L ,- (M) and con-
-1

2*—2 2*—2

verges almost everywhere to u* ~“u, we get that ug ~“u, converges weakly in L »- (M)
2%-1

to u? ~2u. This, together with the weak convergence in H?(M) of u, to u and relation
(3.3), imply that Do (1) 9 =0, Vo € H3(M). Hence, D], (vs) 9 —0, Vo € HF(M). O
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Lemma 3.2. Let v, be a Palais-Smale sequence of [, at level B that converges weakly to 0 in
H2 (M), If ,1
(1-heo (p)K?(1,2,-2))*
n(supr)anK(n,Z)”
then v, converges strongly to 0 in H?(M).

p<p’ =
Proof. If v, is a Palais-Smale sequence of ], at level f that converges to 0 weakly in H? (M),
then [, v3dvg=0(1) and

[5:111/ <|Vv,x|2——pv )dvg— /f!va] dvg+o(1).

This implies that § > 0. Hence, on the one hand, by Hardy inequality (2.3) we get as in
Lemma 3.1, that for small enough & >0,

np
/M Vouldvs < o e rke e,y O 34

and on the other hand, by Sobolev inequality (2.1), we also get

np 7
/M|Vz;a|2dvg2 <(supr)K2*(n,2)> +o(1). (3.5)

Now, suppose that >0, then the above inequalities (3.4) and (3.5), for  big enough, give

(1= (oo (p) +2¢) (K*(1,2,~2) +¢)) )
”(Sllpmf)Tz (n,2)"

p=>

7

that is

gt s gt 2 el (p) 12K (12, 2)
- ni(supy f) " K(m2)2
By assumption g* > B, by taking & >0 small enough so that

262 —(heo (p) —26K2(1,2,~2)) 117 (sup f) T K (n,2)2(8"" — B7) >0
M
we get a contradiction. Thus =0 and (3.4) assures that
/M|Vva|2dvg =o(1),

that is v, — 0 strongly in HZ(M). O

In the following, for a given positive constant R, define a cut-off function g € C°(IR")
such that g (x) =1, x € B(R) and 7z (x) =0, x € IR"\ B(2R), 0<yr <1and |Vrg| < &.
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Lemma 3.3. Let v, be Palais-Smale sequence for |, at level B that weakly, but not strongly,
converges to 0 in H(M). Then, there exists a sequence of positive reals R, — 0 such that, up to

a subsequence, 1,0, with
n—2
2

D (x) =Ry v“(expp(R“x)),

and 7, (x) =n5(Ryx)) (6 is some positive constant), converges weakly in D¥?(IR") to a function
v € D?(IR") such that, if v#0,v is a weak solution of the Euclidean equation

Av—hﬁﬁf)v:f(p)]vﬁ*_zv. (3.6)

Proof. Since the Palais-Smale sequence v, of ], at level B converges weakly and not
strongly in H?(M) to 0, we get by Lemma 3.2 that B> B*. Write

o :
/M (!VUHZ—P—ZUi)dUg :/Mf]va|2 dvg+o0(1)=np+o(1),
P

since, up to a subsequence, v, converges strongly to 0 in L,(M), we get by Hardy in-
equality (2.3) that for all € >0 small

) np
np+o(l)< /M’VU"‘FdUg ST n(p) 0Pz, 2)1e)

In other words,

€1 S/ ’VZ)“ |2dvg <c, (3.7)
M

for some positive constants c; and c;.
Let y a small positive constant such that

limsup/ Vo, |*>. (3.8)
M

n—r 00

Up to a subsequence, for each & >0, we can find the smallest constant 7, >0 such that

Vo, Pdug=7.
S V5=

For a sequence of positive constants R, and x € B(R;'6,) CR", define

n—2
2

Oy (x) =R, v“(expp(R“x)),
8u(x) = (expp,g) (Rux)).

We follow the same arguments as in [2]. Let » >0 be a constant and z € R” be such that
|z|+7 <8R, !, then we have

/ V0, [2dvg = / Vo, 2o,
B(zr) expp(RaB(z,r))
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Let0<r, < % be such that for any x,y € B(r,) C R", the following inequality holds
disty (exp, (x),exp, (1)) < Calx—y 59)

for some positive constant C,. Also, for € (0,7, ), take R, be such that c,7R, =7, then we
get

exp,(RaB(Cor))) =B(p,CorRa)

and then
/B(C ) Vo, |*dvg = /B(p . Vg [*dvg =1. (3.10)

Take ¢ such that 0 <6 < min(Cor,%g), there exists a positive constant such that, for all
ue DY2(R") with Supp(u) € B(6R; 1), the following inequalities hold

1
C_l/IRnW”deS/]Rn!Vu]zdngQ/IRanFdx, (3.11a)

i/ |u]dx§/ |u]dvg§C1/ luldx. (3.11b)
Cl R~ R~ R”

Define a sequence of cut-off functions 7, by 7, (x) =#5(R,x). Then, it follows from (3.10),
(3.11a) and (3.11b) that the sequence 7, =7,0, is bounded in D'?(IR"). Consequently, up
to a subsequence, 7, converges weakly to some function v € DV2(IR").

Suppose that v #0, since v, converges weakly to 0, it follows that R, — 0.

Let us first prove that v is a weak solution on D'2(IR") to (3.6). For this task, we let
¢ € C3(R") be a function with compact support included in the ball B(J). For a large,
define on M the sequence ¢, as

2—n
2

¢a(X) =Ry @(Ry ™ (exp, ' (x))).

[hen, we have
d ——/ 0 dvs ,
/ Vo,V Vg anqu) Vg,

ha(exp, (Rax
[ oo —rz [ OB
M Py R" dzstgw(O,R“x)

/Mf’%’2*—zva(Padvg/]Rnf(eXPp(Rax))|5a|2*—25a§0d?’ga-

Oy pdog,,

When tending « to o, §, tends smoothly to the Euclidean metric on IR", then by passing
to the limit when a« — oo and since v, is a Palais-Smale sequence of J,, we get that v is
weak solution of (3.6). O
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Lemma 3.4. Let v be the solution of (3.6) given by Lemma 3.3, then up to a subsequence,

2-n
Wy =0, —R,?

ns(exp™ (x))v(Ry exp, (1)),

wl;e(re ())< o< %Q is a Palais-Sequence for J, at level B—Ge(v) that weakly converges to 0 in
H2(M).

Proof. For 0<d< %, define
2—n
2

Ba(x) =Ry’ 15(exp,” (x))o(Ry exp, ' (x)), x€M,

and put
Wy =0y — By

We begin proving that w, converges weakly to 0 in H7 (M), it suffices to prove that B,
does. Take a function ¢ € €*°(M), then we have

VB,V o+B,o)d

[B (W)( ¢+ Byg)dog

=R} /B (ZJREI)[Rav(x)(Vms)(Rax)+175(Rax)Vv]qu(eXPp(Rax))dvgw
n+2

PR [ o (Rex)p(expy (Rex) e,

then, for a positive constant C’ such that dvg, < C'dx, it follows that

VB, Vo+B,o)d
/B (W)( ¢+ Bagp)dog

<C'R? [supyvgoy/ (|Vv|—|—|v]C<5_1)dx+Rasup|g0]/ jol)dx].
M IR" M IR"

Thus, when tending a — oo, we ge that B, — 0 weakly in H7 (M).
Now, let us evaluate J,(w, ). First, we have

Vw,|d :/ Vo, [2d / V(0,—B,)[2dv,,
/M’ wa"dog M\B(p,Zo")’ Ou"dvg + B(p,25)’ (v )IFdvg

and Of course
C n —‘Ba 2d’0
/B(p,2z$)| (U )’ g

_ / Vo, *dog —2 / V0, VBadog + / VB, [2do,.
B(p.20) B(p.20) B(p.20)
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Direct calculation gives

VB, |%d :/ 2R ) Vol2dos
/B(P'2‘5)| o0 B(25R;1)17(5( x)| Vol dog,

2 2 2
+R“/B(25R1)v V151> (Rax)dvg, +2Ra Vij5(Ryx) Vodug, .

o

It can be easily seen that the second term of right-hand side member of the above equality
tends to 0 as « — co. Furthermore, for R >0, a positive constant, we write

2 2 _ 2 2 . 2 5 A
/B(ml)%(wa”Wl dog, = /B(R)ms(Rax)!Vv! dvg, + /IR o Re) Voo,

with
2 . Zd N <C/ zd ,
/W\B(R)’?(s(R x)|Vol U, > ”\B(R)| Vo|“dx=eg

where €p is a function in R such that eg — 0 as R — co.
Noting that ¢, goes locally in C! to the Euclidean metric ¢, we get then

/ ]VBalzdvg:/ Vo2dx+o(1) +er. (3.12)
B(p,26) R
Moreover, we have
/ V0, VB,do,g
B(p,20)
—/ V (115(Rax)0s) Vodog, + Ry / UV@a—ﬁ“VU)Vﬂg(R“x)d’()ga (3.13)
B(26Ry B(26Ry
with

‘/B(Z(SRQ_’1)V17(5(Ropc)(vVﬁ(,¢—zﬁt,CVv)dngLY

1 1

<cs! [</B(26R;1) g lzdvga) ’ (/B(z(ngl)vzdx) ’
1 1

* (/B(zzstl)@%‘dvg“) 2 (/B(Z&Ral)) ’VU,de> 2} '

Since v, is bounded in H?(M), the quantities fB(zo.Ra_l) V0, [2dvg, and [pp5r.1) 04| 2dvg,

are bounded and hence the second term of the right-hand side member of (3.13) is o(1).
Thus, by using the weak convergence of 7,0, to v in DV2(IR") that

/ VvaVBadvg:/ |Vo|2dx+o(1),
B(p,5) R”
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so that
/|Vwa|2dvg:/ yvmzdvg—/ Vo2dx+o(1) +ex.
M M R”

In the same fashion, for R a positive constant and « large, we write

/ M 32 40, -/ f Bzdvg—l—/ M 2.0,
B(p, ZO)PP B(p, RRA)PP B(p,26)\B(p,RR, )Pp
with e
/ L B2 dp, < C(RR,)™ / B2dv,,
B(p,20)\B(p,RRx) Pp B(p,20)\B(p,RRx)
then, by a direct calculations, we get
ha o 2
/ —B dvg < CR™2 vdx=c¢g.
B(p26)\B(p,RR,) 0p IR"\B(R)

Hence,

h hy(exp,(Ryx))
_“32:R2/ Sy 2 (R x)o2dos
/B(p,zo") P% & it (R) (dlstgw (0,Ryx)2 1z (Ryx)v Vg, T€R

2
0
:hw(p)Aanx+o(1)+sR.

Also, in similar way, since v, is bounded in H%(M), after using Holder and Hardy in-
equalities, we can easily have

h,
/ —v“B dvg<CR UszgZSR,
B(p,20)\B(p,RRx) Pp IR"\B(R)

which yields

ha hy(exp,(Ryx))
B Rz/ 10 Rox)0, )odvg, +
/(P‘S)P ° 8= B(R) (dzstgw(O,Rax))z(W( «X)0y)vdvg, +eR

2
(Y
:hm(p)/RanHou)HR.

so that in the end we obtain

My 5 h v?
—wd /—“ 2dv, —heo / ——=dx+o(1)+eg.
/Mp%w vy = Mp%v g (p) o T2 x+o(1)+eg

In similar way, we can prove that

/M|w,x]2*dvg:/M]va|2*dvg—f(p)/M]v|2*dvg—|—o(1)—|—sR.
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Finally, since R is arbitrary, when summing up we obtain

Ja(wa) = Ja(t#a) = Goo(v) +0(1) = = Geo (v) +-0(1).
It remains to prove that DJ,(B,) — 0 in H?(M)'. Let ¢ € H?(M), for x € B(6R;!) put
n—2
Pu(x)=R,? q)(expp(Rax)) and ¢, (x) =15(Rax)) @a(x), then we have

VB.Vgdog= [ | VoVg,d R/ | Vs(Rox) (9 9= 0, V)i
/B(pfzé) PA08= Jpamgy * 0 P08 15 (Rax) (0V @0 = 92 Vo) dvg,

Knowing that
VoPdo,= [ | [Vouldog,,
/B(P,25)| pldog B(Z&R;1)| Pl O
we get that
/8(2(512;1) |V115(Rax) (0¥ 9o — 9uV 0) |d0g, < Cll 9] |2 )
which gives that

/B A [B s, VOB ool
Next, for R > 0 write

VoV d /VVd / VoVa dos |
/B o, VOV Pallvg = OVPgt [ iy VOV Pt

note that

Nl—

VoVa. dus <C / Vol2d
S, YOVPets <Cllallzin ([ I99P)
:O(H(PHH%(M)) e(R),

where eg — 0 as R — 0. Since the sequence of metrics ¢, tends locally in C! when a — oo
to the Euclidean metric, we obtain

Sy VB V025 = [ VoVBa b0l gl ) +OU o e R)

Moreover, for a given R >0, we have for « large,

I, I, Iy
Baopdo —/ —Ba dv, + / B do
/<pzo>pp P Jarrg 02 PUST Jnpasnmprrg 03 TE

On the one hand, we have

C
Bygd / B2do,,
Pavs = (RRqy )2”¢HH B(p20)\B(p,RRy) ’

/(P 25)\BP(RRR) pp
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and a straightforward computation shows that

| By lzdvg < CRZ/ v*dx,

/B(PrZJ)\B(PrRRa) B(20R;")\B(R)

which implies that

o dv, = 2 ER
/(pzo)\B(pRR)Pp L OWHH](M))

with eg — 0 as R— oo.
On the other hand, we have

he ha(exp, Rax)
— Bagd / ‘ p odvs,
/ BpRR) P38 T iy (distg, (0,Rygx))2 T8

which leads to

hy heo(p) _
2 d / dx+
/Bp(RRa)pp Pete= B(R) |x|? o O(H(PHH%(M))

|x]

_ [ he(p) = heo(p)
= [ e v /Rn\B "o opdxolllollg )
with
heo (p)
d =0 ,
o e o < gl = Ol gl e
so that

hy heo
[ Bemgpaog= [ "= g tolllgl g )+ OClgllg e
B(p20) P} | x[?

In the same way, we can also have

4
/B@za)f'g“’“ﬁ“"’d”g:f( p) [ o120, dx=o0(l 9l 1z ) + Ol Do

Summing up, we obtain

h 4
VB“V d _“Ba d —/ Ba mBa d
/B(p,z(s)( % "Ug"‘p% 90) Vg B(p,2§)f’ | pdug

heo(p) 4
e i (Vvvq)adx—l— ’ ’2 q0a>dx—f(p)/]Rn”U|n—2’U¢adx
+o(llllrzm) +OUl @l 2 (a) )R,

and since v is weak solution of (E.), we get the desired result. O
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Keeping the notations adapted above, we prove the following lemma

Lemma 3.5. Let v, a Palais-Smale sequence for |, at level B. Suppose that the sequence =10,
of the above lemma converges weakly to 0 in DV2(IR™). Then, there exist a sequence of positive
numbers {1, }, T, — 0 and a sequence of points x; € M, x; — x, € M\ {p} such that up to a
subsequence, the sequence 15 (TyX )V, With 6 is some constant and

n-2
Va=To" Va(exp, (Tux))

converges weakly to a nontrivial weak solution v of the Euclidean equation
Av:f(xo)M%v (3.14)
and the sequence
Wa=00 = fs(expy, (x)v(ry texpy ! (1)
is a Palais-Smale sequence for J, at level B— f(x,) ™2 G (v) that converges weakly to 0 in HY(M).

Proof. Suppose that the sequence 3, = 7,0, converges weakly to 0 in DV?(IR"). Take
a function ¢ € C°(B(C,r)) and put ¢, (x) = (p(R,;lexp;l(x)). As in [6] and [1], by the

strong convergence of 7, to 0in L _

|1V @)Pdog, = [ V8,9 (@gP)dug, +o(1)
IR" IR"
:/MVUNV(v“(pﬁ)dvg—ko(l)

h, 1
=|| D]l ’|Uac(Pi’|+/ — (Ua§0a)2dvg+/ floa|72 (v“(p,x)zdvg—l—o(l) (3.15)
M P M

(IR"), we have for « large

<(u(p)+e) (I (n2,-2)+¢) [ V(o) o

+supfK” (n.2) ( /B o V3, Pdog, ) /1 |V (349) Pdog, +0(1).

0

Thus, for 7 chosen small enough, we get that for each ¢, 0 <t <C,,,
/ |Vva|2dvg:/ V3, |*dvg—0 as a— . (3.16)
B(ptRy) B(t)
Now, for t >0 consider the function

t— JF(t) =max Vo, |*dog.
x€M JB(x,t)

Since ¥ is continuous, under (3.7) and (3.8), it follows that for any A € (0,7), there exist
t, >0 small and x, € M such that

/ Vo, |*dvg = .
B(xa,ta)
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Since M is compact, up to a subsequence, we may assume that x, converges to some
point x, € M.

Note first that for all « >0, t, <r, = C,7R,, otherwise if there exists a, > 0 such that
ty, <7a,, we get a contradiction due to the fact that

A:/ Vv, 2dv 2/ Vg, 2dv 2/ Vg, 2dv =1.
B(xaa,taa)| g B(m)' g B(p,mo)’ g

Now, suppose that for all € >0, there exists a, > 0 such that distg(xa,p) <e¢for all & > a,.
Choose 7/, such that, t, <r}, <r, and take ¢’ =r}, —t,, we get that for some ay >0 and a >«

B(xu,ta) CB(pre),

which, by virtue of (3.16), is impossible. We deduce then that x, # p.
Now, let 0< 1, <1, for x€B (T_15g) C R" consider the sequences

o

n—2

Vo (X) =T, vu(exp, (TaX)),

8a(x) =expy g(Tax)).
Take 7, such that C,r7, =t,. As in the above lemma, we can easily check that there is a
subsequence of 7, =#;(T,x)v, where ¢ is as in the above lemma, that weakly converges in
DI2(IR") to some function v, a weak solution on D?(IR") to (3.14). Note that this time

the singular term disappears because x, # p and because of course t, —0.
It remains to show that v # 0. For this purpose, take a point a € IR" and a constant

r> 0 such that |a|+r <7,7, !, where r, € (O,%) is a constant such that inequality (3.9) is
satisfied. Then, we have

epra (T“B(a’r)) C B(expxa(Taa)/CorTa);

and
exp,. (taB(Cor)) =B(x4,Cor1y)

C,, here, is the constant appearing in inequality (3.9). Since we have

|Vw!2dv~a=/ Vo, [Pdog,
/l;(a/) # exp,, (TuB(a,r)) ' *

we get by construction of x, that for such a and r,
/ |VV“’2d’()g~§)\.
B(a,r)

Suppose now that v =0. Take any function h € D2 (IR") with support included in a ball
B(a,r) C IR", with a and r as above. Then, by taking A small enough, we get by the same



34 Y. Maliki and F. Terki / Anal. Theory Appl., 34 (2018), pp. 17-35

calculation done in (3.15) that f B(ar) Vi,dvg converges to 0 for all 2 € IR" and r >0 such
that |a|+7<7,7, !. In particular,

/ |Vv,x|2dvg:/ |V |*dog —0,
B(Xata) B(Cor)

which makes a contradiction. Thus v #0.
The proof of the remaining statements of the lemma goes in the same way as in lemma
3.4. O

Proof of Theorem 3.1. First, it is worthy to mention that the value G (v) taken on a non-
trivial weak solution v of the Euclidean equation (3.9) is greater or equal to the constant
B*. In fact, if v is solution of (3.9),then by Hardy and Sobolev inequalities we have

¥
02

S (V0P —halp) o )dx=£(p) [ o e < Fp) (n2) [ Ivokax) ™, 617
and
/In(|Vv|2—hoo(p)%)dx2(1—hm(p)K2(n,—2,2))/ n]Vvlzdx, (3.18)

IR
then by (3.17) and (3.18) we get
2

Goo(v):%/w (]Vvlz—hoo(p)Z—’z)dx
(e (KA —22)F 619)

nf(p)* =K (n2)

Now, let u, be a sequence of solutions of (E,) such that f mf |ua]2*dvg <C, u, is then a
bounded Palais-Smale sequence of |, at some level f. Up to a subsequence, we may
assume that u, converges weakly in H?(M) and almost everywhere in M to a solution
u of (Ex). Set vy =u,—u, then by Lemma 3.1, v, is a Palais sequence of ], at level 1 =
B—Joo (1) +0(1). If v, — 0 strongly in H?(M), then the theorem is proved with k=1=0. If
v, — 0 only weakly in H7 (M), then we apply Lemmas 3.3, 3.4 and 3.5 to get a new Palais-
Smale sequence v} at level By < B1—pB*+0(1). So, either B> < B* and then v} converges
strongly to 0, or B, > B* and in this case we repeat the procedure for v} to obtain again a
new Palais -Smale sequence at smaller level. By induction, after a number of iterations,
we obtain a Plais-Smale sequence at a level smaller than p*. O

Corollary 3.1. Suppose that the sequence u, of weak solutions of (E,) is such that

(1-hes (p)K3(1,2,-2))*
(supf)'? Kn(n,2)
M

E(uy) :/Mf|ua]2*dvg <c<

Then, up to a subsequence, u, converges strongly in H7 (M) to a nontrivial weak solution
u of (Eco).
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Proof. By Theorem 3.1, there is a weak solution u of (E) such that, up to a subsequence
of u,, we have

ua—u+2 (RL) 7 ns(exp, (x))oi (R}) "exp, ! (¥))

i=

+Zf ) (1) 7 s exp ! () () exp (1)) + W,

N

w1th W, —0in Hi(M),
and
k
¢>E(ug) =nJu(tta) =1]Joo (1) +1)_ Goo(v; —|—an )G G(vj)+o(1).
i=1 j=1
Suppose that u =0, if there exists i, 1 <i <k such that v; #0, then by (3.19) we get
L (1ohe(p)K(12,-2))"
(SUPf) 2Kn(n,2)

thus, v; =0, Vi, 1 <i <k, case in which Lemma 3.4 applies, that is, there exists vj #0 such
that

Nl=

LS (he(p)K2(n2,22))

~ K"(n,2) (supf) T K”(n 2)
Hence, u # 0. Furthermore, Jo(u) >0, frorn which we can conclude that k=1=0. In
particular, u, converges strongly in H?(M) to u. O
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